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The nomogram based 
on the 6‑lncRNA model can 
promote the prognosis prediction 
of patients with breast invasive 
carcinoma
Dankun Luo1, Wenchao Yao1, Qiang Wang1, Qiu Yang1, Xuxu Liu1, Yang Yang2, Weihui Zhang1, 
Dongbo Xue1* & Biao Ma1*

Long non‑coding RNA (lncRNA) is a prognostic biomarker for many types of cancer. Here, we aimed 
to study the prognostic value of lncRNA in Breast Invasive Carcinoma (BRCA). We downloaded 
expression profiles from The Cancer Genome Atlas (TCGA) datasets. Subsequently, we screened the 
differentially expressed genes between normal tissues and tumor tissues. Univariate Cox, LASSO 
regression, and multivariate Cox regression analysis were used to construct a lncRNA prognostic 
model. Finally, a nomogram based on the lncRNAs model was developed, and weighted gene 
co‑expression network analysis (WGCNA) was used to predict mRNAs related to the model, and to 
perform function and pathway enrichment. We constructed a 6‑lncRNA prognostic model. Univariate 
and multivariate Cox regression analysis showed that the 6‑lncRNA model could be used as an 
independent prognostic factor for BRCA patients. We developed a nomogram based on the lncRNAs 
model and age, and showed good performance in predicting the survival rates of BRCA patients. Also, 
functional pathway enrichment analysis showed that genes related to the model were enriched in cell 
cycle‑related pathways. Tumor immune infiltration analysis showed that the types of immune cells 
and their expression levels in the high‑risk group were significantly different from those in the low‑risk 
group. In general, the 6‑lncRNA prognostic model and nomogram could be used as a practical and 
reliable prognostic tool for invasive breast cancer.

Invasive breast cancer (BRCA) is a highly heterogeneous malignant tumor originating from the breast tissue. 
This cancer has become one of the major health threats faced by women worldwide, seriously affecting both life 
span and quality of  life1,2. Up to one in twelve females in Britain between the ages of 1 and 85 years will develop 
breast  cancer3. In addition, invasive breast cancer is the leading cause of cancer-related mortality in developing 
 countries3,4. At present, the prognosis and therapeutic strategy for breast cancer patients mainly depend on the 
TNM stage of the disease, histological grade, and the expression level of hormone receptors and human epi-
dermal growth factor receptor 2 receptors (HER2)5. However, due to the high degree of heterogeneity of breast 
 tumors6, relying solely on the clinical characteristics and pathological diagnosis of patients to assess prognosis 
and formulate treatment plans often results in clinical drugs not being 100% effective, and the clinical results 
vary  greatly7. In addition, the existing clinical markers still have certain limitations. Therefore, there is an urgent 
need to find new molecular diagnostic markers to assess disease progression and the overall prognosis of patients 
and as potential therapeutic targets.

Long noncoding RNAs (lncRNA) are ncRNAs with a length greater than 200  bp8. They can participate in many 
biological processes by binding with cellular nucleic acids, proteins, and other  macromolecules9. The Human 
Genome Project found that only 1.5% of genes are protein-coding genes; most genes are not translated into 
proteins and are called noncoding genes (ncRNA). LncRNA can be classified into Antisense lncRNAs, Intronic 
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transcript, Large intergenic noncoding RNA, Promoter-associated lncRNA, and UTR-associated lncRNA, accord-
ing to its sequence  characteristics9. Due to the different classifications and localizations of lncRNAs, they per-
form different functions including epigenetic regulation, transcriptional regulation, and post-transcriptional 
 regulation10,11. Studies in different cancers have confirmed that lncRNAs play a key role in the occurrence and 
development of tumors and affect all aspects of cell homeostasis, including cell proliferation, adhesion, migration 
and  apoptosis12–15. The same situation happened in breast cancer, Lu G found that, LINC00511 contributes to 
tumourigenesis and stemness by inducing the miR-185-3p/E2F1/Nanog  axis16. Xiu reported that, LINC02273 
drove breast cancer metastasis by epigenetically increasing AGR2  transcription17. Zhang et al. confirmed that. 
LncRNA DSCAM-AS1 interacted with YBX1 to promote cancer progression by forming a positive feedback loop 
that activates FOXA1 transcription  network18. Therefore, searching for key lncRNAs could become a new trend 
for predicting cancer patient prognosis and identifying potential targets for cancer treatments.

In this study, we conducted a comprehensive study of lncRNA expression profiles in 1048 BRCA samples from 
The Cancer Genome Atlas (TCGA) datasets. A 6-lncRNA model related to the overall survival (OS) of patients 
was determined, and a concise nomogram based on the model was developed to improve the prognosis predic-
tion of BRCA patients, which is expected to become a useful diagnostic tool for BRCA patients in the future.

Results
Screening of DELs related to OS from BRCA patients. A total of 5673 differentially expressed lncR-
NAs were obtained from normal and tumor tissues, of which 1794 lncRNAs showed significant differences 
between the two groups (|logFC|> 1, FDR < 0.05). A total of 1312 lncRNAs were upregulated, while 482 were 
downregulated, which were visualized in the volcano map and heatmap (Fig. 1A, B). Subsequently, we used the 
Kaplan–Meier method to screen OS-related lncRNAs among DELs (P < 0.05) and obtained a total of 471 lncR-
NAs, including 155 significantly different lncRNAs (Fig. 1C). These 155 OS-related DELs served as candidate 
genes for subsequent analysis.

Construction and verification of the 6‑lncRNA survival prediction model. A total of 1048 samples 
were randomly divided into a training set and validation set at a ratio of 1:1. The specific clinical information is 
shown in Table S1. We used univariate Cox proportional hazard regression analysis on the data in the training 
set to obtain 10 OS-related lncRNAs (P < 0.01, Table S2), which were further screened by Lasso Cox regression 
analysis (Fig. 2A). Finally, through multivariate Cox regression analysis, six lncRNAs were selected to construct 
a risk prediction model (Fig. 2B), and the survival curve of each lncRNA in the model is drawn in Fig. 2C. In the 
6-lncRNA model, CBR3-AS1, SPACA6P-AS, AC137932.2 and LINC01235 were considered high-risk lncRNAs, 

Figure 1.  Identify differential lncRNAs (DELs) associated with OS. (A) Volcano map of DELs between BRCA 
tissue and normal breast tissue; (B) Heat map of DELs between BRCA tissue and normal breast tissue; (C) Venn 
diagram of OS-related lncRNAs and DELs.
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Figure 2.  Construction and verification of 6-lncRNA survival prediction model. (A) Lasso cox regression 
analysis to screen OS-related DELs; (B) Multivariate Cox regression analysis to build a forest diagram of the risk 
model; (C) Kaplan–Meier to draw the survival curve of each lncRNA in the risk model; (D, E) the correlation 
between the risk model and OS in the training group (D) and the validation group (E). Risk curve (top), 
Survival status graph (middle), and Risk heatmap (bottom).
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as the expression levels of these lncRNAs were negatively correlated with OS time. The remaining two lncRNAs, 
AP005131.2 and MAPT-AS1, were low-risk lncRNAs, and their higher expression levels were associated with a 
longer survival time.

We then created a risk score formula based on the expression of each lncRNA in the model:

Subsequently, we calculated the risk score separately for each sample among the training set, validation set 
and total set. In each data set, the patients were divided into high-risk groups and low-risk groups based on the 
median score. Based on the risk score distribution of the high- and low-risk groups in the training set, the OS 
status and 6-lncRNA model expression profile are shown in Fig. 2D. We found that the OS-time and survival 
probability of BRCA patients in the high-risk group were lower than those in the low-risk group. It was also 
observed in the risk heatmap whereby the risk score of patients in the high-risk group was proportional to the 
expression of high-risk lncRNAs and inversely proportional to the expression of low-risk lncRNAs. Similar 
results were found in the validation set and the total set (Fig. 2E, Figure S1). Figure 3A shows the Kaplan–Meier 
curve of the high-risk and low-risk groups in the training set. The OS of the high-risk group was significantly 
lower than that of the low-risk group (p = 8.03 × e−8). The same results were obtained in both the validation set 
(Fig. 3B; p = 1.333 × e−3) and the total set (Fig. 3C; p = 1.593 × e−9). In addition, we evaluated the credibility of 
the 6-lncRNA model by constructing ROC curves at 1, 3, and 5 years. The results showed that in the training 
set, the AUC values for 1- 3-, and 5-year survival were 0.722, 0.718, and 0.751 (Fig. 3D), respectively, while these 
values in the verification set were 0.805, 0.709, and 0.703, respectively (Fig. 3E). The AUC values at 1, 3, and 
5 years in the total set were 0.753, 0.712, and 0.727, respectively (Fig. 3F). These results indicated that the model 
has a good predictive ability for survival rates of different lengths.

The 6‑lncRNA model can be used as a clinically independent prognostic factor. To test whether 
the 6-lncRNA model as a prognostic factor is affected by other clinical risk factors, we first used univariate Cox 
regression to evaluate the prognostic performance of different clinical features. The results showed that age, 
disease stage, TNM stage, PR, ER status, and risk model were predictors of OS in the training set (Fig. 4A). In 
addition, patient age, disease stage, TNM stage, and risk model could also be used as predictors of OS in the 
validation set and the total set (Fig.  4B, C). Further multivariate Cox regression analysis found that patient 
age, ER status, and risk model could independently predict the prognosis of BRCA patients in the training 

Riskscore = (−0.15× AP005131.2)+ (−0.12×MAPT− AS1)+ (0.35× CBR3− AS1)

+ (0.28× SPACA6P− AS)+ (0.24× AC137932.2)+ (0.16× LINC01235).

Figure 3.  Kaplan–Meier curve and ROC curve show the prediction characteristics and performance of the 
6-lncRNA model. (A–C) Kaplan–Meier to draw the survival curve of riskScore in train set, test set and all set. 
(D-E) the ROC curves at 1, 3, and 5 years in train set, test set and all set.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20863  | https://doi.org/10.1038/s41598-021-00364-w

www.nature.com/scientificreports/

set (HR = 1.050, P < 0.001; HR = 0.380, P = 0.045; HR = 1.497, P < 0.001, Fig.  4D). The validation set and total 
set results show that patient age and the 6-lncRNA risk model are independent prognostic factors for BRCA 
patients. (HR = 1.035, P < 0.022; HR = 1.260, P < 0.001; HR = 1.044, P < 0.001; HR = 1.341, P < 0.001, Fig. 4E, F).

The 6‑lncRNA model is closely related to the clinicopathological characteristics of BRCA . In 
order to study the correlation between riskscores and clinical characteristics, we further analyzed the high-risk 
and low-risk groups and clinical characteristics including age, tumor subtypes, ER, PR, HER2 expression levels, 
stage status and TNM status. As shown in Table 1, there is a strong correlation between the six lncRNA risk 
models and clinicopathological characteristics (p < 0.05). The high-risk group is associated with a triple-negative 
breast cancer (TNBC) subtype with a worse prognosis. In terms of hormone receptor and HER2 expression, the 
two groups also showed different states. In addition, the risk score in the late stage (stage III–IV) is often higher 

Figure 4.  Single-factor and multi-factors Cox regression analysis of OS-related clinical factors. (A–C) Single-
factor Cox regression analysis of OS-related clinical factors in training set (A), validation set (B) and total set 
(C). (D–F) Multivariate Cox regression analysis of OS-related clinical factors in training set (D), validation set 
(E) and total set (F).
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than the risk score in the early stage (stage I–II). These results indicate that the risk score may be closely related 
to the worse pathological subtypes of BRCA and tumor progression.

The 6‑lncRNA model has good predictive ability in molecular subtypes of breast cancer. In 
2000, breast cancer was divided into five subtypes through molecular classification for the first time, named 
as luminal A, luminal B, HER2/ERB2 enriched, normal-like and basal-like19. Each subtype has different clini-
cal and biological behaviors, resulting in different clinical prognosis of  patients19. We download transcriptome 
and clinical classification data of different subtypes from TCIA database (https:// tcia. at/). We found that the 
6-lncRNA modelstill has a good predictive ability for different molecular subtypes of breast cancer. In addition 
to normal-like breast cancer, patients in the high-risk group of the other four subtypes all have worse OS (Figure 
S3A-E). And in the ROC curve evaluation of its prediction performance, it is found that each subtype has better 
prediction accuracy in 1, 3 and 5 years. The AUC values at 1, 3, and 5 years in LumA set were 0.602, 0.734 and 
0.669 (Figure S3F), in LumB set were 0.701, 0.772 and 0.754 (Figure S3G), in HER2 set were 0.774, 0.633, and 
0.675 (Figure S3H), in basal set were 0.648, 0.614 and 0.733 (Figure S3I). These results indicate that the model 
can also be used to predict the survival rate of patients with different subtypes of breast cancer.

Construction and verification of the prognostic nomogram based on the 6‑lncRNA 
model. Based on the independent prognostic analysis, we found that the age and risk models were shown 

Table 1.  The association between the clinicopathological characteristics and risk score in BRCA.

RISK

总计 Pearson X2 P-valueHigh Low

Age

< 65 381 352 733 0.292 0.589

≥ 65 158 157 315

All 539 509 1048

TNBC

+ 83 29 112 28.795 8.05E-08

− 388 436 824

All 471 465 936

ER

+ 345 425 770 58.514 2.02E-14

− 171 62 233

All 516 487 1003

PR

+ 282 389 671 76.424 2.29E-18

− 235 94 329

All 517 483 1000

HER2

+ 99 54 153 9.73 0.001813

− 273 268 541

All 372 322 694

Stage

1–2 382 391 773 5.244 0.022

3–4 146 107 253

All 528 498 1026

T

1–2 455 425 880 0.035 0.851

3–4 84 81 165

All 539 506 1045

N

0 243 251 494 1.705 0.192

1–3 286 251 537

All 529 502 1031

M

0 455 418 873 2.507 0.113

1 14 6 20

All 469 424 893

https://tcia.at/
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Figure 5.  Construction and verification of prognostic nomogram based on 6-lncRNA model. (A) The 
construction of a prognostic nomogram based on the 6-lncRNA model and age; (B, C) The test set (B) and the 
validation set (C) are based on the calibration curve of the nomogram 1, 3, and 5-year predictive ability; (D–F) 
The nomograms predict the ROC curve of OS over time in the training set (D), the validation set (E) and the 
entire data set (F).
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to be independent prognostic factors in the three data sets. Therefore, we constructed a prognostic nomogram 
based on these two factors to predict the 1-year, 3-year, and 5-year survival rates of BRCA patients (Fig. 5A). As 
shown in the nomogram, the 6-lncRNA model contributed the most to the 1-, 3-, and 5-year survival rates, fol-
lowed by patient age. In addition, we used the consistency index test (C-index) and the calibration chart to evalu-
ate the discrimination ability and calibration ability of the nomogram. Through 1000 resamplings, the internal 
training set, the validation set and the total set were verified. The results showed that the C index of the training 
set was 0.790 (95% confidence interval 0.725–0.855), the C index of the verification set was 0.745 (95% confi-
dence interval 0.658–0.832), and the C index of the total set was 0.770 (95% confidence interval 0.718–0.822). 
Meanwhile, the 1-, 3-, and 5-year prognostic survival rates of BRCA patients predicted by the nomogram were 
in good agreement with the actual observations in each data set (Fig.  5B, C, Figure S2), indicating that our 
nomogram is reliable. In addition, we evaluated the prognostic performance through a time-dependent ROC 
curve. The results showed that the AUC values in the training set for 1, 3, and 5 years were 0.866, 0.81, and 0.811, 
respectively (Fig. 5D); the predicted AUCs for 1, 3, and 5 years in the validation set were 0.934, 0.734, and 0.735, 
respectively (Fig. 5E); and the predicted AUC values for 1, 3, and 5 years in the total cohort were 0.878, 0.772, 
and 0.763, respectively (Fig. 5F).

The nomogram is more reliable than the predictive performance of a single independent 
prognostic factor. We used a time-dependent ROC curve to compare the prediction sensitivity and 
specificity between the nomogram and a single independent prognostic factor. The results showed that in 
the training set, the 6-lncRNA prediction model has a better predictive ability for 3-year and 5-year survival 
(AUC3 = 0.739; AUC5 = 0.749) than age(AUC3 = 0.687; AUC5 = 0.681), but in terms of 1-year predictive power, 
age (AUC1 = 0.835) has an advantage over the risk model (AUC1 = 0.702). However, the prediction performance 
of the nomogram based on 6 lncRNAs was consistently better than that of the risk model or age alone at 1, 3 and 
5 years (AUC1 = 0.866; AUC3 = 0.810; AUC5 = 0.811, Fig. 6A). The same conclusion can be drawn in the verifi-
cation set and the total set (Fig. 6B, C). These results indicated that the nomogram in combination with various 
clinically independent prognostic factors was more reliable than a single clinical factor.

Identification of the biological pathways and processes related to the 6‑lncRNA model. To 
explore the potential functions and mechanisms of the components of the 6-lncRNA model, we used the 
WGCNA method to cluster mRNAs that are highly related to the risk model, which is a common method to 
find cooperatively expressed gene modules. The soft threshold value was set to 4, creating a scale-free system 
(Fig. 7A). Modules were generated through dynamic tree cutting. After merging highly similar modules, we 
generated a total of 16 modules. The "gray" modules contain unexpressed genes and were not used for further 
analysis (Fig. 7B, C). Additionally, we calculated the correlation between each module and the risk model. The 
results showed that the brown module had the highest correlation with the risk model (cor = 0.28, P = 1*E−20, 
Fig. 7D, E), and the genes contained in this module were also highly correlated with the risk model (cor = 0.57, 
P = 1.2*E−21, Fig. 7F), suggesting that the genes in this module may interact with the 6-lncRNA model; there-
fore, we selected the genes in this module for subsequent functional and mechanistic analysis.

We obtained a total of 2773 differentially expressed mRNAs (DEMs) between tumor and normal tissue 
(logFC > 1.5, FDR < 0.05), as demonstrated in a volcano map (Fig. 8A). Then, we intersected the DEMs with the 
genes in the brown module, where we obtained 26 DEMs that were highly correlated with the 6-lncRNA model 
(Fig. 8B). These 26 mRNAs were analyzed by GO and KEGG. The results of GO enrichment analysis showed that 
these DEMs were mainly related to mitosis and proliferation (Fig. 8C). The KEGG enrichment analysis indicated 
that they were mainly enriched in cellular senescence, the cell cycle, oocyte meiosis, and p53 signaling pathways 
(Fig. 8D). The activation of these pathways may be able to promote the proliferation and development of tumor 
cells, leading to a higher risk of death in patients with high risk scores. In addition, we performed PPI analysis 
on these 26 mRNAs and screened 3 core mRNAs, namely, MYBL2, ANLN and IQGAP3 (Fig. 8E). The online 
tool Kaplan–Meier Plotter was used to analyze the RFS and OS associated with these three core genes. The results 
showed that the high expression of these three core genes led to worse RFS and OS in BRCA patients (Fig. 8F, 
8G). In summary, the 6-lncRNA model could regulate the occurrence and development of tumors by affecting 
the mitosis and proliferation of tumor cells and ultimately lead to poor survival prognosis for high-risk patients.

Immune infiltration characteristics of 6‑lncRNA model. In order to further explore the relationship 
between riskscore and immune cells, we obtained quantitative results of immune cell infiltration from TIME2.0. 
The results showed that among 22 kinds of immune cells, 6 kinds of immune cells have differential expression 
in different risk groups. Compared with the high-risk group, the low-risk group has higher CD8+T cells, mac-
rophages and other cells that are beneficial to killing tumor cells, while the high-risk group has a higher level of 
M0 macrophages. (Fig. 9A) To further understand the relationship between immune cells and risk models, we 
use QUANTISEQ algorithm to calculate the correlation between immune cell infiltration results and risk scores. 
The QUANTISEQ algorithm is a deconvolution algorithm specially developed for RNA-seq data. It has high 
deconvolution performance on tumor data from different cancer  types20. The results showed that the risk score 
was significantly negatively correlated with CD4+T cells (R = -0.23; P = 4.7e−09), and with neutrophils (R = 0.12; 
P = 1.7e−03) and myeloid dendrites Shape cells (R = 0.091; P = 2.1e−02) showed a weaker positive correlation 
(Fig. 9B).
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Discussion
Breast invasive carcinoma is the most common cancer in  women3. According to global cancer statistics, there 
were more than 1.7 million new diagnoses of breast cancer in 2012, accounting for 25% of all  cancers21. In addi-
tion, breast cancer incidence increases rapidly with  age22. In some developed countries, up to 6% of women are 
diagnosed with invasive breast cancer before the age of  753. The diagnosis and treatment of traditional BRCA 
mainly depend on the TNM stage, histological grade, and hormone receptor status of the  disease5. Patients with 
early breast cancer respond well to traditional diagnosis and treatment. However, due to the high degree of het-
erogeneity of breast  cancer6, it is not feasible for every patient to rely only on the currently available treatment 
options and prognostic evaluation  methods7. Therefore, the study of novel biomarkers and models is essential to 
improve BRCA prognosis prediction and therapeutic target discovery, as well as treatment options.

More and more lncRNAs with different functions have been found in the study of breast cancer. Li et al. found 
that LncRNA ANCR could reduce the invasion and metastasis of breast cancer by mediating the degradation 
of  EZH223. Zhao W reported that LncRNA HOTAIR affected the growth, migration, invasion and apoptosis of 
breast cancer cells through miR-20a-5p/HMGA2  axis24. Kong et al. found that lncRNA-CDC6 can promote the 
proliferation and metastasis of breast cancer cells through the mechanism of  ceRNA25. Among these dysregulated 
lncRNAs, some have the potential to be critical biomarkers for early detection and prognosis  prediction26,27. To 
date, several lncRNA prognostic models have been proven to enhance the prognostic performance of different 
 cancers28,29.

Figure 6.  Compare the predictive accuracy and discriminative ability of the nomogram, age and riskScore. (A) 
The ROC curves at 1, 3, and 5 years according to the nomogram, age and riskScore in train set. (B) the ROC 
curves at 1, 3, and 5 years according to the nomogram, age and riskScore in test set. (C) The ROC curves at 1, 3, 
and 5 years according to the nomogram, age and riskScore in all set.
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In this study, we downloaded expression data and clinical information for BRCA samples from the TCGA 
database. Through bioinformatics and statistical analysis, we constructed a 6-lncRNA risk prediction model 
based on the training set and proved the reliability of the model’s predictive potential in the verification set and 
the total set. Independent prognostic analysis found that the 6-lncRNA model was not affected by other clinical 
factors, such as patient age, disease stage, TNM stage or hormone receptor status. Thus, the 6-lncRNA model 
could be used as an independent prognostic factor for BRCA.

In our research, the 6 lncRNAs found were CBR3-AS1, SPACA6P-AS, AC137932.2 AP005131.2, MAPT-AS1 
and LINC01235. Among the six lncRNAs, five were antisense lncRNAs. The localization of MAPT-AS1 may in 
cytoskeleton or nucleus, localization of CBR3-AS1 may in extracellular, cytoskeleton or nucleus. The information 

Figure 7.  WGCNA analysis. (A) Analyze the fitting index of the scale-free topology model with soft threshold 
(β) and its average connectivity. (B) Clustering similar gene dendrograms based on topological overlap and 
assigned module colors. (C) The TOMplot shows the relationship between genes. Light colors indicate lower 
overlap and dark colors indicate higher overlap. The darker color blocks along the diagonal indicate the 
co-expression modules. (D) Diagram of the correlation between the module and the risk model. Each cell 
contains the corresponding correlation and P value. (E) Dendrogram and heatmap of gene modules. The 
upper tree diagram shows that the brown module is highly correlated with the risk score. (F) Scatter plot of the 
importance of the relationship between the brown module and the genes in the module.
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Figure 8.  The biological pathways and processes related to the 6-lncRNA model. (A) DEMs volcano map 
between BRCA tissue and normal breast tissue; (B) Venn diagram of the brown module genes and DEMs; 
(C) GO enrichment analysis. The biological processes, cellular components and molecular functions of genes 
are respectively shown. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of gene-
related signal transduction pathways. (E) Protein interaction network analysis (PPI): use STRING online tool 
to construct PPI network; "Cytoscape" "cytoHubba" software package The "ClusteringCoefficient" algorithm 
screens the first three core genes; (F) the recurrence-free survival curve related to the expression of the three 
core genes; (G) the overall survival curve related to the expression of the three core genes.
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Figure 9.  Immune infiltration differences and correlation analysis between high and low risk groups. (A) Box 
plot shows the expression differences between the two groups of 22 immune cells. (B) Spearman’s correlation 
coefficient calculates the correlation between immune cells and risk scores. The P value is shown as: ns, not 
significant; *P < 0.05; **P < 0.01; ***P < 0.001.
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of 6 lncRNAs were showed in Table 2. Of these 6 lncRNAs, some have been shown to be related to the occurrence 
and development of tumors in previous studies. CBR3-AS1 (also known as plncRNA1) has been reported as an 
oncogenic factor in various tumors. It was initially found to be highly expressed in prostate cancer (PCa)30 and 
to interact with androgen receptor to promote PCa cell proliferation, migration and invasion, further leading to a 
reduced survival  rate31. This lncRNA was also upregulated in hepatocellular carcinoma, gastric cancer, esophageal 
squamous cell  carcinoma32, nonsmall cell lung  cancer33, colon  cancer34 and  glioma35 and was associated with 
poor prognosis. In Xu’s  study36, CBR3-AS1 was found to be a cancer-promoting factor associated with a worse 
prognosis of breast cancer. LINC01235 upregulation in gastric cancer can induce  EMT37.  Vishnubalaji38 suggested 
that the upregulation of LINC01235 in breast cancer may represent a more aggressive phenotype. SPACA6P-AS 
(SP-AS) participates in the formation of the ceRNA network, thereby regulating the establishment and develop-
ment of liver  cancer39. MAPT-AS1 has been shown to be closely related to the prognosis of many cancers. The 
low expression of MAPT-AS1 in clear cell renal cell carcinoma indicates a lower overall survival rate even after 
 nephrectomy40.  Wang41 reported that MAPT-AS1 showed low expression in the high immunity group of glioma 
cells and predicted worse survival.  Another42 study confirmed that the expression of MAPT-AS1 is associated 
with a better prognosis of nontriple-negative breast cancer. These findings are consistent with our research.

The nomogram is a common tool used to predict survival and can integrate various continuous or discontinu-
ous prognostic variables. Scores can be calculated in tumor patients according to different variable parameters; 
thus, we can assess the corresponding survival probability. It is intuitive and easy to understand, making it easy 
for clinicians to  use43. In this study, we integrated the 6-lncRNA model with traditional clinically independent 
prognostic factors and developed a prognostic nomogram that includes the 6-lncRNA model and patient age 
to predict prognosis. By comparing the predictive ability of the nomogram with single independent prognostic 
factors, we showed that a nomogram combining multiple independent prognostic factors could have better 
prediction accuracy for different survival times than a single factor. The nomogram we constructed can be used 
as a practical and reliable prognostic tool for BRCA patients.

WGCNA is a common method used to find cooperatively expressed gene modules or to explore the asso-
ciation between gene networks and phenotypes of interest. This study uses this method to screen out the gene 
modules most closely related to the 6-lncRNA model. Furthermore, the functions and pathways of modular genes 
were found to be related to cell cycle regulation, cell migration and cell survival. In addition, the roles of the three 
core genes in the module in regulating tumors have been reported in previous review studies.

MYBL2 is a member of the MYB transcription factor family. It plays an important role in regulating the 
cell cycle, cell migration and cell survival. It is overexpressed in many solid tumors and associated with poor 
 prognosis44. MYBL2 is highly expressed in more aggressive subtypes of breast cancer, such as TNBC. Higher 
expression levels of MYBL2 promote cell proliferation and lead to genome instability through DNA damage, 
which results in the expansion of aneuploid cells and promotes epithelial-mesenchymal transition and thera-
peutic resistance. Targeting this multifunctional protein may be an effective treatment to prevent breast cancer 
 recurrence45. ANLN is an actin binding protein that is reported to play a vital role in cell proliferation and migra-
tion, especially in  cytokinesis46. ANLN is highly expressed in a variety of cancers and promotes the development 
of  cancer47. Therefore, ANLN may be an effective target for cancer treatment, but the relationship between ANLN 
and cancer is not fully understood and needs further  research46. IQGAP3 belongs to the IQGAP family and has 
been found to be responsible for regulating a variety of cellular processes, including cytokinesis, cell migration, 
cell proliferation, intracellular signal transduction, vesicle transport, and cytoskeletal  dynamics48. A number of 
studies have shown that there is a strong correlation between the expression of IQGAP3 and poor prognosis in 
various  cancers49–51. Hu et al.52, found that the expression of IQGAP3 is significantly increased in breast cancer 
tissues and regulates tumor cell proliferation and metastasis. IQGAP3 was inhibited by increasing p53 expres-
sion and reducing MMP9, Snail, Twist, CDC42, p-ERK1/2, KIF2C, KIF4A and PCNA, thereby inhibiting the 
growth, migration and invasion of breast cancer  cells52. Therefore, IQGAP3 may be a potential therapeutic target 
in human breast cancer. In our study, the three core genes had a significant impact on the RFS and OS of BRCA 
patients, which is consistent with previous studies and proves that the 6-lncRNA model we constructed may 
serve as a useful tool in predicting the occurrence and development of BRCA.

Table 2.  Information of six lncRNAs.

Gene symbol Ensembl ID Location (hg38) Class Localization

AP005131.2 267366 chr18:13,500,640–13,501,289
Antisense

No data
C18orf1

MAPT-AS1 264589 chr17:45,799,389–45,895,680 MAPT antisense RNA 1
Cytoskeleton

/Nucleus

CBR3-AS1 236830 chr21:36,130,371–36,276,226 CBR3 antisense RNA 1

Extracellular

/Cytoskeleton

/Nucleus

SPACA6P-AS 269959 chr19:51,682,683–51,693,456 SPACA6 antisense RNA 1 No data

AC137932.2 261253 chr16:89,321,133–89,325,110 Antisense to ANKRD11 No data

LINC01235 270547 chr9:13,404,750–13,488,226 Long intergenic non-protein coding RNA 1235 No data
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In recent years, immunotherapy has achieved good results in various  tumors53. It uses the body’s own defense 
system to fight cancer, or uses immune checkpoint inhibitors to eliminate the immune tolerance of tumor cells, so 
as to achieve the purpose of treatment and has broad application  prospects54. Our results show that the immune 
status between the low-risk score group and the high-risk score group is significantly different, and the low-
risk group has stronger anti-tumor immunity, showing that patients with different strata have a complex tumor 
immune environment. It is expected to provide reference for immunotherapy.

Although our 6-lncRNA risk model and nomogram are effective in predicting the prognosis of BRCA patients, 
the study still has some limitations. First, the TCGA database lacks More parameters that affect patient survival, 
such as smoking, radiotherapy, targeted therapy, etc., and these parameters will be helpful to construct additional 
layers of analysis. Second, as this is a retrospective study based on database information, future prospective stud-
ies with large sample sizes are needed to verify the reliability of the nomogram’s predictive ability. Meanwhile, the 
specific mechanisms of how these lncRNAs modulate the prognosis of BRCA patients requires further attention.

Conclusion
In general, lncRNAs can be used as meaningful predictors in a variety of cancers. The 6-lncRNA risk model and 
nomogram constructed in this study have independent predictive ability, with predictive value better than that 
of a single factor, and can be used as practical and reliable prognostic tools for BRCA. The nomogram provides 
additional clinical value for the individualized survival prediction and treatment options of BRCA patients to 
help individualized management of patients.

Materials and methods
Analysis process and data processing. The analysis process is shown in Fig. 10. The RNA-seq data and 
corresponding clinical information of BRCA patients come from The Cancer Genome Atlas (TCGA) datasets 
(TCGA: https:// portal. gdc. cancer. gov/); a total of 1208 samples were obtained, including 112 healthy samples 
and 1096 BRCA Sample, use Gencode (Gencode v34 GRCh38) GTF file to annotate BRCA data. The data collec-
tion and processing of our research complies with TCGA’s data policy to protect human subjects.

RNA‑seq difference analysis. We standardize the downloaded RNA-seq data and use the "edgeR" pack-
age (3.32.1) for differential expression analysis. The lncRNA screening condition is |logFC|> 1, FDR < 0.05; the 
mRNA screening condition is |logFC|> 1.5, FDR < 0.05 as the gene with significant difference for subsequent 
analysis. "pheatmap" package (1.0.12) and " ggplot2" package (3.3.5) are used to draw the heatmap and volcano 
map.

Figure 10.  Work flow chart.

https://portal.gdc.cancer.gov/
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Identify OS‑related differential lncRNAs in BRCA patients. We obtained a total of 1085 clinical 
data. Patients with a follow-up time of fewer than 10 days and insufficient survival data were excluded, and 
1048 clinical data were retained for subsequent prognosis analysis and model construction. The Kaplan–Meier 
method was used to screen lncRNAs related to prognosis. Only P < 0.05 was considered as a candidate for 
lncRNA related to OS. Then, the candidate lncRNA and the DELs obtained in the above steps are intersected to 
obtain DELs related to OS.

Construction of the lncRNA prognostic model. We randomly divided 1048 samples into training set 
and validation set at a ratio of 1:1. In the training set, lncRNAs with a p < 0.01 in the univariate Cox regression 
analysis were selected for further screening by the least absolute shrinkage and selection operator (LASSO) 
Cox regression analysis. Finally, the prognostic model of lncRNAs was constructed through a multivariate Cox 
regression analysis. Using Kaplan–Meier, time-dependent ROC curve evaluates the model’s predictive ability on 
the training set, validation set and the entire data set. The risk curve, Survival status graph, and Risk heatmap 
were drawn by "pheatmap" package (1.0.12) in R software (4.0.2).

Development of prognostic nomogram based on lncRNA model. We used univariate and multi-
variate Cox to analyze the prediction effect of the 6-lncRNA model and traditional clinical risk factors (including 
age, disease stage, TNM stage, ER, PR and HER2 status). As an independent prognostic clinical factor, the "rms" 
package (6.2-0) is used to construct a prognostic nomogram. The C index and the calibration curve were used to 
perform 1000 re-sampling verification to evaluate the prediction accuracy of the nomogram on the training set, 
the verification set and the entire data set. And through the time-correlation ROC curve to assess and compare 
the predictive performance of the nomogram itself and compared with other risk factors.

Weighted gene co‑expression network analysis (WGCNA). In order to find the mRNA modules 
closely related to the 6-lncRNAs model, we conducted the WGCNA analysis in the R software "WGCNA (1.70-
3)"  package55. We selected the top 25% mRNAs with the largest variance in the samples and removed two outlier 
samples, the soft threshold is set to 4 to construct a scale-free network graph and a topological matrix (TOM). 
Using the "dynamic cutting tree" method (cutHeight = 8,000,000, minSize = 10, mergeCutHeight = 0.3), the co-
expressed genes are classified into the same module. The correlation between each module and the risk model 
was calculated. And the module with the maximal associated with lncRNAs model was selected out. The TOM-
plot and dendrogram and heatmap were drawn by "WGCNA (1.70–3)" package.

Function and pathway enrichment and protein interaction network analysis. We intersected 
the genes in the module that are most relevant to the risk model and the DEMs obtained from the above steps, 
and select key mRNAs for further analysis. Use R "clusterProfiler (3.18.1)", "org.Hs.eg.db (3.12.0)", "enrichplot 
(1.10.2)" package, set FDR < 0.05 as the filter condition, and perform Gene Ontology (GO) biological pro-
cesses and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways  analysis56–58. We used the online tool 
 STRING59 to construct a PPI network to further understand the protein interactions between genes in the mod-
ule. The first three core genes were screened out through the Cytoscape: "ClusteringCoefficient" algorithm of 
"cytoHubba", and the online tool Kaplan-Meier60 was used. Plotter analyzes the recurrence-free survival rate 
(RFS) and OS rate of core genes.

Tumor immune infiltration analysis. We use the TIME2.0  database61 (http:// timer. cistr ome. org/) to 
obtain the quantitative results of tumor immune infiltration under six different algorithms. The Kruskal–Wallis 
test was used to compare the difference between the 22 immune cell infiltrations in the high and low riskscore 
groups; the Spearman correlation coefficient was used to calculate the correlation between immune cells and the 
risk score under the QUANTISEQ algorithm.

Statistically analysis. All statistical analysis was performed using R software (4.0.2) and SPSS (23.0). Use 
"edgeR" package (3.32.1) for differential expression analysis; "glmnet"(4.1-2) and "survminer (0.4.9)" packages 
for Cox analysis and lasso regression analysis. Use "timeROC (0.4)" for time-related ROC analysis and area 
under the curve (AUC) calculation; use "survival (3.2-11)" package for survival analysis. Kruskal–Wallis test was 
used to assess the significance of differences in immune cell components; Pearson’s chi-squared test was used to 
calculate the correlation between Clinical features and risk cluster. Spearman correlation coefficient was used to 
calculate the correlation between immune cells and the risk score. P < 0.05 was considered statistically significant 
(P < 0.05, "*"; P < 0.01,"**"; P < 0.001,"***").

Ethics approval and consent to participate. Not applicable.

Consent for publication. Not applicable.

Data availability
All data comes from The Cancer Genome Atlas (TCGA) datasets (TCGA: https:// portal. gdc. cancer. gov/).

http://timer.cistrome.org/
https://portal.gdc.cancer.gov/
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