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Characteristics of serum 
metabolites in sporadic 
amyotrophic lateral sclerosis 
patients based on gas 
chromatography‑mass 
spectrometry
Rui Jia1, Qiaoyi Chen2, Qingqing Zhou1, Ronghua Zhang1, Jiaoting Jin1, Fangfang Hu1, 
Xiao Liu1, Xing Qin1, Li Kang1, Songzhen Zhao1, Yonghui Dang3* & Jingxia Dang1*

To identify differential metabolites and metabolic pathways and provide guidance for the novel 
biomarkers for diagnosis and prognosis of amyotrophic lateral sclerosis (ALS). ALS patients and 
people without nervous diseases were recruited. Metabolomic analysis was performed using gas 
chromatography‑mass spectrometry (GC/MS). The orthogonal projections to latent structures 
discriminant analysis (OPLS‑DA) were used to identify differential metabolites. Kyoto Encyclopedia of 
Genes and Genomes and MetaboAnalyst were used to identify metabolic pathways. 75 metabolites 
were detected and aligned. The OPLS‑DA showed the metabolomic profile of ALS patients and those 
in the fast‑progression and slow‑progression ALS groups differed from that of CTRL (p < 0.05). The 
levels of maltose, glyceric acid, lactic acid, beta‑alanine, phosphoric acid, glutamic acid, ethanolamine 
and glycine in ALS were significantly higher, while 2,4,6‑tri‑tert‑butylbenzenethiol was lower. Glycine, 
serine and threonine metabolism, D‑glutamine and D‑glutamate metabolism, alanine, aspartate, and 
glutamate metabolism, beta‑alanine metabolism, and pyruvate metabolism were significantly altered 
metabolic pathways in ALS. ROC was used to discriminate ALS from CTRL with an AUC of 0.898 
(p < 0.001) using 2,4,6‑tri‑tert‑butylbenzenethiol, beta‑alanine, glycine, and ethanolamine. The serum 
metabolites and metabolic pathways in ALS patients are significantly altered compared with CTRL. 
These findings may contribute to the early diagnosis of ALS.

Amyotrophic lateral sclerosis (ALS) is a complicated neurodegenerative disease characterized by the rapid, pro-
gressive loss of motor neurons in the brain and spinal  cord1. It has garnered increasing attention since the Ice 
Bucket Challenge in  20142. The diagnosis of ALS mainly depends on the manifestation of neurological deficits 
(positive signs of injury in the upper and lower motor neurons) and electromyography examination (EMG) 
results. The mean delay time from symptom onset to diagnosis is more than 12  months3. ALS patients exhibit 
different rates of progression after onset and clinical heterogeneity. The average survival time of ALS patients 
is 2–5 years after  diagnosis4,5. Respiratory failure caused by respiratory muscle paralysis is the main cause of 
ALS-related  death6. However, the pathogenesis of ALS is still  unclear7. Riluzole is approved drugs for ALS, but 
with limited  efficacy8,9. Therefore, there is an urgent need to identify novel biomarkers for the diagnosis and 
treatment of ALS.

Approximately 5–10% of ALS is familial (FALS) with a Mendelian pattern of  inheritance4,10. Since the dis-
covery of the first ALS-related gene superoxide dismutase 1 in  199311, more than 30 genes have been identified 

OPEN

1Department of Neurology, The First Affiliated Hospital, Xi’an Jiaotong University, 277 Western Yanta Rd, 
Xi’an 710061, China. 2Department of Cell Biology and Genetics, Xian Jiaotong University Health Science Center, 
Xi’an, China. 3Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Key 
Laboratory of the Health Ministry for Forensic Medicine, College of Medicine and Forensics, Xi’an Jiaotong 
University Health Science Center, Xi’an, China. *email: psydyh@mail.xjtu.edu.cn; jxdang2000@126.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-00312-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20786  | https://doi.org/10.1038/s41598-021-00312-8

www.nature.com/scientificreports/

in  FALS12. Although more than 120 genetic variants are associated with  ALS3, genetic etiology has only been 
determined in 60% and 11% of FALS and sporadic ALS cases,  respectively13. Epigenetic studies indicate poten-
tial links between environmental factors and pathogenic genetic alterations mediated by DNA methylation and 
non-coding RNA, among  others3,14,15. It has been proposed that environmental factors promote the onset and 
development of ALS by regulating gene  expression16,17.

Endogenous small-molecular metabolites (< 1 kDa) are considered the end products of gene-environment 
 interactions18 and are closely related to genomics, transcriptomics, proteomics, and the cellular  environment19. 
Metabolomics is a postgenomic approach that measures small-molecule metabolites in living systems, providing 
essential information on dynamic metabolic responses of endogenous  factors20 during disease  progression21. 
Serum/plasma metabolomics is an easily accessible tool that has been widely used to explore metabolic pathways 
in neurodegenerative  diseases19,22.

A state of hypermetabolism, mainly of muscular origin, was observed in transgenic ALS mice, suggesting that 
hypermetabolism may increase the vulnerability of motor  neurons23. Analyses of 101 metabolites associated with 
Alzheimer’s disease, Parkinson’s disease, and ALS have shown that uric acid, choline, creatinine, L-glutamine, 
alanine, creatinine, and N-acetyl-L-aspartate are common metabolites in these  diseases18.

In this study, we identified differential metabolites and metabolic pathways associated with ALS using non-
target gas chromatography-mass spectrometry (GC/MS). These findings may contribute to a better understanding 
of the characteristics of serum metabolites in ALS patients.

Results
Patients’ characteristics. We analyzed the serum samples obtained from ALS patients (n = 23) and 
healthy subjects (n = 25) using untargeted GC/MS metabolomics. The ALS and CTRL groups were age- and gen-
der-matched (p > 0.05). Compared with the CTRL group, ALS patients had lower serum levels of creatinine and 
albumin, and a higher level of creatine kinase (p < 0.05). To identify the differentially expressed serum metabo-
lites in ALS patients with different rates of progression, the ALSFRS-r scores of all patients were recorded at their 
initial visit. According to the median progression rate (0.772)24, ALS patients were categorized into two groups: 
fast-progression (Δr ≥ 0.772, n = 12) and slow-progression (Δr < 0.772, n = 11) groups. The demographic charac-
teristics, laboratory examination results, ALSFRS-r scores, and treatment of the two groups are shown in Table 1.

Serum metabolic profiles of ALS patients and healthy subjects. A total of 75 serum metabolites 
were detected and aligned after raw data processing including 25 amino acids (33%), 17 organic acids (23%), 
9 fatty acids (12%), 7 sugars (9%), 6 polyols (8%), 3 phosphoric acids (4%), 2 amines (3%), and 6 others (8%). 
The OPLS-DA score plot was used to analyze serum metabolite changes and identify differential metabolites. 
The OPLS-DA score plots showed clear discrimination in ALS versus CTRL (cumulative  R2Y = 0.901,  Q2 = 0.602; 
Fig.  1A), fast-progression ALS versus slow-progression ALS versus CTRL  (R2Y = 0.800,  Q2 = 0.414; Fig.  1B), 
fast-progression ALS versus CTRL  (R2Y = 0.953,  Q2 = 0.676; Fig. 1C), and slow-progression ALS versus CTRL 
 (R2Y = 0.937,  Q2 = 0.56l; Fig. 1D).

Analysis of differential serum metabolites and metabolic pathways. Metabolites with a variable 
importance in the projection (VIP) > 1.0 and p < 0.05 in one-way analysis of variance were considered differential 
 metabolites25 and are summarized in Table 2. Heatmaps of the differential metabolic profiles were generated 
based on hierarchical clustering analysis using the pheatmap package in R software. Compared with healthy 

Table 1.  Demographic characteristics of ALS patients and healthy subjects. a ALS versus CTRL, t-test, p < 0.05. 
b Fast-progression ALS versus CTRL, t-test, p < 0.05. c Slow-progression ALS versus CTRL, t-test, p < 0.05.

ALS Fast-Progression ALS Slow-Progression ALS CTRL

Age (mean ± SD) 52.5 ± 1.7 52.6 ± 7.3 52.1 ± 9.0 52.4 ± 2.1

Gender (M/F) 12/11 7/5 5/6 12/13

BMI (kg/m2, mean ± SD) 22.2 ± 0.6 22.0 ± 2.7 21.7 ± 3.3 23.4 ± 0.6

Forced vital capacity (FVC, mean ± SD) 78.3 ± 22.1 73.0 ± 23.5 88.5 ± 13.3 –

Bulbar onset (%) 4 (18.2) 3 (13.6) 1 (4.6) –

Months from onset to diagnosis (mean ± SD) 10.3 ± 5.3 7.5 ± 2.4 13.7 ± 5.4 –

Riluzole for more than 6 months (%) 12 (54.5) 5 (20.0) 7 (28.0) –

ALSFRS-r scores 38.4 ± 6.2 36.7 ± 5.5 41.9 ± 2.5 –

LDL (mmol/L, mean ± SD) 2.6 ± 0.1 2.8 ± 0.7 2.5 ± 0.6 2.4 ± 0.1

TG (mmol/L, mean ± SD) 1.3 ± 0.2 1.2 ± 0.9 1.4 ± 1.0 1.3 ± 0.1

TCHO (mmol/L, mean ± SD) 4.3 ± 0.1 4.6 ± 0.7 4.1 ± 0.7 4.1 ± 0.1

Serum Creatinine (μmol/L, mean ± SD) 50.3 ± 2.1a 51.9 ± 10.9 48.6 ± 7.6c 59.3 ± 2.1

Serum uric acid (μmol/L, mean ± SD) 275.9 ± 16.2 287.7 ± 91.3 274.2 ± 71.1 295.1 ± 13.7

Serum urea nitrogen (mmol/L, mean ± SD) 5.4 ± 0.4 5.1 ± 2.4 5.9 ± 2.9 5.1 ± 0.3

Serum albumin(g/L, mean ± SD) 40.9 ± 0.5a 41.2 ± 2.4b 41.0 ± 2.6c 44.1 ± 0.6

Serum creatine kinase (U/L, mean ± SD) 170.0 ± 23.5a 146.2 ± 73.4b 207.6 ± 154.9c 98.5 ± 11.5
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subjects, ALS patients showed significantly higher levels of maltose, glyceric acid, lactic acid, beta-alanine, phos-
phoric acid, glutamic acid, ethanolamine, glycine, and a lower level of 2,4,6-tri-tert-butylbenzenethiol in the 
serum (Fig. 2A). The fast-progression ALS group showed significantly higher concentrations of maltose, glycine, 
phosphoric acid, monomethyl phosphate, glutamic acid, alpha-tocopherol, ethanolamine, and pyruvic acid, but 
lower levels of tryptophan and 2,4,6-tri-tert-butylbenzenethiol compared with the CTRL group (Fig. 2B). The 
serum concentrations of glycine, ethanolamine, glutamic acid, glyceric acid, beta-alanine, monomethyl phos-
phate, lactic acid, alpha-tocopherol, and hypoxanthine in the slow-progression ALS group were significantly 
higher, whereas the level of 2,4,6-tri-tert-butylbenzenethiol was lower compared with the CTRL group (Fig. 2C). 
By comparing fast- and slow-progression ALS patients with the CTRL group, we found that 2,4,6-tri-tert-butyl-
benzenethiol, glycine, glutamic acid, ethanolamine, monomethyl phosphate, and alpha-tocopherol were com-
mon differential metabolites in both subgroups. Maltose, phosphoric acid, tryptophan, and pyruvic acid were 
identified as differential metabolites only in the fast-progression ALS group, whereas glyceric acid, beta-alanine, 
lactic acid, and hypoxanthine were differential metabolites in the slow-progression ALS group (Fig. 2D). We also 
analysis the differential metabolites among ALS, ALS subgroups and CTRL by ANOVA, the results were shown 
in Fig. 3.

Next, we analyzed the differential metabolites and altered metabolic pathways in ALS using the KEGG and 
MetPA databases. Relative-betweenness centrality was used to analyze pathway topology. Glycine, serine, and 
threonine metabolism, D-glutamine and D-glutamate metabolism, alanine, aspartate, and glutamate metabolism, 
beta-alanine metabolism, and pyruvate metabolism pathways were significantly altered between ALS patients 
and healthy subjects (Fig. 2E). The significantly altered pathways in the fast-progression ALS group were glycine, 
serine and threonine metabolism, alanine, aspartate, and glutamate metabolism, D-glutamine and D-glutamate 
metabolism, pyruvate metabolism, and tryptophan metabolism (Fig. 2F). The glycine, serine and threonine 
metabolism, alanine, aspartate, and glutamate metabolism, D-glutamine and D-glutamate metabolism, pyruvate 
metabolism, and beta-alanine metabolism were the significantly altered pathways between the slow-progression 
ALS and CTRL groups (Fig. 2G). Compared with the CTRL group, the tryptophan metabolism pathway was 
significantly enriched in the fast-progression ALS group, whereas the beta-alanine pathway was only significantly 
altered in the slow-progression ALS group (Fig. 2H).

Receiver operating characteristic analysis of differential metabolites in different ALS 
groups. Accurate and early diagnosis is essential for choosing appropriate treatments for ALS patients. Dif-

Figure 1.  OPLS-DA score plots of ALS patients versus healthy subjects. OPLS-DA analysis shows a clear 
separation in (A) ALS versus CTRL, (B) fast-progression ALS versus slow-progression ALS versus CTRL, (C) 
fast-progression ALS versus CTRL, and (D) slow-progression ALS versus CTRL.
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ferential metabolites between the ALS patients and CTRL group were identified (VIP > 1, p < 0.05). Then logistic 
regression was performed and receiver operating characteristic (ROC) curves were generated. Nine differential 
metabolites were used to discriminate ALS patients from healthy subjects. The area under the curve (AUC) of 
the ROC curve was 0.952 (95% confidence interval [CI] 0.895–1.000; p < 0.001 (Fig. 4A). As mentioned above, 
2,4,6-tri-tert-butylbenzenethiol, beta-alanine, glycine, and ethanolamine were the common differential metabo-
lites in the ALS, fast-progression ALS, and slow-progression ALS groups. Then, these four differential metabo-
lites were used to discriminate ALS from CTRL. ROC analysis was used to discriminate ALS patients from 
the CTRL group with an AUC of 0.898 (95% CI 0.802–0.995; p < 0.001) (Fig. 4B). Maltose, phosphoric acid, 
tryptophan, and pyruvic acid were identified as differential metabolites only in the fast-progression ALS group, 
whereas glyceric acid, beta-alanine, lactic acid, and hypoxanthine were specific differential metabolites in the 
slow-progression ALS group (Fig. 2D). ROC analysis showed that maltose, phosphoric acid, tryptophan, and 
pyruvic acid discriminated patients in the fast-progression ALS group from the CTRL group with an AUC of 
0.802 (95% CI 0.616–0.987; p = 0.017) (Fig. 4C), whereas the slow-progression ALS and CTRL groups were sepa-
rated by glyceric acid, beta-alanine, lactic acid, and hypoxanthine with an AUC of 0.826 (95% CI 0.650–1.000, 
p = 0.009) (Fig. 4D).

Discussion
In this study, we identified differential metabolites and metabolic pathways between ALS patients and healthy 
subjects. Non-targeted metabolomic analysis of serum samples using GC/MS detected 75 metabolites. Multi-
variate analysis showed that the metabolite levels between ALS patients and the CTRL group were significantly 
different. Further analysis revealed that the metabolite levels and metabolic pathways were markedly altered in 
ALS patients with different rates of progression.

Table 2.  Differential metabolites in ALS patients versus healthy subjects.

Metabolites Mass-to-charge ratio Retention time (min) VIP value Fold change p value q-value

ALS versus CTRL

Glycine 174.1 10.148 2.133 0.584 < 0.001 < 0.001

Monomethyl phosphate 241.000 8.281 2.116 0.804 < 0.001 0.006

2,4,6-Tri-tert-butylbenzenethiol 263.100 13.202 1.837 1.163 < 0.001 0.005

Ethanolamine 174.072 9.575 1.835 0.796 < 0.001 0.005

Glutamic acid 246.100 14.117 1.773 0.624 < 0.001 0.005

Phosphoric acid 299.074 9.715 1.658 0.925 0.006 0.073

Beta-alanine 174.094 11.747 1.528 0.745 0.011 0.114

Maltose 361.075 24.220 1.449 0.470 0.021 0.164

Lactic acid 117.022 6.452 1.371 0.821 0.024 0.164

Alpha-tocopherol 237.094 27.392 1.249 0.788 0.017 0.161

Glyceric acid 189.016 10.506 1.141 0.850 0.024 0.164

Fast-progression ALS versus CTRL

Glycine 174.100 10.100 2.632 1.660 < 0.001 0.019

Maltose 361.200 24.200 2.456 3.090 < 0.001 0.020

Phosphoric acid 299.100 9.700 2.442 1.120 < 0.001 0.020

Monomethyl phosphate 241.000 8.281 2.151 1.260 0.004 0.072

Glutamic acid 246.100 14.100 1.911 1.480 0.011 0.170

Tryptophan 202.098 3.368 1.714 0.842 0.025 0.307

2,4,6-Tri-tert-butylbenzenethiol 263.160 13.200 1.645 0.906 0.031 0.312

Alpha-tocopherol 237.094 3.952 1.629 1.280 0.033 0.312

Ethanolamine 174.100 9.600 1.592 1.170 0.038 0.315

Pyruvic acid 173.991 2.900 1.518 1.490 0.048 0.331

Slow-progression ALS versus CTRL

Glycine 174.100 10.100 2.576 1.760 < 0.001 0.002

Ethanolamine 174.072 9.575 2.531 1.350 < 0.001 0.002

Glutamic acid 246.100 14.100 2.523 1.730 < 0.001 0.002

2,4,6-Tri-tert-butylbenzenethiol 263.100 13.202 2.495 0.814 < 0.001 0.002

Glyceric acid 189.016 10.506 1.968 1.280 0.004 0.057

Beta-alanine 174.094 11.747 1.889 1.490 0.006 0.071

Monomethyl phosphate 241.000 8.281 1.769 1.230 0.01 0.109

Lactic acid 117.022 6.452 1.68 1.300 0.015 0.142

Alpha-tocopherol 237.094 3.952 1.542 1.260 0.027 0.224

Hypoxanthine 265.000 16.181 1.435 1.520 0.04 0.303
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Figure 2.  Heatmap visualization of differential serum metabolites and metabolic pathways. (A–C) Heatmap 
visualization of (A) ALS versus CTRL, (B) Fast-progression ALS versus CTRL, and (C) Slow-progression 
ALS versus CTRL. (D) Differential metabolites in the three comparison groups. (E–G) The altered metabolic 
pathways in the (E) ALS, (F) fast-progression ALS, and (G) slow-progression ALS groups compared with the 
CTRL group. (H) Differential metabolic pathways in the fast- and slow-progression ALS groups.
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Plasma samples have been widely used to identify differential metabolites and metabolic  pathways26,27. Cie-
slarova et al.27 measured the plasma levels of homocysteine, cysteine, methionine, and glutamic acid in ALS 
patients using capillary electrophoresis tandem MS, and found that glutamic acid and homocysteine might be 
potential biomarkers for ALS. Lawton et al.26 found that the plasma concentrations of 23 metabolites were signifi-
cantly changed in ALS patients as well as the associated pathways including neural, hypermetabolism, oxidative 
damage, and mitochondrial dysfunction. Compared with plasma samples, blood has less effects on the analyte 
peak areas of serum specimens; therefore, serum is a better choice for metabolomic  analysis28. In this study, we 

Figure 3.  The analysis of each differential metabolites among ALS, ALS subgroups and CTRL. (A–N) The 
AVONVA analysis was used to compare each metabolite among ALS, CTRL, Fast-progression ALS and Slow-
progression ALS; The Student’s t-test was used to compare each metabolite between the ALS and CTRL, Fast-
progression ALS and CTRL, Slow-progression ALS and CTRL respectively. *p < 0.05; **p < 0.01.
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found that maltose, glyceric acid, lactic acid, beta-alanine, phosphoric acid, glutamic acid, ethanolamine, glycine, 
and 2,4,6-tri-tert-butylbenzenethiol were differential metabolites in ALS. All were upregulated in ALS patients, 
with the exception of 2,4,6-tri-tert-butylbenzenethiol.

Glutamic acid is an excitatory amino acid that is considered a key pathophysiological factor responsible for 
motor neuronal death in  ALS29. Riluzole is an approved ALS drug that inhibits sodium currents and the release 
of glutamic acid, and prolongs the median survival of ALS patients from 11.8 to 14.8  months1. A study including 
4571 patients and 45,411 observations with 13 months of follow-up showed that riluzole delayed the progression 
of ALS in patients at Milano-Torino stage 1 and King’s stages 1 and  49. However, glutamatergic transmission is 
a complicated process involving reuptake and resynthesis of extracellular glutamate and regulation of the firing 
threshold of a single  neuron30. Under physiological conditions, glutamate is released from presynaptic neurons 
into the synaptic cleft, while neurons and astrocytes maintain the homeostasis of  glutamate31. When the balance 
is disrupted, motor neurons may die from glutamate-induced  excitotoxicity32. In this study, we found that the 
serum level of glutamic acid was increased in ALS patients, suggesting that upregulated glutamic acid might 
induce excitotoxicity in motor neurons and ultimately lead to neuronal death. ALS patients also showed signifi-
cantly altered levels of maltose, glyceric acid, lactic acid, beta-alanine, phosphoric acid, ethanolamine, glycine, 
and 2,4,6-tri-tert-butylbenzenethiol in the serum. The effects of these metabolites in ALS remain to be explored. 
Furthermore, beta-alanine metabolism, glycine serine and threonine metabolism, alanine aspartate and glutamate 
metabolism, pyruvate metabolism, and D-glutamine and D-glutamate metabolism were the altered metabolic 
pathways in patients with ALS (Fig. 2B).

Figure 4.  ROC curves of differential metabolites in the discrimination of ALS, fast-progression ALS, and slow-
progression ALS patients.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20786  | https://doi.org/10.1038/s41598-021-00312-8

www.nature.com/scientificreports/

It remains unknown why ALS patients show different rates of progression after onset. Meanwhile, accurately 
predicting ALS progression in the early stages remains a major clinical challenge. ALSFRS-r is widely used to 
evaluate the progression of ALS in the  clinic33. Our results revealed that there were 10 differential metabolites 
in the fast-progression ALS group and another 10 differential metabolites in the slow-progression ALS group 
compared with the CTRL group (Table 2). By excluding the same differential metabolites in the two subgroups, 
we found that the levels of maltose, phosphoric acid, tryptophan acid, and pyruvic acid were significantly altered 
in fast-progression ALS patients, whereas glyceric acid, beta-alanine, lactic acid, and hypoxanthine were the 
altered differential metabolites in the slow-progression ALS group. These results suggest that ALS patients with 
different progression rates have differential metabolites and metabolic pathways. We further identified differential 
metabolic pathways in the two subgroups, and found that tryptophan metabolism was significantly changed in 
the fast-progression ALS group, while beta-alanine metabolism was specifically changed in the slow-progression 
ALS group.

Our results showed that tryptophan was downregulated and tryptophan metabolism was altered in the 
fast-progression ALS group. Tryptophan is one of the essential amino acids for humans and is predominately 
converted by intestinal microorganisms and metabolized into indole and its derivatives. Altered tryptophan 
metabolism is implicated in inflammatory bowel disease and irritable bowel  syndrome34. Tryptophan and its 
degradation product kynurenine can pass through the highly selective blood–brain barrier, acting on neuro-
transmitters through glutamate receptors, and thus regulating the extracellular level of  glutamate35. Some stud-
ies have suggested that tryptophan is associated with anxiety and  depression36,37. Rothhammer et al.38 reported 
that metabolites derived from dietary tryptophan by gut flora activates aryl hydrocarbon receptor signaling and 
inhibits inflammation in the central nervous system in multiple sclerosis. Abnormal tryptophan metabolism 
may be related to the occurrence and development of ALS patients with fast progression. Our future studies will 
focus on exploring the tryptophan metabolic pathway and determining whether tryptophan dietary supplements 
can delay the progress of ALS.

In this study, we tried to discriminate ALS patients from the CTRL group using differential metabolites. ROC 
analysis revealed that ALS patients could be discriminated from CTRL by nine differential metabolites (Fig. 4A). 
2,4,6-Tri-tert-butylbenzenethiol, beta-alanine, glycine, and ethanolamine are the co-differential metabolites in 
the ALS, fast-progression ALS, and slow-progression ALS groups. They discriminated ALS patients from the 
CTRL group with an AUC of 0.898 (Fig. 4B), suggesting that these metabolites might be potential diagnostic 
biomarkers for ALS.

In conclusion, we identified differential serum metabolites and metabolic pathways in ALS patients based on 
non-target GC/MS. First, we found that the metabolites in ALS versus CTRL, fast-progression ALS versus CTRL 
and slow-progression ALS versus CTRL were clearly discriminated. Second, ROC analysis indicated that four 
differential metabolites, which were identified in all ALS patients, might be potential diagnostic biomarkers for 
ALS. Third, ALS patients with different progression rates showed differential metabolites and metabolic pathways. 
Tryptophan metabolism was only changed in fast-progression ALS patients, while beta-alanine metabolism was 
specifically changed in the slow-progression ALS group.

Limited by the lower incidence rate of ALS and the constrains of experimental funding, our study has been 
carried out with a small sample. In our study, we have put on stringent inclusion criteria of ALS in order to reduce 
the clinical heterogeneity. In the situation of lower incidence rate and stringent inclusion criteria of ALS, our 
results were also credible. In the further, more studies with a larger sample size are strongly needed to validate 
these findings.

Materials and methods
Participants. Twenty-three ALS patients were recruited from the Neurology Department of the First Affili-
ated Hospital of Xi’an Jiaotong University (Xi’an, China) at their first diagnosis. ALS patients were strictly diag-
nosed by at least two experienced neurologists according to the revised El Escorial criteria. Only the ALS patients 
with the diagnostic grades of clinically definite (defined on clinical evidence alone by the presence of UMN and 
LMN signs in at least three regions) were include in the study  cohort39.The medical records of all ALS patients 
were obtained including accompanying signs and symptoms, neuropathological signs, laboratory examination 
results including levels of low-density  lipoprotein (LDL), triglyceride (TG), total cholesterol (TCHO), serum 
creatinine, uric acid, urea nitrogen, albumin and creatine kinase, pulmonary function test results, electromyo-
gram (EMG) results, and the revised ALS functional rating scale (ALSFRS-r) scores. Most recruited patients 
were treated with riluzole or edaravone after diagnosis. To eliminate the effects of treatments on results, the 
rate of progression (Δr) at initial visit was calculated by dividing the ALSFRS-r total score by symptom dura-
tion (months)40. A control group (CTRL) consisting of 25 age- and gender-matched healthy volunteers without 
any nervous system diseases was also included. This study was approved by the Ethics Committee of the First 
Affiliated Hospital of Xi’an Jiaotong University. We confirmed that all participants had provided signed informed 
consent. We confirmed that this study was performed in accordance with relevant guidelines and regulations.

Serum sample collection. Peripheral venous blood (3  mL) was obtained from all participants in the 
morning and then centrifuged at 3000 rpm for 15 min. A volume of 0.3 mL supernatant was collected and stored 
at − 80 °C until use. Each serum sample (100 µL) was thawed at 4 °C, transferred into a 1.5 mL centrifuge tube, 
and then added to 400 µL pre-chilled methanol. After 1 min of vortex mixing, 60 µL of 2-chloro-L phenylalanine 
(0.2 mg/mL stock in methanol) and 60 µL heptadecanoic acid (0.2 mg/mL stock solution) were added to each 
sample as internal quantitative standards, and vortexed for an additional 1 min. The mixed-serum samples were 
centrifuged for 10 min at 12,000 rpm at 4 °C, and then the supernatant was transferred to a 1.5 mL centrifuge 
tube. Samples were vacuum dried, followed by treatment with 60 µL of 15 mg/mL methoxyamine pyridine solu-
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tion for 120 min at 37 °C. Then, 60 µL BSTFA reagent (containing 1% TMCS) was added to each sample and 
incubated for 90 min at 37 °C. Finally, the mixture was centrifuged at 12,000 rpm for 10 min at 4 °C, and the 
supernatant was collected.

GC/MS metabolomic assay, quality control, and extraction. Gas chromatography (Agilent 7890A; 
Agilent Technologies, Santa Clara, CA, USA) was performed on an HP-5 ms GC column (5% phenyl/95% meth-
ylpolysiloxane, 30 m × 250 µm i.d., 0.25 µm film thickness; Agilent J & W Scientific, Folsom, CA, USA) at a con-
stant flow rate of 1 mL/min helium. A volume of 1 µL sample was injected in split mode (split ratio 20:1) using 
an autosampler. The injection temperature was 280 °C. The interface was set to 150 °C and the ion source was 
adjusted to 230 °C. In this program, the temperature was initially at 60 °C (2 min), increased to 300 at a rate of 
10 °C /min, and maintained at 300 °C for 5 min. MS (Agilent 5975C) was performed using the full-scan method 
from 35 to 750 (m/z). For quality control (QC), 20 µL of each sample was extracted and mixed. These QC sam-
ples were used to monitor deviations of the analytical results from the pool mixtures, and compare them to the 
errors caused by the analytical instrument itself. The remaining samples were analyzed by GC/MS. The raw GC/
MS data were converted to the netCDF format (XCMS input file format)41 using G1701 MSD ChemStation soft-
ware (E. 02.00.493). The XCMS package in R software (v3.3.2) was used for peak identification, peak filtration, 
and peak alignment. The parameters were as follows: fwhm = 3, snthresh = 0, mzdiff = 0.5, profmethod = “binlin”, 
bw = 2, minfrac = 0.3. A data matrix including the mass-to-charge ratio (m/z), retention time, and intensity was 
generated. Metabolites were characterized by AMDIS software according to the National Institute of Standards 
and Technology, Wiley Registry metabolomics database, and the Golm Metabolome Database, and were then 
confirmed by standards.

Statistical analysis. Data are expressed as the mean ± standard deviation (SD) for continuous variables 
and as a number (percentage) for categorical variables. The difference in age, body mass index (BMI), and labo-
ratory examination results between ALS patients and CTRL were analyzed by the Student’s t-test using SPSS 
version 20.0 (IBM, Armonk, NY, USA). Before analysis, metabolomic data were normalized and scaled to unit 
variance. Multivariate data analysis was performed using SIMCA-P (v13.0) and R software. The orthogonal 
projections to latent structures discriminant analysis (OPLS-DA) model was used to characterize serum meta-
bolic disturbance. The Student’s t-test was used to compare each metabolite between the ALS and CTRL groups. 
The AVONVA analysis was used to compare each metabolite among ALS, CTRL, Fast-progression ALS and 
Slow-progression ALS. The heatmap and hierarchical clustering were generated using the pheatmap package 
in R software (v3.3.2). Kyoto Encyclopedia of Genes and Genomes and MetaboAnalyst were used to identify 
metabolic pathways. The sensitivity and specificity of the diagnosis and progression of ALS with different groups 
of differential metabolites were analysis by multivariate ROC curve analysis in SPSS: different combinations 
of metabolites were performed by Binary logistic regression analysis, and then the probabilities value was got; 
the obtained probabilities value was used as the test variables to carry out the ROC curve analysis. p < 0.05 was 
considered statistically significant.

Data availability
The data that supported our new findings would be acquired after author’s permission.
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