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Temperature dependence 
of intrinsic and extrinsic 
contributions to anisotropic 
magnetoresistance
Ji‑Ho Park1, Hye‑Won Ko1, Jeong‑Mok Kim2, Jungmin Park3, Seung‑Young Park3, 
Younghun Jo3, Byong‑Guk Park2, Se Kwon Kim1, Kyung‑Jin Lee1 & Kab‑Jin Kim1*

Electrical conduction in magnetic materials depends on their magnetization configuration, resulting 
in various magnetoresistances (MRs). The microscopic mechanisms of MR have so far been attributed 
to either an intrinsic or extrinsic origin, yet the contribution and temperature dependence of either 
origin has remained elusive due to experimental limitations. In this study, we independently probed 
the intrinsic and extrinsic contributions to the anisotropic MR (AMR) of a permalloy film at varying 
temperatures using temperature‑variable terahertz time‑domain spectroscopy. The AMR induced by 
the scattering‑independent intrinsic origin was observed to be approximately 1.5% at T = 16 K and 
is virtually independent of temperature. In contrast, the AMR induced by the scattering‑dependent 
extrinsic contribution was approximately 3% at T = 16 K but decreased to 1.5% at T = 155 K, which is 
the maximum temperature at which the AMR can be resolved using THz measurements. Our results 
experimentally quantify the temperature‑dependent intrinsic and extrinsic contributions to AMR, 
which can stimulate further theoretical research to aid the fundamental understanding of AMR.

Electrical conduction in magnetic metals depends on their magnetic state, which results in various magnetore-
sistances (MRs), such as anisotropic MR (AMR)1, giant MR (GMR)2,3, magnon MR (MMR)4, and spin Hall MR 
(SMR)5 as well as various Hall  effects6,7. The microscopic mechanisms of such MRs have been extensively studied 
and have so far been classified into either intrinsic or extrinsic  origins6,7.

Among the various MRs, the AMR is one of the most fundamental spin–orbit–interaction (SOI)-induced 
transport phenomena in magnetic materials. The AMR describes the anisotropic charge conductivity and its 
dependence on the relative orientation of the current flow and the magnetization. Early theories viewed the AMR 
through Mott’s two-current  model8, in which the electrical conduction in transition metals is modelled as the 
sum of two separate currents of majority and minority spin electrons, with the following two assumptions: (i) 
s electrons are responsible for the conduction, owing to the relatively low mobility of d electrons; (ii) the large 
density of d states mainly accounts for the scattering rates of s electrons. This led to AMR being attributed to the 
magnetization-dependent scattering time, i.e., the extrinsic  effect9–13, as the d electrons experience the SOI but 
the s electrons do not. Specifically, the conducting s electrons experience anisotropic scattering processes via 
spin–orbit-coupled d bands. This class of AMR theories take into account various SOI-induced effects on the 
scattering time, such as the mixing of majority and minority d  states11–13, altering the atomic wave function of d 
 orbitals12, and spin mixing processes including spin-flip  scattering10.

Recent theories have diverted from the assumptions of the Mott model and have identified the intrinsic 
mechanism of AMR, which arises from the scattering-independent band-structure effect. The resulting intrinsic 
relaxation is essential for transition metals since d electrons also participate in electrical  conduction14,15 through 
spd  hybridization16. In other words, the conduction electrons are no longer intact to SOI; rather, their band struc-
tures are affected by SOI. Therefore, not only does the magnetization-dependent scattering time play a crucial 
role in the AMR, but the magnetization-dependent electronic structure, i.e., the intrinsic origin, is also critical. 
Recent theoretical works have emphasized the intrinsic effect on AMR by illustrating ballistic AMR owing to 
the anisotropic d  bands17 and demonstrating the magnetization-dependent band structure owing to the orbital 
 hybridization18. The existence of the intrinsic contribution has also been investigated experimentally. Hupfauer 
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et al. demonstrated the crystalline AMR effect, originating from the difference in electronic density, through its 
magnetization  orientation19, and Zeng et al. reported the intrinsic contribution caused by the magnetization-
direction-dependent band crossing  effect20.

Recently, Nadvornik et al. have successfully disentangled the intrinsic and extrinsic contributions to AMR in 
polycrystalline thin films at room  temperature21, in which they found that the anisotropy of a crystal structure 
could be an origin of intrinsic contribution to AMR. Despite the success, however, our understanding of AMR 
is still far from satisfactory. In particular, the temperature dependence of the intrinsic and extrinsic contribu-
tions to AMR remains elusive, despite the large temperature variance of  AMR22. In this respect, investigating 
the temperature dependence of the intrinsic and extrinsic contributions to AMR is of crucial importance to 
understand the fundamental origins of the AMR.

In this letter, we investigate the temperature dependence of the intrinsic and extrinsic contributions to AMR 
in a permalloy film by using terahertz time-domain spectroscopy (THz-TDS). We find that the intrinsic contri-
bution to AMR was virtually independent of temperature, while the extrinsic contribution to AMR decreased 
with increasing temperature, suggesting that the portion of intrinsic contribution to the total AMR increases 
with increasing temperature. Quantitatively, the intrinsic portion accounted for (32.3± 7.3) % of the total AMR 
at T = 16 K, which increased to ( 46.2± 9.7) % at T = 155 K. Our results provide experimental evidence for the 
explicit temperature dependence of the intrinsic and extrinsic contributions, which can stimulate further theo-
retical research towards a comprehensive understanding of AMR.

Results
Identifying the intrinsic and extrinsic contribution based on the Drude model. As the AMR 
stems from changes in the longitudinal conductivity, the DC Drude  model23 can be used to investigate the intrin-
sic and extrinsic contributions to the AMR:

where σdc is the DC conductivity, n is the charge density, m∗ is the effective mass, e is the electron charge, and τ is 
the momentum scattering time. Here, the magnetization-dependent change in nm∗ and τ represent the scattering-
independent intrinsic and scattering-dependent extrinsic contributions,  respectively21. Therefore, the intrinsic 
and extrinsic contributions to the AMR can be separately identified by measuring both n

m∗ and τ for different 
magnetization directions. We note that the Drude model can be applied even in the presence of spd hybridiza-
tion, because the conduction of d-electrons can be neglected due to their localized characteristics and large 
effective  mass24.

The independent probing of n
m∗ and τ can be achieved by measuring the AC Drude conductivity with the 

THz-TDS. The AC Drude conductivity, 
∼
σ (ω) , is given by

where ω/2π is the THz frequency. THz-TDS allows us to determine the real and imaginary components of the 
AC Drude conductivity, leading to the direct determination of the momentum scattering time, τ , and the DC 
conductivity, σdc , simultaneously, based on Eq. (2). Therefore, it enables the separate quantification of τ and 
n
m∗ through using Eq. (1), which correspond to the extrinsic and intrinsic contributions to AMR, respectively.

Disentangling the intrinsic and extrinsic contributions using THz‑TDS. Figure 1a shows the sche-
matic of our THz-TDS setup. The 90 nm-thick permalloy (Py) film, deposited on an Si substrate by magnetron 
sputtering, was located inside the cryostat. The weak single-cycle, sub-picosecond THz pulse was directed nor-
mally at the sample (along the z-axis) and its transmission was measured. The polarization of the THz electric 
field lies along the y-axis (i.e., θ = 0 ), and the magnetization direction of the Py was controlled in the x–y plane 
(with an angle θ ) by applying an in-plane magnetic field using a home-built vector magnet (see “Methods” for 
the sample fabrication and THz-TDS setup).

Figure 1b shows the typical transmitted THz time-domain signal obtained upon varying the angle θ between 
the THz electric field and Py magnetization. We applied a magnetic field of 25 mT, which is large enough to satu-
rate the magnetization of the Py film. The measurement was conducted at T = 54 K. To increase the signal to 
noise ratio, we averaged the time-domain trace by accumulating 850 pulses for each measurement, and this 
measurement was repeated 40 times (see “Methods” for measurement details). As the oscillating THz electric 
field induces a time-dependent current in the sample, the attenuation and phase delay of THz electric field can 
be observed as it propagates through the sample. The degree of attenuation depends on the DC resistivity of the 
sample: the higher the resistivity, the smaller the attenuation. Since the Py has a positive  AMR25, it is noted that 
ρAMR ≡

ρ�−ρ⊥

ρ⊥
> 0 , where ρ‖(ρ⊥ ) is the resistivity of the Py when the current and magnetization are parallel 

(perpendicular), and that the resistivity of the sample is high (low) when the magnetization and the electric 
current are parallel (perpendicular). Therefore, a large (small) attenuation of the THz electric field is expected 
when the THz electric field and the Py magnetization are perpendicular (parallel) to each other. This is indeed 
observed in our THz time-domain signals in Fig. 1b.

To extract the intrinsic and extrinsic parameters, we obtained the complex conductivity of the sample by 
performing a Fourier transform on the THz time-domain signals (see “Methods” for details). Figure 1c shows 
the THz spectra of the real and imaginary parts of the complex conductivity for 5 different angles ( θ= 90°, 40°, 
0°, − 40°, − 90°). The solid lines are the best fits using the AC Drude model based on Eq. (2). The correlation of 

(1)σdc =
n

m∗
e
2τ ,

(2)σ̃ (ω) =
σdc

1− iωτ
=

σdc

1+ ω2τ 2
+ iωτ

σdc

1+ ω2τ 2
,
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the experimental data and the AC Drude fitting demonstrates that the complex conductivity of Py is well 
described by the AC Drude model. The real and imaginary components of the complex conductivities directly 
yield the momentum scattering time, τ , and the DC resistivity 

(
ρdc,THz =

1
σdc,THz

)
 simultaneously through using 

Eq. (2). We plot those values in Fig. 1d. Both τ (blue symbols) and ρdc,THz (black symbols) follow the typical 
AMR angle dependence (~ cos2θ , shown by the solid lines in Fig. 1d) and are inversely proportional to each other 
in accordance with 1

ρdc,THz
= σdc,THz =

n

m∗ e
2τ . However, we found that the amount of anisotropy was different 

for ρdc,THz (4.3%) than that for τ (2.8%), which implies a finite intrinsic contribution originated from n/m∗.

Temperature dependence of transport parameters. We next investigated the temperature depend-
ence of intrinsic and extrinsic transport parameters by repeating the experiment at various temperatures. For 
accuracy, we performed THz-TDS measurements for both parallel and perpendicular geometries 160 times at a 
fixed temperature (see Methods and Supplementary Note 1 for details of measurement). Figure 2a–c show the 
temperature dependence of ρdc,THz [Fig. 2a], τ [Fig. 2b], and n

m∗ [Fig. 2c] for parallel (black) and perpendicu-
lar (red) geometries. Here, ρdc,THz and τ were directly determined from the THz-TDS measurements and n

m∗ 
extracted using Eq. (1) and ρdc,THz and τ measurements. Figure 2a,b show that as the temperature increased, 
ρdc,THz increased but τ decreased. This follows the typical trends of metallic samples, which originate from the 
increased effect of electron scattering by thermally excited phonons and  magnons26. The temperature depend-
ence of ρdc,THz is further confirmed by the DC resistivity measured separately [see Supplementary Note 2]. We 
note that the measurement temperature was limited to T < 155 K where the Drude fitting was guaranteed; at 
higher temperatures, the uncertainty in determining τ increases due to the rapid decrease of τ , causing the error 
bars of τ for parallel and perpendicular geometries to overlap.

Figure 2c shows that not only the scattering-dependent τ but also the scattering-independent n
m∗  varied 

with temperature. For further in-depth quantitative analysis, we separately determined the carrier density, n , 
by measuring the ordinary Hall effect. Figure 2d shows the temperature dependence of n , which increased by 

Figure 1.  Angle-dependent complex conductivity measurement. (a) Schematic illustration of terahertz 
time-domain spectroscopy (THz-TDS). (b) Time-domain THz pulses for several angles between THz electric 
field and magnetization of sample. Inset zooms into the amplitude of transmitted pulses. The measurement 
temperature is T = 54 K. (c) The real and imaginary parts of complex conductivity with respect to the THz 
frequency for several angles. Solid lines are the Drude fittings using Eq. (2). (d) Angle-dependent DC resistivity 
(black) and scattering time (blue) determined by THz spectroscopy. The error bars for DC resistivity are smaller 
than the symbol size.
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approximately 5% when the temperature increased from T = 16 K to T = 155 K. The temperature dependence of 
m∗ could then be extracted from the measured (n/m∗)⊥ [Fig. 2c] and n [Fig. 2d]. Here, we used (n/m∗)⊥ for con-
sistency as the Hall effect was measured within this perpendicular geometry. Figure 2e shows that m∗ increased 
by approximately 13% when the temperature is increased from T = 16 K to T = 155 K. These results suggest that 
both n and m∗ , which constitute the intrinsic contribution to AMR, vary with temperature. We note that the 
values of n and m∗ as well as their temperature dependences are consistent with those reported  previously27–32.

Temperature dependence of intrinsic and extrinsic contributions to AMR. The clear difference 
between the results obtained with the parallel and perpendicular geometries in Fig.  2a–c indicates that all 
parameters are anisotropic and thus contribute to the AMR. In Fig. 3, we summarize the temperature dependent 
anisotropy for ρAMR ≡

ρdc,THz,� −ρdc,THz,⊥
ρdc,THz,⊥

 [grey] and τAMR ≡
τ⊥−τ�
τ�

 [green] as well as for 

(n/m∗)AMR ≡
(n/m∗)⊥−(n/m

∗)�
(n/m∗)�

 [blue], which have been extracted from Fig. 2a–c. It is clear that not only the 
scattering-dependent extrinsic contribution τ but also the scattering-independent intrinsic contribution n/m∗ 
constitutes the AMR [the origin of the intrinsic contribution is discussed in Supplementary Note 3]. The tem-
perature dependence of the extrinsic and intrinsic contributions show distinctive behaviour: the τAMR largely 
decreases with increasing temperature, even when taking the error bars into consideration [green symbols in 
Fig. 3], while (n/m∗)AMR does not exhibit a clear change but is still within the range of its error bars [blue sym-
bols in Fig. 3]. Quantitatively, τAMR is approximately 3.0% at T = 16 K but decreases to 1.5% at T = 155 K, corre-
sponding to a decrease by half as the temperature increases from T = 16 K to T = 155 K. In contrast, n/m∗AMR is 
approximately 1.5% at T = 16 K and remains virtually constant up to T = 155 K. This means that the portion of 
the intrinsic contribution to the total AMR gradually increases with increasing temperature, mainly due to the 
reduction of extrinsic contributions at higher temperature. The intrinsic portion is ( 32.3± 7.3) % of the total 
AMR at T = 16 K, but it increases ( 46.2± 9.7) % at T = 155 K.

Figure 2.  Temperature-dependent intrinsic and extrinsic transport parameters probed by THz-TDS. (a) 
THz-proved DC resistivity, ρdc,THz , as a function of temperature for parallel (black) and perpendicular (red) 
geometries. (b) Temperature-dependent electron scattering time, τ , for parallel (black) and perpendicular 
(red) geometries. (c) Temperature-dependent charge density/effective mass, n/m∗ , for parallel (black) and 
perpendicular (red) geometries. (d) Charge concentration, n , as a function of temperature obtained from 
ordinary Hall effect measurement. (e) effective mass,m∗ , as a function of temperature. The error bars in (a)–(e) 
are smaller than the symbol size.
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Conclusion
We investigated the temperature dependence of intrinsic and extrinsic contributions to the AMR in a Py film 
by independently probing the electron-momentum scattering time ( τ ) and fraction of charge density to effec-
tive mass ( n/m∗ ) at various temperatures using THz-TDS. The intrinsic contribution was approximately 1.5% 
at T = 16 K and was virtually independent of temperature, while the extrinsic contribution was approximately 
3.0% at T = 16 K and decreased by half as the temperature increased up to T = 155 K. Our results therefore pro-
vide experimental evidence for the distinctive temperature dependence of the intrinsic and extrinsic AMR and 
call for further theoretical investigations to enable a comprehensive understanding of AMR accounting for the 
intrinsic and extrinsic mechanisms. Finally, we anticipate that the use of THz-TDS in the various MRs, especially 
for MR having distinct temperature dependence, will lead to substantial advances in our understanding on the 
fundamentals of spintronic transport.

Methods
Sample preparation. 90-nm-thick Py films with 1.5 nm  TaOx capping layer were deposited by dc magne-
tron sputtering on Si substrate. The Py films had in-plane magnetic anisotropy, and the size of films was 6 × 12 
 mm2 which was larger than the diffraction limit of THz wave (3 mm). To measure the complex conductivity of 
sample, we prepared bare Si substrate as a reference which has almost identical thickness with that of the depos-
ited sample. For this study, we prepared three Py films (#1—#3): #1 was used for angle dependent THz-TDS 
measurement (Fig. 1), #2 was used for temperature dependent THz-TDS measurement (Figs. 2 and 3), and #3 
was used for four-probe DC resistance measurement (Fig. S2). Nominal thickness of samples was same for all 
samples.

Experimental setup for THz‑TDS. A standard THz-TDS setup (Tera K15-Menlosystems) with 4 TPX 
lenses was used for THz measurement. Montana vacuum cryostat was used to control the temperature of sample. 
A standard glass windows were replaced with the TPX windows for THz experiment. The deposited film and 
reference substrate were installed simultaneously inside the cryostat using L-shaped sample holder. Two samples 
(deposited film and reference substrate) were attached to each plane of L-shaped holder that was attached at the 
ANC300 piezo rotator. By rotating the piezo rotator, we could selectively choose the deposited film or reference 
substrate without breaking the vacuum. An in-plane magnetic field was applied by using home-made vector 
electromagnet. The vector magnet is made of two axis electromagnets, each of which generates magnetic field 
of up to 100 mT. The directional magnetic field can be applied by adjusting the strengths of two orthogonal 
magnetic fields. The direction of the magnetic field is confirmed by sensing the magnetic field at sample position 
using Gaussmeter. To rule out any mechanical effects, every structure inside the vacuum chamber is made of 
OFHC (Oxygen free high thermal conductivity) copper and brass which have very low magnetic susceptibility. 
Field-induced mechanical effects have been confirmed to be negligibly small (see Supplementary Note 4).

THz measurement for AMR. A single cycle THz pulse with 2 ps duration was generated from the THz 
emitter and then, the THz beam was focused on sample through the TPX lens. The transmitted pulse was col-
limated and detected at the THz detector. The time domain data was obtained by the pump-probe method with 
0.033 ps time interval. To acquire the AMR, each time-domain data was averaged by accumulating 850 repeated 
measurements, and this THz measurement was repeated up to 160 times (40 times for Fig. 1) for parallel and 
perpendicular geometries, respectively, yielding the total average number of 136,000 (34,000 for Fig.  1). To 

Figure 3.  Intrinsic and extrinsic contributions to total AMR. Anisotropy ratios of ρdc,THz (gray), τ (green) and 
( n/m∗) (blue) as a function of the temperature. Here, ρAMR corresponds to the total AMR, while τAMR and 
(n/m∗)AMR represent the extrinsic and intrinsic contribution to AMR. The error bars for ρAMR are smaller than 
the symbol size.
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reduce the noise, we performed the following treatments: (1) THz system was purged with dry nitrogen gas 
until the relative humidity was down to less than 1%. (2) A 675 µm thick substrate was chosen to keep internally 
reflected pulse away from the main pulse. (3) Time domain was carefully selected in order to exclude the effect 
of internal reflections which would cause the ripple in the frequency domain. (4) High resistive Si was used to 
reduce the absorption loss in substrate. (5) Both sides of substrate were polished to reduce the effect from surface 
roughness which would affects the transmittance of THz pulse. (6) The thickness of Py (90 nm) was chosen to 
increase the difference of the sheet conductivity without significantly deteriorating the signal-to-noise ratio.

Complex conductivity measurement procedure. To obtain complex sheet conductivity, the detected 
time domain signal was first converted to the frequency domain by Fourier transform (see Supplementary 5), 
which provides the frequency-dependent amplitude A(ω) and phase φ(ω) of electric field E(ω) . This procedure 
was repeated for reference substrate, and obtained Aref (ω) and φref (ω) of Eref (ω) . The obtained amplitudes and 
phases were then inserted in the following Tinkham  equation33

where Z0 is the vacuum impedance and nsub is the refractive index of substrate. By inserting the experimentally 
obtained E(ω) = A(ω)eiφ(ω) and Eref (ω) = Aref (ω)e

iφref (ω) into Eq. (3), the complex conductivity reads

Then one can obtain the real and imaginary parts of complex sheet conductivity 
∼
σ s . Here, the refractive 

index of substrate was obtained by independent  experiment34. Once the real and imaginary conductivities were 
obtained, the scattering time and DC conductivity can be directly determined by using Eq. (2) in the main 
manuscript without any assumptions on charge density and effective mass.

Reliability of fitting. For Drude fit, we used “instrumental error weighting function” which gives weight to 
each data inversely proportional to the size of error (that is, data point with smaller error would affect more). The 
error bars in Figs. 2 and 3 in the main manuscript were the results from the fitting based on the “instrumental 
error weighting function”. We note that the fitting error does not much vary even when we use a “standard equal 
weighting function”, since our complex conductivity data have very small error (the change in τ depending on 
the fitting function is about 0.03%). To check the effect of fitting frequency range, we fitted the data by reducing 
the frequency range to 1 THz < f < 1.5 THz, instead of 0.75 THz < f < 1.75 THz. The resulting τ does not change 
within 0.04%. Considering that the error in τ is about 0.2% in our result, the selection of fitting function as well 
as the fitting frequency range does not much affect the determination of τ.

Determination of error bars. For the case of experimental data (Fig. 1c and Fig.  S1), error bars were 
defined as 1 σ of iterative THz conductivity measurements (40 times repeated for Fig. 1c and 160 times repeated 
for Fig. S1). Real and imaginary part of complex conductivities were fitted by AC Drude model based on Kramer 
– Kronig relation. In other words, they were simultaneously fitted. Error bars in fitted data (AC Drude fitting 
for Figs. 1d,2a,b and Fig. S2, Linear fitting for Fig. 2d) were fitting error with instrumental error weighting. As 
we described in Methods and Supplementary Note 5, since our data do not scattered around fitting line, choice 
of error weighting is not important and size of fitting error bars could be small. Lastly, error bars in Figs. 2c,e,3 
(data obtained by subtracting or dividing fitted values) were determined by summing all errors of parameters 
that used for subtracting or dividing.
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