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Thermal characteristics 
of longitudinal fin with Fourier 
and non‑Fourier heat transfer 
by Fourier sine transforms
Basma Souayeh1,4* & Kashif Ali Abro2,3

The quest for high‑performance of heat transfer components on the basis of accommodating shapes, 
smaller weights, lower costs and little volume has significantly diverted the industries for the 
enhancement of heat dissipation with variable thermal properties of fins. This manuscript proposes 
the fractional modeling of Fourier and non‑Fourier heat transfer of longitudinal fin via non‑singular 
fractional approach. The configuration of longitudinal fin in terms of one dimension is developed 
for the mathematical model of parabolic and hyperbolic heat transfer equations. By considering 
the Fourier and non‑Fourier heat transfer from longitudinal fin, the mathematical techniques of 
Fourier sine and Laplace transforms have been invoked. An analytic approach is tackled for handling 
the governing equation through special functions for the fractionalized parabolic and hyperbolic 
heat transfer equations in longitudinal fin. For the sake of comparative analysis of parabolic verses 
hyperbolic heat conduction of fin temperature, we depicted the distinct graphical illustrations; for 
instance, 2‑dimensional graph, bar chart, contour graphs, heat graph, 3‑dimensional graphs and 
column graphs on for the variants of different rheological impacts of longitudinal fin.

The parabolic and hyperbolic heat transfer from longitudinal fin has diverse industrial applications especially 
in air conditioning, refrigeration and few others. The Mathematical modeling of parabolic and hyperbolic heat 
transfer equations is not an easy task for investigating fractionalized analytical solution as well as fractionalized 
numerical solution. This is because temperature distribution of parabolic and hyperbolic heat transfer equations 
involves temperature-dependent  properties1–8. In view of preeminent studies investigating the fin problem on 
Fourier and non-Fourier domain subject to the periodic boundary conditions, a sequential approach has been 
suggested by Yang  in9 with direct and inverse analysis based on the Finite difference and modified Newton 
Raphson methods respectively. Here, a great conformity has been established in results on the basis of accuracy 
between exact and non-exact techniques. In context with fin problem of non-Fourier thermal conditions, an 
analytical study has been carried out by Ahmadikia and Rismanian  in4. They invoked the second law of ther-
modynamic for hyperbolic model to find temperature field. Moreover, they emphasized the impacts of time 
relaxation for hyperbolic model only. From mathematical point of view, Aziz et al.10 introduced the adjoint 
conjugate gradient method to evaluate the base temperature in non-Fourier inverse fin problem. The varying 
thermal conductivity subject to the wavelet collocation method for the nonlinear boundary has been investigated 
by Singh et al.11. Their main objective was to analyze the linear, constant and exponential temperature. Nagarani 
et al.12 observed the temperature distribution from the elliptical and circular annular fin through the empirical 
structure of computational fluid dynamics and optimizing genetic algorithm. Additionally, they validated the 
elliptical annular fin through both techniques. The porous fin has been quantified subject to predict the impacts 
of thermal diffusion and porosity through temperature profile on the fin by Das and  Prasad13. They invoked 
differential evolution method to confess the performance with optimized algorithms. For the sake of fin geom-
etry with optimized heat transfer via triangular, convex and concave conditions, analyticity of temperature has 
been carried out through least square method by Mosayebidorcheh et al.7. Recently Jing et al.14 invoked spectral 
element method to determine the non-uniform heat generation with variable temperature for irregular fins in 
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porous structure. For the first time in recent literature, none of fractional model via Atangana-Baleanu differential 
operator is studied. The authors of this manuscript presented fractional modeling of fin on non-Fourier heat 
conduction in recent literature. They focused the non-singular time derivative on the mathematical model of fin 
with non-Fourier heat  conduction15. In this context, fractional models based on non-singular kernels can have 
ability to disclose the hidden phenomenon through the memory effects. The distinct studies on fractional models 
are adhered in this regard as; fractional models based on singular kernel can be viewed  in16–26, fractional models 
based on non-singular kernel can be viewed  in27–35 and fractal-fractional differential and integral models based 
on singular and local as well as non-singular and non-local kernel can be viewed  in36–46. Motivating by above 
discussion, we propose the fractional modeling of Fourier and non-Fourier heat transfer of longitudinal fin via 
non-singular fractional approach. The configuration of longitudinal fin in terms of one dimension is developed 
for the mathematical model of parabolic and hyperbolic heat transfer equations. By considering the Fourier 
and non-Fourier heat transfer from longitudinal fin, the mathematical techniques of Fourier sine and Laplace 
transforms have been invoked. An analytic approach is tackled for handling the governing equation through 
special functions for the fractionalized parabolic and hyperbolic heat transfer equations in longitudinal fin. For 
the sake of comparative analysis of parabolic verses hyperbolic heat conduction of fin temperature, we depicted 
the distinct graphical illustrations; for instance, 2-dimensional graph, bar chart graph, contour graphs, heat graph, 
3-dimensional graphs and column graphs on for the variants of different rheological impacts of longitudinal fin.

Fractional modeling of Fourier and non‑Fourier heat transfer
It is well established fact in literature that Cattaneo and  Vernotte1,2 proposed the suitable mathematical models 
of heat conduction for describing the conductive heat transfer in many engineering problems in 1958. Such 
mathematical models of heat conduction are based on an independently hyperbolic heat conduction model with 
a finite propagation speed so called non-Fourier model of heat conduction described as:

In this context, a tip of the longitudinal fin is considered adiabatic subject to ratio of the thickness to the 
length is bL < 1 , the cross section area AC , relaxation time τ perimeter P , thickness b and length L as depicted 
in the Fig. 1.

For the sake of heat dissipation in the environment through convection, we treated convective heat transfer 
coefficient h as constant. Meanwhile, the fin material having specific heat c , constant thermal conductivity k 
and density ρ . Additionally, fin contains an internal heat source q∗ that depends upon the local fin temperature. 
In order to satisfy the geometry of the longitudinal fin, the following governing differential equations for non-
Fourier (hyperbolic) and Fourier (parabolic) heat transfer are:

Equation (21 ) is governing differential equation for non-Fourier (hyperbolic) heat conduction and equation 
(22) is governing differential equation for Fourier (parabolic) heat conduction, in which q∗ = q∗∞((T − T∞)ε + 1) . 
While, τ reflects relaxation time in Eq. (2). The relaxation time is a measure of the time that takes heat conduc-
tion in the system to be significantly perturbed. From physical aspects, the relaxation time usually means the 
return of a perturbed heat conduction into equilibrium. The temperature is constant everywhere in fin at t = 0 
and rate of change of temperature in longitudinal fin with respect to time are subjected to the initial conditions 
for governing system of partial differential Eqs. (2), we write as:
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Figure 1.  Configuration of longitudinal fin in terms of one dimension.
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Additionally, the base of longitudinal fin to a surface with periodically temperature oscillation is described 
in the following equation as:

The functional parameters for Eq. (4) are described in the following Table 1.
In engineering and science, dimensional analysis is the analysis of the relationships between different physical 

quantities by identifying their base quantities. On introducing the dimensionless variable and similarity criteria, 
we have defined as:

By introducing Eq. (5) into Eqs. (2–4), the non-fractional parabolic and hyperbolic heat transfers in longi-
tudinal fin’s governing equations are respectively:

Subject to the imposed conditions as:

Introducing the AB-fractional differential operator on the governing non-fractional parabolic and hyperbolic 
heat transfers equations in longitudinal fin’s say (6–7), we define AB-fractional differential operator in Eq. (9) as

we fractionalized Eqs. (6–7) by invoking Eq. (9), we arrive at

Fractional treatment to longitudinal fin with Fourier and non‑Fourier heat transfer
Different methodologies based on fractional modeling of longitudinal fin with Fourier and non-Fourier heat 
transfer have obtained significant role. The well-known methodologies are Laplace transform, control volume 
method, finite element method, spectral element method, spectral collocation method, differential transform 
method, response surface method, least square method and several others. Meanwhile, for the sake of deep study, 
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Table 1.  Functional and rheological parameters.

Functional parameter Description

ω Frequency of the base temperature

A Dimensionless amplitude of the base temperature

Tb,m Mean base temperature

T∞ Ambient temperature

Tb Periodic base temperature

t Time variable

� Dimensionless periodicity

α Fractional parameter
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we first time in literature invoked combined Laplace and Fourier sine transforms on the governing non-fractional 
parabolic and hyperbolic heat transfers equations in longitudinal fin. The flow chart for invoked combined 
Laplace and Fourier sine transforms on the governing non-fractional parabolic and hyperbolic heat transfers 
equations in longitudinal fin is sketched as Fig. 2.

Analytic and fractional treatment to parabolic heat transfer equations in longitudinal 
fin. Applying Fourier sine transform on Eq. (10), we get

Solving fractional differential Eq. (12) by means of Laplace transform, we arrived at

E q u a t i o n   ( 1 3 )  i s  c a l c u l a t e d  o n  t h e  b a s i s  o f  l e t t i n g  p a r a m e t e r s  a s 
β =

1
1−α

, z0 = αβ , z1 = β + ξ 2 + �1, z2 = ξ 2z0 + �1z0 . Applying inverse Fourier sine transform on Eq. (13) as:

The functional parameters for Eq. (14) are z3 = z2+ξ2z0
z1+ξ2

, z4 =
z2
z1

 . Invoking inverse Laplace transform on 
Eq. (14), we derived final solution in terms of special function as:

where the special functions are defined for the fractional parabolic heat transfers equation in longitudinal fin 
say Eq. (15) as:
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Figure 2.  Flow chart for calculation.
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Analytic and fractional treatment to hyperbolic heat transfer equations in longitudinal 
fin. Applying Fourier sine transform on Eq. (11), we get

Solving fractional differential Eq. (19) by means of Laplace transform, we arrived at

Equation (20) is calculated on the basis of letting parameters as β =
1

1−α
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2 + �4β + ξ 2 + �5, 
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2
0 . Applying inverse Fourier sine transform on Eq. (20) as:

The letting parameters for Eq. (21) are z8 = z5 + ξ 2, z9 = z6 + 2ξ 2z0, z10 = ξ 2z20 . Writing Eq. (21) in to 
equivalent form by employing the procedures of infinite series as:
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Equation (23) is an analytical solution of hyperbolic heat transfer equations in longitudinal fin that satisfies 
the imposed conditions.

Results and concluding discussion
This portion is dedicated for physical insights and practical aspects from heat transfer of longitudinal fin. The 
fractional modeling of Fourier and non-Fourier heat transfer of longitudinal fin via non-singular fractional 
approach is depicted through various types of graphs. The graphical illustration is based on supplying constraint 
to have significant heat transfer from longitudinal fins. The configuration of longitudinal fin in terms of one 
dimension is developed for the mathematical model of parabolic and hyperbolic heat transfer equations in which 
several physical parameters are discussed within the suitable values. By considering the Fourier and non-Fourier 
heat transfer from longitudinal fin, the mathematical techniques of Fourier Sine and Laplace transforms have 
proved the better conduction to diffuse the heat away from cooled aspects. An analytic approach is tackled for 
handling the governing equation through special functions for the fractionalized parabolic and hyperbolic heat 
transfer equations in longitudinal fin. For the sake of comparative analysis of parabolic verses hyperbolic heat 
conduction of fin temperature, we depicted the distinct graphical illustrations; for instance, 2-dimensional graph, 
bar chart graph, contour graphs, heat graph, 3-dimensional graphs and column graphs on for the variants of 
different rheological impacts of longitudinal fin. In short, the following outcomes have been achieved on the 
basis of different variants in rheological parameters as:

Dynamical aspects of relaxation time for parabolic verses hyperbolic heat conduction. Relax-
ation time is an important parameter that can determine parabolic and hyperbolic performance of heat conduc-
tion significantly. This is because when thermoelectric properties of certain materials are needed then relaxation 
time is generally employed. Figure 3 is prepared for the comparative graphical illustration of parabolic verses 
hyperbolic heat conduction for the variants of relaxation time based on 2-dimensional and bar chart graphs. It 
is observed that temperature distribution of parabolic heat conduction of fin in 2-dimensional graph has con-
troversial trend in comparison with temperature distribution of hyperbolic heat conduction of fin. Whilst, bar 
chart graphs as shown in Fig. 3 shows the reversal behavior of temperature distribution. In brevity, temperature 
distribution of parabolic heat conduction of fin in bar chart graph is dominant than temperature distribution of 
hyperbolic heat conduction of fin.

Dynamical aspects of frequency for parabolic verses hyperbolic heat conduction. The higher 
frequency always relates a higher energy either in parabolic heat conduction or in hyperbolic heat conduction. 
Figure 4 is prepared for knowing the dynamical role of frequency of parabolic heat conduction and hyperbolic 
heat conduction separately. It is observed that increasing values of frequency have generated peak oscillations in 
hyperbolic heat conduction in comparison with parabolic heat conduction.

Dynamical aspects of amplitude for parabolic verses hyperbolic heat conduction. The compar-
ative graphs in terms of two-dimensional and contour graphs of parabolic verses hyperbolic heat conduction for 
the variants of amplitude of the base temperature have been prepared in Fig. 5. It is perceived that by increasing 
amplitude, the non-resistive trends have been disclosed by both parabolic as well as hyperbolic heat conduction. 
This is many be due to the fact that when parabolic or hyperbolic heat conduction is subjected for incremental 
amplitude then amplitude response becomes aperiodic. Additionally, Fig. 6 is depicted for heat graph of para-
bolic heat conduction for the variants of time and Smith graph for hyperbolic heat conduction for scatterings 
of temperature distribution. Here, heat graph of parabolic heat conduction has shown phase transitions on the 
basis of increasing time. While, Smith graph for hyperbolic heat conduction is also observed for temperature 
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distribution. In exaggeration, 3-dimensional and column graphs of parabolic heat conduction for the variants of 
fractional parameter for scatterings of temperature distribution have been prepared in Fig. 7. It is observed that 
fractional parameter has significance rise in temperature distribution.

Fractional and classical comparative analysis of parabolic verses hyperbolic heat conduc‑
tion. The comparison of classical and fractional methods measures the closeness of agreement for integer 

Figure 3.  Comparative graphs of parabolic verses hyperbolic heat conduction for the variants of relaxation time 
based on 2-dimensional and bar chart graphs.

Figure 4.  Comparative graphs of parabolic verses hyperbolic heat conduction for the variants of frequency of 
the base temperature based on 2-dimensional graph.
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Figure 5.  Comparative graphs of parabolic verses hyperbolic heat conduction for the variants of amplitude of 
the base temperature based on 2-dimensional and contour graphs.

Figure 6.  Heat graph of parabolic heat conduction for the variants of time and Smith graph for hyperbolic heat 
conduction for scatterings of temperature distribution.
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and non-integer differentiations. Such comparison leads to estimate inaccuracy and accuracy of investigated 
solutions among imposed classical and fractional methods. Figure 8 is prepared for the classical and fractional-
ized temperature with parabolic and hyperbolic heat transfer at three diffreent times (smaller, unit and larger 
times). The four types of analytical solutions have been compared namely (i) classical temperature of parabolic 
heat transfer, (ii) classical temperature of hyperbolic heat transfer, (iii) fractional temperature of parabolic heat 
transfer, and (iv) fractionalzed temperature of hyperbolic heat transfer. For smaller time t = 0.5 s, fractionalzed 
temperature of hyperbolic heat transfer is switer than (i) classical temperature of parabolic heat transfer, (ii) 
classical temperature of hyperbolic heat transfer, (iii) fractional temperature of parabolic heat transfer. On the 
contrary, for larger time t = 5 s, fractionalzed temperature of hyperbolic heat transfer moves faster than (i) clas-
sical temperature of parabolic heat transfer, (ii) classical temperature of hyperbolic heat transfer, (iii) fractional 
temperature of parabolic heat transfer. For the sake of phyical sigficance, all the models have coincidence tem-
perature at unit time t = 1 s.

Conclusion
In this study, the fractionalized analytical solutions of parabolic and hyperbolic heat transfer based on tem-
perature distribution have been obtained by employing integral transforms as shown in Fig. 2. The results for 
temperature profiles have decalred physical insights and practical aspects from heat transfer of longitudinal fin. 
The different variants in rheological parameters have been shown various investigations, such investigations are 
enumerated as:

 (i) The temperature distribution of parabolic heat conduction of fin has controversial trend in comparison 
with temperature distribution of hyperbolic heat conduction of fin.

 (ii) Increasing values of frequency have generated peak oscillations in hyperbolic heat conduction in com-
parison with parabolic heat conduction.

 (iii) Either parabolic or hyperbolic heat conduction is subjected for incremental amplitude then amplitude 
response becomes aperiodic.

Figure 7.  3-dimensional and column graphs of parabolic heat conduction for the variants of fractional 
parameter for scatterings of temperature distribution with respect to time in seconds.

Figure 8.  Comparative graphs of parabolic verses hyperbolic heat conduction for the classical and fractional 
approaches based on three different times.
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 (iv) The comparison of classical and fractional methods measures the closeness to estimate inaccuracy and 
accuracy of investigated solutions.

Received: 7 July 2021; Accepted: 8 October 2021
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