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A learning mechanism shaping 
risk preferences and a preliminary 
test of its relationship 
with psychopathic traits
Takeyuki Oba1*, Kentaro Katahira2 & Hideki Ohira2

People tend to avoid risk in the domain of gains but take risks in the domain of losses; this is called 
the reflection effect. Formal theories of decision-making have provided important perspectives on 
risk preferences, but how individuals acquire risk preferences through experiences remains unknown. 
In the present study, we used reinforcement learning (RL) models to examine the learning processes 
that can shape attitudes toward risk in both domains. In addition, relationships between learning 
parameters and personality traits were investigated. Fifty-one participants performed a learning 
task, and we examined learning parameters and risk preference in each domain. Our results revealed 
that an RL model that included a nonlinear subjective utility parameter and differential learning 
rates for positive and negative prediction errors exhibited better fit than other models and that these 
parameters independently predicted risk preferences and the reflection effect. Regarding personality 
traits, although the sample sizes may be too small to test personality traits, increased primary 
psychopathy scores could be linked with decreased learning rates for positive prediction error in loss 
conditions among participants who had low anxiety traits. The present findings not only contribute 
to understanding how decision-making in risky conditions is influenced by past experiences but also 
provide insights into certain psychiatric problems.

Decision-making under uncertainty is ubiquitous; individuals often choose between an option with low vari-
ance but a smaller outcome (i.e., a sure option) and an option with high variance but a larger outcome (i.e., a 
risky option). In situations where possible outcomes and their probabilities are explicitly given (i.e., a descrip-
tive choice), people generally tend to avoid risky options in the domain of gains but take the risky option in the 
domain of  losses1,2. This preference pattern is called the reflection effect, and prospect theory, which is the most 
influential theory for decision-making under risks, uses nonlinear subjective value to account for  it1.

In contrast, learning processes that can shape attitudes toward risk through experience (i.e., an experience-
based choice) in both domains have been proposed. Many studies have examined experience-based decisions 
because it is not always the case that a decision-maker has access to all the relevant information, such as the 
results and their probabilities. The results from these studies have revealed that risk preference under experience-
based choice is different from that under descriptive-based choice. For example, in the choice between the option 
of sure $3 gain and the risky option including $4 gain with an 80% probability, people tend to select the sure 
option in the descriptive condition, but they tend to choose the risk option in the experience  condition2,3. This 
discrepancy is called the description-experience  gap4 and is often thought of as a difference in the distortion of 
subjective probabilities; that is, rare events are more likely to influence decisions in the description-based choice 
than their objective probabilities and less likely to influence decisions in the experience-based choice. A recent 
meta-analytic review has shown that the description-experience gap is robust, especially when (1) the decisions 
include one risky option and one sure option, (2) the decisions are associated with the loss domain or mixed gains 
and losses, and (3) the probability of rare events is very low and that there are several possible causes, such as a 
sampling error in estimating probability distribution and a recency effect of  outcomes4. However, the dynamic 
processes underlying how individuals learn the value of risky options that lead the risk preference and the dif-
ference in those processes between the gain and loss domains are still unclear. It is important to understand 
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how risk preference is formed through experience because a change in risk preference seems to be related to 
socioeconomic and psychiatric  problems5,6.

Recent research has used reinforcement learning (RL) models to investigate the influences of risk on the 
learning processes underlying decision-making. A key component in RL models is prediction error (PE), which 
is the difference between anticipated and observed  values7. PE is positive when the received values exceed 
predictions, whereas PE is negative when the received values fall below predictions. Although several theories 
proposed to explain risk preference have assumed that the amount of change in the subjective value of outcomes 
is  nonlinear1,8, Niv, Edlund, Dayan & O’Doherty9 reported that in a reward-based learning task, an RL model 
explained risk sensitivities by the contrast between the magnitude of learning rates for positive and negative PEs 
rather than by nonlinear subjective value. This finding indicated that in the domain of gains, the risk preference is 
a function of the ratio of learning rates for positive and negative PEs. Niv et al.9 tested RL models that contained 
either the learning rates for signed PEs or the subjective utility parameter; however, they did not examine whether 
these two sets of learning parameters can together influence risk sensitivities.

As in the result of Niv et al.9, the magnitude of the learning rate is often different for positive PE and negative 
PE.  Gershman10, for example, examined whether the learning rate varied with reward probability and showed 
that for any given reward probability, the learning rate for negative PE was greater than that for positive PE. The 
separation in learning rates between positive and negative PEs can represent the extent to which an individual 
learns when a recent outcome was better than expected (i.e., positive PE) or worse than expected (i.e., negative 
PE). In one simulation study, a strong bias in the learning rate for positive PE improves learning performance 
in situations where the reward probabilities are very low but decreases learning performance in situations where 
the reward probabilities are very  high11. These relationships are reversed when the learning rate for negative PE 
is larger than that for positive PE. The separate learning rates can tell us the bias of the learning process.

In contrast to the domain of gain, it is still unknown whether learning mechanisms that shape risk preference 
in the domain of losses derive from nonlinear subjective values, asymmetric effects of learning rates for posi-
tive and negative PEs, or both. Several studies of decision-making in loss conditions have assumed nonlinear 
subjective  values1,5, and risk-seeking behavior was interpreted as a sharp decline in sensitivity to increased loss. 
Thus, the nonlinearity of subjective values in the domain of losses may explain the learning of a risk preference. 
In contrast, if Niv et al.’s results can apply to a learning task in the domain of losses, learning rates can also play 
important roles. For example, persons who have a higher learning rate for positive P E t han for negative PE 
tend to choose risky options through learning because of updating processes in which the persons emphasize 
the experience of the good side of risky options (e.g., omission of a  punishment) more than the bad side of risky 
options (e.g., a greater amount of a loss). Therefore, it can also be hypothesized that risky choices under loss 
might stem from a higher learning rate for positive PE than for negative PE.

Understanding the learning mechanisms underlying risk preference under loss can shed new light on under-
standing the mechanisms of certain psychopathologies, specifically psychopathy. Psychopathy is a group of per-
sonality traits constituted by maladaptive interpersonal and affective features and poor behavioral  inhibition12, 
and affective features are frequently regarded as the central characteristics of psychopathy. Previous studies have 
revealed that individuals with psychopathy exhibited poor performance in the punishment-based learning task, 
especially when they had lower anxiety  traits13,14. Regarding the learning processes, Oba, Katahira and  Ohira15 
showed that individuals with high psychopathic traits have lower learning rates for positive PE in a loss condi-
tion compared to those with low psychopathic traits, indicating that individuals with psychopathic traits were 
less likely to learn from avoidance of a negative outcome. However, they did not test whether psychopathic traits 
were related to the nonlinear subjective value for losses. Newman, MacCoon, Vaughn, &  Sadeh16 reported that 
compared to a control group, psychopathic individuals had lower sensitivity to punishment when they had low 
anxiety. This suggests that individuals with high psychopathy but low anxiety traits may show lower sensitivity 
to changes in losses. We investigated the relationships between psychopathic traits and learning parameters, 
including nonlinear subjective values and learning rates.

In summary, the current study aims to investigate the learning mechanisms that shape risk preference in gain 
and loss domains. In addition, we examined the relationship between these learning parameters and psychopathy-
related personality traits. With respect to acquiring risk preferences, we hypothesized that based on the results 
of experience-based choice  studies2,3, under conditions of choosing between sure and risky options that have the 
same expected value, the risky option would often be chosen in the domain of gains but would not frequently be 
selected in the domain of losses (i.e., the reflection effect). The conventional theories in decision-making predict 
that risk preference is related to nonlinear subjective values. In contrast, according to Niv et al.9, the contrast in 
learning rates for positive and negative PEs can also predict risky decision-making in a learning task. It is possible 
to consider that a greater learning rate for positive PE than for negative PE contributes to risk seeking, while a 
greater learning rate for negative PE than for positive PE leads to risk aversion. If the reflection effect is observed, 
a learning rate for positive PE in the gain domain may be larger than that for negative PE, while a learning rate 
for positive PE could be smaller than that for negative PE in the domain of losses. Moreover, we examined a 
hybrid model that combined the effects of both learning rates and nonlinear subjective values. We performed a 
model comparison to confirm which model was the best fitting and investigated the above hypotheses. Regard-
ing personality traits, the learning characteristics of individuals with psychopathy can be modified by anxiety; 
that is, in the loss domain, psychopathic traits are negatively related to the learning rate for positive PE and the 
subjective utility parameter when individuals have low anxiety traits. However, we note that the sample size in 
this study may be too small (N = 51) to test the relationship between personality traits and learning parameters. 
Therefore the results related to personality traits should be regarded as preliminary.
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Results
Fifty-one participants performed a learning task and completed questionnaires that investigated personality traits. 
We briefly explain the learning task and questionnaires. In the learning task, the participants were required to 
choose one of the two options that were associated with different monetary outcomes (Fig. 1; see Methods for 
details). The learning task was divided into gain and loss blocks. In each block, there were 5 options, including 
two sure ¥0 options, one sure ¥10 option, one sure ¥20 option, and one risk option that had ¥0 or ¥20 with a 
50% probability, and each combination of the two options was presented 20 times except the combination of the 
risk and sure ¥10 options that appeared 30 times to test risk preference. The number of trials was set as 210 in 
each block; thus, there were 420 trials in this experiment. The participants won these amounts of money in the 
gain block but lost in the loss block. For the questionnaires, the Japanese version of the Levenson Self-report 
Psychopathy Scale  (LSRP17,18) and the anxiety trait from the State-Trait Anxiety Inventory  (STAI19,20) were used 
to assess the psychopathy and anxiety traits of participants.

Learning performance. To confirm whether participants had learned to choose an advantageous option, 
we examined learning performance on trials in which there was a better option. The mean proportion of advan-
tageous responses for each trial type was greater than 0.7 in both the gain and loss domains and significantly 
higher than the chance level (all ps < 0.001 with the Bonferroni correction).

Furthermore, to investigate whether participants chose the better options through learning, the choice data 
were divided into first half and second half of trials, then we performed a repeated measure analysis of variance 
(ANOVA) with the 2 (domain: Gain/Loss) × 2 (time point: First half/Second half) × 5 (trial type: ¥0 vs. ¥10/¥0 
vs. Risk/¥0 vs. ¥20/¥10 vs. ¥20/Risk vs. ¥20). All the main effects were significant (F(1,50) = 8.633, p = 0.005, 
ηp

2 = 0.147 for the main effect of domain; F(1,50) = 107.021, p < 0.001, ηp
2 = 0.682 for the main effect of time point; 

F(2.75,137.36 [with the Greenhouse–Geisser correction]) = 40.664, p < 0.001, ηp
2 = 0.449 for the main effect of trial 

types). The interaction between the domain and time point was significant (F(1,50) = 5.158, p = 0.028, ηp
2 = 0.094), 

indicating that in the second half of the learning task, participants made better choices in the gain domain more 
frequently than in the loss domain (p < 0.001). Moreover, in both domains, the advantageous option was more 
often selected in the second half of the learning task than in the first half of the task (ps < 0.001). We also found 
an interaction effect of domain × trial type (F(2.5,125.2 [with the Greenhouse–Geisser correction]) = 18.343, 
p < 0.001, ηp

2 = 0.268). This interaction effect showed that in the trials of ¥10 vs. ¥20 and Risk vs. ¥20, the number 
of choices of advantageous options was greater in the gain domain than in the loss domain (both ps < 0.001), 
while in the ¥0 vs. Risk trial, the proportion of choosing the better option was higher in the loss domain than 
in the gain domain (p < 0.001). In the gain domain, the learning performance in the ¥0 vs. ¥20 trial was greater 
than that in the other trial types (ps < 0.001), and the learning performance in the ¥0 vs. Risk trial was lower than 
that in the other trials (ps < 0.05). In contrast, in the domain of losses, the participants showed a better learning 
performance in the ¥0 vs. ¥20 trial than in the other types of trials (ps < 0.05), and their learning performances 
in the ¥10 vs. 20 trial and Risk vs. ¥20 trial were worse than in the other trial types (p < 0.001). The other interac-
tions did not reach statistical significance (Fs < 1.9, ps > 0.14). These results suggest that participants successfully 
learned the value of each condition.

Next, we examined the choice between the risky option and the sure ¥10 option. We expected that the num-
ber of risky option choices would be greater in the gain domain than in the loss domain, namely, the reflection 
effect. However, the proportion of the risky option was significantly lower in the gain domain than in the loss 

Figure 1.  Learning task used in this experiment. A sample of a gain trial is depicted.
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domain (Gain: M = 0.365, SD = 0.233; Loss: M = 0.488, SD = 0.262; t(50) = 2.406, p = 0.020, d = 0.337). This finding 
suggested that at least in this study, the reflection effect was consistent with the case of the descriptive choice.

We also tested whether the risk preference changed through learning. A 2 (domain: Gain/Loss) × 2 (time 
point: First half/Second half) repeated measure ANOVA was conducted for the proportion of risk choice. We 
found a significant main effect of domain (F(1,50) = 5.788, p = 0.020, ηp

2 = 0.103), indicating that consistent with 
the above result, the participants chose the risk option in the loss domain more than in the gain domain. The 
main effect of time was also significant (F(1,50) = 7.339, p = 0.009, ηp

2 = 0.128). This main effect revealed that 
the number of risk choices decreased from the first half to the second half of the trials. The interaction between 
domain and time was not significant (F(1,50) = 0.009, p = 0.926, ηp

2 = 0.0002).

Model comparison. We compared the integrated Bayes Information Criteria (iBIC) of each RL model to 
evaluate the goodness of fit. The iBIC value corresponds to an approximation of the marginal log likelihood com-
puted directly by Monte Carlo sampling (see Methods for details). Table 1 shows the negative log marginal likeli-
hoods and the iBIC values for each model. The hybrid model had a lower iBIC value than the other models even 
when all learning parameters were separated into the gain domain and loss domain. Figure 2 shows the learning 
curves and the predictions by the hybrid model for the trials in which there is a better option. The results of the 
model comparison indicate that participants relied on both the effects of signed PEs and nonlinear subjective 
values to guide their own choice. In subsequent analyses, we used the learning parameters in the hybrid model 
that were divided into the gain and loss domains.

Model recovery and parameter recovery. We also performed model recovery and parameter recov-
ery analysis to test whether each learning model can be identified by the true model and whether recovered 
parameters can be biased by other  parameters21. For each model, we simulated 100 data points and calculated 
the iBIC values. The RL parameters used in the simulations were randomly generated by the population-level 
normal distribution for each parameter that was estimated through the model fitting procedure (see Methods for 
details). The confusion matrix in Supplementary Fig. S1 demonstrates the values based on the iBIC, and a fitting 
model was best under a generated model. The results of the matrix revealed that the true model was well fitted.

Table 1.  The iBIC values and the negative log marginal likelihoods for the models using all choice data 
for each participant. Note α = learning rate, β = inverse temperature, κ = subjective utility parameter, 
-LML = negative log marginal likelihood. The subscripts represent the following: P = positive PE, N = negative 
PE, G = gain domain, L = loss domain.

Models Set of parameters iBIC (-LML)

Standard model α, β 16,868.56 (8414.34)

Separate learning rate model αP, αN, β 16,490.25 (8215.21)

Subjective utility model α, β, κ 16,570.56 (8255.37)

Hybrid model αP, αN, β, κ 16,150.33 (8035.28)

Hybrid model (split β into the domains) α P, α N, β G, β L, κ 16,131.21 (8015.74)

Hybrid model (split α into the domains) αGP, αGN, αLP, αLN, β, κ 15,934.95 (7907.64)

Hybrid model (split κ into the domains) αP, αN, β, κG, κL 15,999.22 (7949.75)

Hybrid model (split all parameters into the domains) αGP, αGN, αLP, αLN, βG, βL, κG, κL 15,697.01 (7768.73)

Figure 2.  Average probabilities of choosing an advantageous option for each trial type and the model 
predictions. The solid lines indicate the proportions of participants choosing a better option in each trial across 
participants, and the dashed lines show the predictions of the winning model. The shaded areas represent the 
95% confidence intervals of the model prediction.
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Next, we tested parameter recovery for the hybrid model (Supplementary Fig. S2). All the correlations 
between true parameters and recovered parameters seemed to be good (rs > 0.550). We also confirmed the 
correlations between the recovered parameters (Supplementary Tables S1). The largest correlation coefficient 
in the gain domain was − 0.243 for the relationships between the learning rate for positive PE and the inverse 
temperature (p = 0.015). In contrast, in the loss domain, the largest correlation coefficient was 0.248 for the rela-
tionship between learning rate for positive PE and the subjective utility parameter (p = 0.013). These correlations 
suggested the possibility of weak trade-offs between recovered parameters. Nevertheless, the findings of model 
recovery and parameter recovery indicate that it can be dissociated between a learning process of learning rate 
and that of subjective utility parameter.

Relationships between learning parameters and risky decisions. We first checked that the inverse 
temperature value was large enough because too low inverse temperature parameters led to random choice 
and may suggest that the participant’s decision was not followed by the prediction of RL models. To do this, 
the hybrid model with the inverse temperature that included the parameter space to negative values was fitted 
to the data. To examine whether the inverse temperature was negative, we conducted one sample t test on the 
inverse temperature parameter for each domain and found that the inverse temperature was greater than 0 in 
both domains (Gain: M = 3.512, SD = 1.196, t(50) = 20.975, p < 0.001; Loss: M = 3.115, SD = 0.876, t(50) = 25.403, 
p < 0.001), indicating that the participant made decisions based on the learned value.

Following Niv et al.9, we calculated a contrast between learning rates for positive and negative PEs ([αp − αn]/
[αp + αn]) that represented which of the two learning rates was larger. The contrasts in both domains were cor-
related with the proportion of risky choices in the condition between the risky option and the sure ¥10 option 
(Gain: r = 0.478, p < 0.001, Loss: r = 0.517, p < 0.001; Fig. 3). These results suggested that the risky option tended 
to be accepted when the learning rate for positive PE was larger than that for negative PE. The subjective utility 
parameter for a large outcome was also significantly correlated with the number of choices of the risky option 
in each domain (Gain: r = 0.688, p < 0.001, Loss: r = -0.681, p < 0.001; Fig. 3), indicating that participants who 
overestimated the large outcome were likely to take the risky option in the domain of gains but to withhold 
choosing the risky option in the domain of losses. We performed multiple regression analyses to examine whether 
these parameters were independently related to risk preference. These analyses revealed that both indices were 
significant in each domain (Gain: R2 = 0.660, F(2,48) = 46.659, p < 0.001, β = 0.659, p < 0.001 for the subjective 
utility parameter, β = 0.433, p < 0.001 for the contrast of learning rates; Loss: R2 = 0.665, F(2,48) = 45.640, p < 0.001, 
β = − 0.627, p < 0.001 for the subjective utility parameter, β = 0.441, p < 0.001 for the contrast of learning rates).

We tested a priori hypothesis that if the reflection effect was observed, the relationship between the learning 
rates for positive and negative PEs in the gain domain would be opposite to that in the loss domain. We com-
pared the iBIC values when the hybrid model was not divided into two learning rate parameters for positive PE 
and negative PE in each domain. If the iBIC value of the hybrid model including the separate learning rates was 

Figure 3.  Correlations of the proportion of choosing the risky option with the contrast between learning rates 
for signed PEs and the subjective utility parameters. The left panels indicate the correlations with the subjective 
utility parameters, while the right panels show the correlations with the contrast between learning rates for 
positive and negative PEs.
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lower than that of the hybrid model sharing a common learning rate, it suggests the evidence that the learning 
rates for positive PE and negative PE had the different prior distributions, then, at least the present study, the 
choice data were predicted by the separate learning rates well. Compared to the iBIC value of the hybrid model 
with two separate learning rates for the signed PEs in each domain, the iBIC value of the hybrid model with one 
learning rate in the domain of gains and that of the model with one learning rate in the domain of losses were 
larger (iBIC: 15,697.01, the negative log marginal likelihood (-LML): 7768.73 for the hybrid model with separate 
learning rates; iBIC: 15,771.33, -LML: 7815.86 for the hybrid model with one learning rate in the gain domain; 
iBIC: 15,960.50, -LML: 7910.45 for the hybrid model with one learning rate in the loss domain), indicating that 
the learning rates were likely to differ between the signed PEs.

We further examined whether the reflection effect was related to the learning parameters. The reflection 
effect was defined here by subtracting the number of risky choices over the sure ¥10 option in the domain of 
gains from the number of risky choices over the sure ¥10 option in the domain of losses. The RL parameters that 
correlated with the risk preference in the loss domain were also subtracted from those in the gain domain. Then, 
we confirmed the correlation between the reflection effect and these measurements. The difference between the 
contrasts of learning rates was significantly correlated with the reflection effect (r = 0.518, p < 0.001), but the dif-
ference between the subjective values of large outcomes did not (r = − 0.029, p = 0.839). However, each subjective 
utility parameter was negatively correlated with the reflection effect (Gain: r = − 0.530, p < 0.001; Loss: r = − 0.492, 
p < 0.001), indicating that decreasing subjective values for the large outcomes in both domains were related to 
the extent of the reflection effect.

Relationships between learning parameters and personality traits. Table 2 shows the correlations 
between personality traits and learning parameters. In the gain domain, the trait anxiety score was significantly 
correlated with the inverse temperature parameter (r = 0.282, p = 0.045), suggesting that the participants with 
higher anxiety tended to show a lower frequency of random choices. In the domain of losses, secondary psycho-
pathic traits were positively associated with the learning rate for positive PE (r = 0.277, p = 0.049), indicating that 
persons who had high secondary psychopathy scores were sensitive to the omission of losses in the risky choice 
trials. However, these correlations were no longer significant after applying the multiple testing correction.

We performed hierarchical regression analyses to examine whether these personality traits interacted with 
each other. After centering these personality trait variables, each factor was included at step 1, and their two-way 
interactions were entered at step 2. Of interest, the interaction between primary psychopathy and trait anxi-
ety scores was marginally significant on the learning rate for positive PE in the domain of losses (ΔR2 = 0.187, 
F(3,44) = 3.839, p = 0.016, β = 0.337, p = 0.054; Table 3). We prepared two variables in which the trait anxiety scores 
1 SD above and 1 SD below the average were subtracted from individual trait anxiety scores and conducted a 
simple slope test showing that the learning rate for positive PE in the domain of losses decreased with increased 
primary psychopathic scores when participants had low anxiety (β = − 0.506, p = 0.031; Fig. 4) but not high anxiety 

Table 2.  The correlations between the learning parameters and the personality traits. Note PP = primary 
psychopathy, SP = secondary psychopathy, TA = trait anxiety, αP = learning rate for positive PE, αN = learning 
rate for negative PE, β = inverse temperature, κ = subjective utility parameter. *p < 0.05.

Descriptive statistics of the personality traits

Gain Loss

αP αN β κ αP αN β κ

PP M = 34.37, SD = 5.44, Range[22–45]  − 0.144 0.134 0.122  − 0.033 0.012 0.043 0.069 0.073

SP M = 20.98, SD = 3.65, Range[14–29]  − 0.016 0.043  − 0.016  − 0.013 0.277*  − 0.013  − 0.062  − 0.026

TA M = 49.08, SD = 11.07, Range[30–70] 0.012 0.228 0.282*  − 0.136 0.107 0.009 0.114 0.061

Table 3.  Results of hierarchical regression analyses. Note PP = primary psychopathy, SP = secondary 
psychopathy, TA = trait anxiety, αP = learning rate for positive PE, αN = learning rate for negative PE, β = inverse 
temperature, κ = subjective utility parameter. †p < 0.10, *p < 0.05, **p < 0.01.

Step 1 Step 2

ΔR2

PP SP TA R2 PP SP TA PP × SP PP × TA SP × TA

Standardized coefficients Standardized coefficients

Gain

αP  − 0.175 0.069  − 0.013 0.024  − 0.222  − 0.008 0.019  − 0.048 0.129 0.196 0.063

αN 0.212  − 0.210 0.321† 0.092 0.196  − 0.230 0.385*  − 0.238 0.004  − 0.095 0.071

β 0.256  − 0.346† 0.440** 0.161* 0.234  − 0.394* 0.490**  − 0.154 0.099  − 0.014 0.015

κ  − 0.074 0.112  − 0.188 0.027  − 0.104 0.156  − 0.225 0.112  − 0.302 0.293† 0.083

Loss

αP  − 0.157 0.384*  − 0.074 0.097  − 0.183 0.279  − 0.061 0.052 0.337† 0.136 0.187*

αN 0.069  − 0.062 0.036 0.004 0.103 0.015  − 0.019 0.143  − 0.176  − 0.046 0.027

β 0.170  − 0.251 0.229 0.054 0.129  − 0.376† 0.354*  − 0.379* 0.329†  − 0.115 0.108

κ 0.133  − 0.149 0.128 0.021 0.086  − 0.208 0.214  − 0.283 0.037 0.031 0.060
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(β = 0.139, p = 0.529). Although the interaction effect between primary psychopathy and trait anxiety was not 
observed under the multiple test correction, if we concentrated on this interaction effect only (that is, the other 
two interaction terms that did not predict the variance of the learning rate for positive PE in the loss domain were 
excluded), this interaction effect was still significant even when the multiple test correction was used (β = 0.428, 
p = 0.007 with the Bonferroni correction). However, the sample size was too small to conclude the relationship 
between psychopathy and learning parameters, and this problem will be discussed in a later section.

Discussion
This study aimed to examine the learning processes of acquiring risk preferences under conditions of gain and 
loss and to investigate relationships between RL parameters and psychopathic traits. Our data revealed that 
participants were likely to learn the values of risky options from the effect of different PEs based on nonlinear 
subjective values. The contrast between learning rates for positive and negative PEs and the subjective utility 
parameter independently predicted the proportion of risky choices in each domain. We found that in the choice 
between a risky option and a sure ¥10 option, participants more often chose the risky option in the domain of 
losses than in the domain of gains (i.e., the reflection effect), and both the learning rates and the subjective utility 
parameter can also account for the extent to which participants selected risk under losses compared with under 
gains. Regarding the personality traits, the primary psychopathy scores could interact with the anxiety traits on 
the learning rate for positive PE in the domain of losses.

The current findings suggested that the effect of signed PEs and the nonlinearity of subjective values was 
associated with decision-making in risky conditions through experiences. The hybrid model that had separate 
learning rates for signed PEs and the subjective utility parameter showed a better fit to the choice data than the 
other models. The proportions of choosing the risky options were independently related to the subjective util-
ity parameter and the contrast between learning rates for positive and negative PEs. These relationships were 
found in the gain and loss domains. Furthermore, the results of model recovery suggest that the learning process 
based on separate learning rates can be dissociated from that based on subjective utility. The present findings 
indicated that risk aversion had formed when the learners had lower sensitivity to the incremental changes in 
gains and higher sensitivity to increases in loss and/or when they focused more on a negative result of the risky 
option than on a positive result of the risky option. In contrast, if learners who showed high reward sensitivity 
and low punishment sensitivity placed more weight on the positive side of the risky choice than on the negative 
side, they may start to make more risky choices. Our findings were consistent with the results of Niv et al.9 and 
the predictions of decision-making  theories1, and learning rate and subjective utility parameters appeared to be 
important for the formation of a risk preference.

Consistent with the findings of Niv et al.9 and the results from the descriptive  decision1,2, participants tended 
to choose the risky option under the loss conditions more than under the gain conditions (i.e., the reflection 
effect). In contrast, several studies found that the risk preference in experience-based decisions was opposite 
that in descriptive  decisions2,3. This discrepancy tends to increase when the probability of a rare event is low 
and, in turn, may lead to a sampling  error4. The probability of the risky option in the current study was relatively 
high, and the participants learned the value of the risk, at least to the extent that they chose a better option in 
the choices between a risk and an advantageous or disadvantageous option. Furthermore, the task structure also 
affects the degree of this difference; that is, the difference is greater when participants can freely terminate their 
sampling than when participants are forced to sample an  outcome4. The learning task in this study imposed the 
latter condition. Therefore, the risk preference in the present study was comparable to that in the descriptive-
based decision, and we observed the reflection effect.

Figure 4.  The relationship between the learning rate for positive PE in the domain of losses (αLP) and primary 
psychopathy scores interacted with anxiety traits.
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While subjective utility has been assumed to be a key mechanism in descriptive decisions and a likely key in 
experience-based decisions, it has not been clear what mechanisms the learning rate corresponds with. In RL 
model frameworks, the learning rates can represent how a past event’s outcome influenced the current  choice22,23. 
The learning rates for positive PE and negative PE can reflect the temporal effect of desirable and undesirable 
outcomes, respectively. Previous research has examined the impacts of time sequence on outcomes, particularly 
the recency effect, which is the tendency to give greater weight to a recent outcome and is supposed to be one of 
the causes of the difference in risk preference between descriptive and experience-based  decisions3,4. Although 
our findings seem to not differ from those for the descriptive choices, we believe that the learning rate parameter 
may be related to the recency effect, which may engender the description-experience gap.

The learning parameters can represent the factors of the dynamic processes but also capture individual 
differences in behavioral characteristics. One recent study showed that in the experience-based choice task, 
participants could be clearly classified into two groups according to the distribution of their learning rates and 
that participants who had a low learning rate tended to make a decision influenced by rare past results, while 
those who had a large learning rate tended to choose the risky option in which the punishment could be brought 
with a low  probability24. This previous study raised the idea that the distribution of learning parameters can cor-
respond to important indicators of individual differences. In the present study, both the separate learning rates 
and the subjective utility parameter were widely distributed and correlated with the risk preference well. The 
computational approach can provide insight into hidden individual differences.

The effects of primary psychopathy on learning rates could be modulated by anxiety traits. Some studies have 
revealed that the level of anxiety is related to learning performance in  psychopathy13,14. In particular, learning 
deficits in psychopathy have often been observed when individuals with high psychopathic traits had low anxi-
ety. The present findings indicated that one learning characteristic associated with lower anxiety and higher 
psychopathy might be a low learning rate for positive PE under loss conditions, namely, a diminished learning 
ability when the learner received no punishment when choosing the risky option. This result was partly consistent 
with those of a previous  study15. However, the sample size in this study may be insufficient to discuss the effects of 
psychopathy, and it is highly likely that the other links between psychopathic traits and learning parameters were 
not detected in this study. We emphasize that the present results related to psychopathy were preliminary data.

We will discuss several limitations of the present study. First, we examined only the condition in which the 
probability of an outcome being associated with the risky option was 50%. Although the primary aim of the pre-
sent study was to investigate learning mechanisms underlying the formation of risk preference, it is still unclear 
what process underlies the difference between descriptive and experience-based decisions that appears when 
the probability of a rare event is very  low2–4. We believe that our findings can provide hints to address this differ-
ence, but further research is needed. The second limitation is related to the first limitation: we did not compare 
the risk preference between the learning task and the descriptive task. Future studies should test whether the 
learning parameters predict the description-experience gap. Third, the sample size was very small for investigat-
ing the relationship between learning parameters and personality traits. The small sample size may reduce the 
statistical power. The other problem related to the results of psychopathy was that the participants in this study 
were recruited from a non-clinical population. In addition, there were few participants who had extremely high 
psychopathic traits. Although the concept of psychopathic traits is not limited to a criminal population, the 
findings of this study on psychopathy should be treated with caution.

In conclusion, our findings provide empirical evidence that risk preference and the reflection effect are likely 
to be predicted by learning rates for signed PEs and nonlinear subjective values. The learning rate for positive PE 
in the domain of loss could be related to the extent of primary psychopathy and trait anxiety. The current data 
can not only contribute to understanding how decision-making in risky conditions is formed by past experiences 
but also provide insight into psychiatric problems and learning in the face of losses.

Methods
Participants. Fifty-one undergraduate students (27 males and 24 females, mean age = 19.51 years, SD = 1.17) 
participated in this study. All participants provided informed consent and received ¥1,000 for participation. The 
primary aim of this study is to examine the learning mechanisms for risk preference. Our sample size had more 
than 80% statistical power to detect a 0.4 correlation coefficient, which seems to be sufficient to test the relation-
ship between the risk preference and the learning parameters. This study was approved by the ethics committee 
of Nagoya University and conducted in accordance with the relevant guidelines.

Measurements. The extent of psychopathy was assessed using the Japanese version of the Levenson Self-
report Psychopathy Scale  (LSRP17,18). The LSRP is a 26-item self-report questionnaire that can measure two 
subcomponents of psychopathy. Primary psychopathy scales include 16 items that represent personality traits 
such as callousness and a manipulative attitude toward others. The remaining 10 items are comprised of second-
ary psychopathy scales characterized by impulsivity and stimulus seeking. Each item is rated on a four-point 
Likert-type scale.

The trait anxiety scale was drawn from the State-Trait Anxiety Inventory  (STAI19). We used a Japanese ver-
sion of the  STAI20. This scale is a 20-item questionnaire that assesses sensitivity to anxiety in daily life using a 
four-point Likert-type scale.

Learning task. Participants performed a learning task in which they chose one of two fractal images to 
which different outcomes were assigned (Fig. 1). On each trial, a fixation cross was present for variable periods, 
from 1.5 to 2.5 s, followed by a choice stage for 1.5 s. After a blank screen was displayed for 1 s, feedback on the 
outcome (either of − ¥20, − ¥10, ¥0, + ¥10, or + ¥20) appeared for 1 s, and then, the next trial began. In the choice 
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stage, the participants pressed the F or J key to choose between the two fractals on the two sides of the screen, 
after which a red bar was displayed under the chosen fractal image. The participants were told that the place 
where the fractal appeared was not related to the outcome. When participants failed to respond during presenta-
tion of the fractal images, feedback appeared to indicate that the response was too late, and a penalty of ¥20 was 
imposed. The amount of money earned by each participant during the learning task was added to the participa-
tion fee, and the participants took this money. Unlike the experiment in Niv et al.9, the current experiment did 
not include training sessions or forced trials to prevent any choice bias.

The experimental task was separated into gain and loss blocks. The order of the blocks was counterbalanced 
among the participants. Similar to the learning task of Niv et al.9, in each block, there were four sure options (two 
¥0, ¥10, and ¥20) and one variable risky option (¥0 or ¥20). The participants won these amounts of money in the 
gain domain but lost money in the loss domain. The probability of the outcome association with the risky option 
was set at 50%. Each option was paired with another, and all pairs appeared 20 times, except for the combination 
of the risky option and sure ¥10 option, which was presented 30 times and used to investigate the participant’s 
risk preference. The number of trials was set as 210 in each block; thus, this experiment included 420 trials in 
total. We never provided the participants with information about the amounts, their probabilities, and the order 
of the blocks. The experiment was controlled by PsychoPy v1.80.3025.

Reinforcement learning models. RL models were used to understand the learning process in relation to 
constructing values of the risky options. All models were designed to assign an action value to each decision-
making action. Here, we consider a stimulus i on trial t for the action value Qt(i) . The action value of a chosen 
action is updated based on the following equations:

where α is the learning rate that determines the speed of updating values. The outcome value rt is represented 
by 1 for a gain of ¥10, 2 for a gain of ¥20, -1 for a loss of ¥10, -2 for a loss of ¥20, or 0 for no gain or loss on trial 
t. The term rt − Qt(i) is the prediction error (PE) described as δt . The initial value for each option’s action value 
was set as 0. The learning proceeds with a decision on each action according to the values, and the probabilities 
of choosing an action are calculated by the softmax function:

where β is a free parameter, inverse temperature, that represents the choice randomness.
In addition to the above standard model, we used three models that included additional parameters to test 

the a priori hypothesis. One model was a separate learning rate model that allowed different learning rates for 
a positive PE ( δt > 0 ) and a negative PE ( δt < 0 ). This model assumed that the speed of updating values could 
differ between the signed PEs. In this study, the learning rate for negative PE in the gain domain and the learn-
ing rate for positive PE in the loss domain are sensitive only to the value updating of the risk option, while the 
learning rate for positive PE in the gains and the learning rate for negative PE in the losses are used in the value 
updating for non-zero outcomes. If individuals have a higher learning rate for positive PE than that for negative 
PE, they tend to choose the risky  option9. The subjective utility model contained a subjective utility parameter, 
κ , that could differentially weigh larger outcomes:

The subjective utility parameter is related to updating the value of the risk option and the sure ¥20 option. 
When the subjective utility parameter is less than 1, the risk tends to be refused in the domain of gains but 
accepted in the domain of  losses9. The hybrid model included both additional parameters. Moreover, we inves-
tigated whether the RL parameters can be different in the gain and loss domains.

Model fitting and comparison. We used a hierarchical type-II maximum likelihood estimation to fit the 
RL models to the data in each domain. The fitting procedure was the same as that used in a previous  study26. 
With these methods, the marginal likelihood was maximized by the expectation–maximization algorithm to 
estimate the hyperparameters of the population-level normal distributions. The learning rate and inverse tem-
perature parameters for each individual were transformed to sigmoidal and exponential scales, respectively. We 
used the Rsolnp package in R (https:// cran.r- proje ct. org/ packa ge= Rsolnp) to optimize the likelihood functions 
in the E-step. In the M-step, the posterior distributions were estimated by the Laplace approximation to update 
the hyperparameters.

The trade-off between parsimony and goodness of fit was evaluated using integrated Bayes Information Cri-
teria  (iBIC26). The iBIC value is twice the negative log marginal likelihood of the data with a penalty term for the 
number of free parameters. A model with a smaller iBIC value indicated a better prediction of the data. The mar-
ginal likelihoods were estimated via Monte Carlo sampling: for each participant, parameter values were randomly 
drawn from the population-level distributions and these parameter values were used to calculate likelihoods of 

(1)Qt+1(i) = Qt(i)+ α δt

(2)δt = rt − Qt(i)

(3)pt(i) =
exp(β Qt(i))

∑

i′ exp(β Qt(i′))

(4)rt =



















0
1
−1
2κG
−2κL

if the outcome value was 0 yen at trial t
if the outcome value was 10 yen at trial t
if the outcome value was − 10 yen at trial t
if the outcome value was 20 yen at trial t
if the outcome value was − 20 yen at trial t

https://cran.r-project.org/package=Rsolnp
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choice data. The number of sampling was set as 1,000. These sampled likelihoods samples were averaged over 
the number of samples for each participant. Then, the average likelihoods were summed for all participants.

Model recovery and parameter recovery. We performed model recovery and parameter recovery to 
examine whether the data generated from each learning model can be disassociated from those of other models 
and whether there are trade-offs between estimated  parameters21. For each model, we made 100 simulated data 
with parameter sets that were sampled from the population-level normal distribution of each parameter, which 
was estimated simultaneously with the RL parameters by the type-II likelihood estimation. In the simulation, 
the values of the sampled inverse temperature parameter were increased by 1 to reduce choice randomness, 
which can cause poor predictability in the  model21. The content of the simulation task was the same as that of the 
experimental task. We fitted each model to the simulated data using the type-II maximum likelihood estimation 
and computed the iBIC values. Using the iBIC values, we demonstrated that a fitting model was better in the 
simulated data that were generated by using a certain model.

For parameter recovery, we focused on the hybrid model that corresponds to the winning model. Using the 
parameter set generated by the model recovery, the correlation between true and recovered parameters and the 
correlation between recovered parameters were examined.

Statistical analyses. We used several statistical tests, such as t tests, correlations, analysis of variance 
(ANOVA), and multiple regression. For ANOVAs, we applied the Greenhouse–Geisser correction to the degrees 
of freedom when the sphericity assumption was violated. In the multiple regression analysis, all the independent 
variables were entered into the regression equation to predict the variance of the dependent variable. In contrast, 
when the hierarchical regression analysis was conducted, after the average of each independent variable was 
subtracted from individual values of the independent variables (i.e., centering), those centering variables were 
entered into the linear model at Step 1. The interaction terms created by multiplying each of the centering vari-
ables were entered into the linear model at Step 2. We first checked whether the linear model with the interaction 
term could predict the variance of the dependent variable better than the model without the interaction term, 
using the F test for differences in the values of R2. Then, the slopes of the interaction terms were tested. When the 
slope of the interaction term was significant, the two variables were made where the values 1 SD above or below 
the mean of an independent variable were subtracted from individual scores of the independent variable. Then, 
we examined whether one independent variable was related to the dependent variable when the other independ-
ent variable was high (i.e., + 1 SD) or low (i.e., − 1 SD).

Data availability
The raw data supporting the conclusions of this manuscript will be made available by the corresponding author 
on reasonable request.
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