
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20684  | https://doi.org/10.1038/s41598-021-00216-7

www.nature.com/scientificreports

Arginine metabolism and nitric 
oxide turnover in the ZSF1 
animal model for heart failure 
with preserved ejection fraction
Petra Büttner  1*, Sarah Werner1, Svetlana Baskal2, Dimitrios Tsikas2, Volker Adams3, 
Philipp Lurz1, Christian Besler1, Sarah Knauth1, Martin Bahls4,5, Edzard Schwedhelm6,7,8 & 
Holger Thiele1,8

Endothelial dysfunction and altered nitric oxide (NO) metabolism are considered causal factors 
in heart failure with preserved ejection fraction (HFpEF). NO synthase activity depends on the 
availability of arginine and its derivatives. Thus, we analyzed arginine, associated metabolites, 
arginine-metabolizing enzymes and NO turnover in 20-week-old female healthy lean (L-ZSF1) and 
obese ZSF1 rats (O-ZSF1) with HFpEF. Serum, urine and lysates of liver, kidney and heart were 
analyzed. There were significantly lower lysine (− 28%), arginine (− 31%), homoarginine (− 72%) and 
nitrite (− 32%) levels in serum of O-ZSF1 rats. Ornithine (+ 60%) and citrulline (+ 20%) levels were 
higher. Similar results were found in the heart. Expression of arginine consuming enzymes in liver and 
kidney was unchanged. Instead, we observed a 5.8-fold higher arginase 1 expression, presumably 
of granulocyte origin, in serum and > fourfold increased cardiac macrophage invasion in O-ZSF1. We 
conclude that inflammatory cells in blood and heart consume arginine and probably homoarginine 
via arginase 1 and inducible NO synthase and release ornithine and citrulline. In combination with 
evidence for decreased NO turnover in O-ZSF1 rats, we assume lower arginine bioavailability to 
endothelial NO synthase.

Heart failure with preserved ejection fraction (HFpEF) is associated with high morbidity and mortality1. While 
heart failure with reduced ejection fraction (HFrEF) is characterised by the inability of the myocardium to 
contract and eject properly, systolic function in HFpEF is preserved but a diastolic dysfunction is present. Both, 
HFpEF and HFrEF patients usually suffer from dyspnoea and exercise intolerance. Myocardial remodelling in 
HFpEF is characterized by increased vascular and left ventricular (LV) stiffness with impaired relaxation and 
endothelial dysfunction1.

There are different therapeutic treatments accessible for patients with HFrEF, yet these treatments are not 
effective in HFpEF. So far there are no evidence-based therapies for HFpEF available2. An explanation for this 
is that underpinning pathomechanisms of HFpEF differ from those in HFrEF. Indeed, LV arterial stiffness and 
endothelial dysfunction may be important for HFpEF pathogenesis3. Both conditions are associated with an 
imbalance of nitric oxide (NO) metabolism. NO synthases (NOS) are sensitive to the availability of the substrates 
L-arginine (Arg) and L-homoarginine (hArg) and inhibitors, notably asymmetric dimethylarginine (ADMA)4. 
ADMA was found to be associated with worse outcome in cardiovascular syndromes with suspected NO imbal-
ance, and in HFrEF low hArg concentrations were found to be independently associated with mortality5. In 
general, high ADMA blood concentrations are associated with cardio-vascular morbidity and mortality in hyper-
tension, coronary artery disease, and peripheral arterial disease6. Low Arg and high ADMA blood concentrations 
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were found to be associated with typical pathophysiological alterations of the heart in HFpEF, e.g., left atrial 
volume index and average e’3.

As human tissue is limited, the underlying mechanisms of the observed imbalance in the Arg/NO pathway 
are elusive. This obstacle can be resolved by using animal models. Several HFpEF animal models are currently 
discussed, yet only few fulfill all required criteria of this disease7. Obese ZSF1 (O-ZSF1) rats, a F1 hybrid cross 
breed from male spontaneous hypertensive rats and female Zucker diabetes rats, spontaneously develop hyper-
tension, hyperlipidaemia, glucose intolerance, and exercise intolerance8 resulting in a HFpEF phenotype. Hence, 
these animals offer the possibility to study underpinning pathomechanisms of HFpEF.

In this study, we measured metabolites of the Arg/NO pathway in blood serum and urine of O-ZSF1 rats using 
previously validated liquid chromatography-tandem mass spectrometry (LC–MS/MS) and gas chromatography-
mass spectrometry (GC–MS) approaches. We also determined the gene- and protein-expression of key enzymes 
of Arg metabolism in several organs using quantitative Realtime-polymerase chain reaction (PCR) and Western 
Blot analysis. Lean ZSF1 (L-ZSF1) rats served as control group as they do not develop cardiovascular risk condi-
tions and thus no HFpEF phenotype.

Materials and methods
HFpEF animal model.  All experiments and procedures were performed in accordance with ARRIVE 
guidelines and relevant animal welfare guidelines and regulations and were approved by the local Animal 
Research Council, University of Leipzig and the Landesbehörde Sachsen (TVV 30/18).

ZSF1 hybrid rats crossed between a Zucker diabetes fatty female and a spontaneous hypertensive heart 
failure male rat were used as animal model (ZSF1-Leprfa Leprcp/Crl, Charles River, Indianapolis, USA). Female 
O-ZSF1 rats (n = 12) rats at 20 weeks of age were compared with female L-ZSF1 rats (n = 12). All animals were 
kept at identical conditions under a 12:12 h light/dark cycle with food and water provided ad libitum. Standard 
chow rich in energy and protein content was delivered by Ssniff (Soest, Germany). Body weight and food intake 
were recorded every week. Non-invasive echocardiography (Vivid-J, GE Healthcare, Chicago, USA) was used 
to confirm the presence of HFpEF. For final testing deep anaesthesia was achieved by intraperitoneal injection 
of 5 mg/kg Xylazin hydrochloride, 100 mg/kg ketamine hydrochloride and 0.1 mg/kg atropine sulfate, based on 
the individual body weight. Animals were sacrificed by exsanguination.

Sample processing.  Heart, kidney and liver were weighted before further processing. A standardized sam-
ple collection routine was used with a prioritization of blood and heart. The heart was cut into base and middle 
section for histological analysis. The remaining tissue was separated into the left ventricle (LV), septum and 
right ventricle (RV). One kidney was harvested in total, parts of liver, diaphragm, and cerebrum were collected. 
Samples of colon and small intestine that were located next to caecum were collected. Tibia was prepared and 
length was measured. All organs and tissues were immediately snap-frozen in liquid N2 and stored at − 80 °C 
until further use. Frozen samples were pulverised and used for RNA and protein analysis. RNA isolation using 
up to 30 mg of tissue was done with the RNeasy Kit and QIAShredder (Qiagen, Hilden, Germany) according 
to the manufacturer’s recommendation. RNA concentration was photometrical determined and 250 or 500 ng 
specimens were reverse transcribed using Omniscript RT kit with poly dT Primer (Qiagen, Hilden, Germany). 
For protein analysis 10–20 mg of frozen sample were homogenized in RIPA buffer (10 mM Tris–HCl, pH 8.0, 
1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140 mM NaCl) containing 
a protease and a phosphatase inhibitor mix (Serva, Heidelberg, Germany) and sonicated. Protein concentration 
was determined using the BCA method (bicinchoninic acid assay, Pierce, Bonn, Germany).

Determination of Arg, Arg metabolites, nitrite, nitrate, NT‑proBNP, arginase 1 and glu-
cose.  Established and validated protocols for LC–MS/MS were used to assess serum Arg, ADMA, symmetric 
dimethylarginine (SDMA) and hArg concentrations9–11 (see supplementary materials and methods). Briefly, 25 
μL of serum were diluted in methanol that contained the stable isotope labeled internal standards. Thereafter, the 
analytes were converted into their butyl esters. Analyte concentrations were calculated using calibration curves 
based on four levels in triplicates. Plate wise quality controls were run in two levels by triplicates. A second 
analysis was done on the samples to assess coefficient of variation and bias of quality control samples, which was 
below 15% for all analytes.

Nitrite, nitrate, i.e., the major NO metabolites, creatinine and malondialdehyde (MDA) were measured 
simultaneously in serum and urine samples by GC–MS using stable-isotope labelled analogs as their internal 
standards12. Arg, hArg and other amino acids in urine were measured by GC–MS13. Dimethylamine (DMA), 
the major metabolite of ADMA was measured by GC–MS14. The excretion of nitrite and nitrate was corrected 
for creatinine excretion and is expressed as µM nitrite or nitrate to mM creatinine (µM/mM).

N-terminal pro Brain Natriuretic Peptide (NT-proBNP) was determined using an ELISA assay according 
to the manufacturer’s recommendations (abx576280, Hölzel Diagnostika, Cologne, Germany). Arginase 1 was 
determined in serum using an ELISA assay according to the manufacturer’s recommendations (SEB120Ra, Hölzel 
Diagnostika, Cologne, Germany). Blood glucose from non-fasted animals was determined using Contour XT 
with single use strips (Ascensia, Basel, Switzerland).

Quantitative realtime‑PCR.  Data on gene expression profiles of enzymes processing Arg in rat organs are 
limited. Therefore, we first characterized the gene expression profiles in liver, kidney, heart, brain, diaphragm, 
small intestine and colon of three O-ZSF1 and three L-ZSF1 (Supplementary Fig. 1). Gene expression was deter-
mined using Takyon NoRox Sybr Mastermix Blue (Eurogentec, Lüttich, Belgium) according to the manufac-
turer’s recommendations on a BioRad CFX system (BioRad, Hercules, USA). Primers were designed to bind in 
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different exons or to span a splicing site (see supplemental Table 1 for sequences). The annealing temperature 
was 60 °C. Standard curves were used for calculation of copy numbers and determination of reaction efficiency. 
Triplicate measurements were done and samples with standard deviation > 0.250 units were excluded from fur-
ther analysis. Hypoxanthine phosphoribosyltransferase 1 (Hprt1) and TATA box binding protein (Tbp) were 
tested as housekeeping genes. Hprt1 was more stable and was further used for expression normalization of the 
target genes.

Western blot analyses.  Overall, 10–50 μg of proteins were separated on 10% SDS–polyacrylamide gels. 
Proteins were transferred to a polyvinylidene fluoride membrane and incubated overnight at 4  °C with the 
primary antibodies (see supplementary Table  2). Membranes were subsequently incubated with a horserad-
ish peroxidase-conjugated secondary antibody and specific bands visualized by enzymatic chemiluminescence 
(Super Signal West Pico, Thermo Fisher Scientific Inc., Bonn, Germany) and densitometry quantified using a 
1D scan software package (Vision-Capt, Vilber Lourmat, Eberhardzell, Germany). We measured the amounts 
of arginase 1, arginase 2, glycine amidinotransferase (GATM, AGAT), dimethylarginine dimethylaminohydro-
lase 1 (DDAH1) and alanine-glyoxylate aminotransferase 2 (AGXT2) (supplementary Table 3,—supplementary 
summary Fig. 2, single raw files—supplementary Figs. 6–16). Protein expression was normalized to glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) (kidney, heart) or alpha tubulin (liver).

Histological characterization of heart and visualization of NO synthesis in sections of the aor-
tic root.  Middle sections of the heart were fixed in 4% paraformaldehyde following section. Material was 
embedded in paraffin and cut into 4-µm sections, which were then stained for macrophages (CD68 antibody / 
MCA341R, BioRad, Hercules, USA), or granulocytes (HIS48, ab33760, Abcam, Cambridge, Great Britain). A 
counterstaining with hematoxylin was done to visualize the tissue structure. Positive cells were counted manu-
ally in one complete section per animal.

Heart base was covered with Tissue-Tek® O.C.T.™ Compound (Sakura, Staufen, Germany) in cryomolds 
and immediately snap frozen. Cryosections of 16-µm thickness were prepared and stored frozen until analysis. 
Sections with a good view on the aortic root were chosen for the analysis. As the signal intensities showed vari-
ances between differed setups we processed and analyzed a pair of L-ZSF1 and O-ZSF1 simultaneously using 
the same reagents and the same image processing. We adapted published protocols for the use of molecular 
probes for the visualization of NO synthesis in tissue cross sections15,16. Sections were dried for 10 min before 
5 µM 4-Amino-5-Methylamino-2’,7’-Difluorofluorescein (DAF-FM) (D23844, Molecular probes Thermo Fisher 
Scientific, Germany) in phosphate buffered saline (PBS) was added. Sections were incubated for 1 h at 37 °C in 
the dark. Then, sections were rinsed twice in PBS, covered in ROTI®Mount FluorCare (Carl-Roth, Germany), 
and immediately analyzed using a Keyence BZ-X810 microscope (Keyence, Japan). As negative control, sec-
tions were pre-incubated with the NOS antagonist NG-nitroarginine methyl ester (L-NAME) (200 µM in PBS) 
for 30 min at 37 °C. Then, DAF-FM mix including L-NAME at the mentioned concentrations was added. Cell 
nuclei were stained in all sections using HOECHST 33,342, which was added to DAF-FM solution. DAF-FM 
signal was analyzed in FITC channel at the same signal intensities for every pair. Overviews of the aorta were 
prepared with 20-fold magnification (see supplementary Fig. 3). Image-J17 was used for image analysis. The aorta 
was completely marked using the polygon selection tool and the measure tool was used to determine the signal 

Table 1.   Characteristics of O-ZSF1 and L-ZSF1 at 20 weeks of age. LV-EF—left ventricular ejection fraction, 
E/e’—ratio of mitral peak velocity of early filling (E) to early diastolic mitral annular velocity (E’), bpm—beats 
per minute, LV—left ventricle, RV—right ventricle, NT-proBNP—N terminal B natriuretic peptide. Mean and 
standard deviation are given. P-value was calculated using Mann–Whitney-U-Test. Histological measurements 
are given in arbitrary units.

L-ZSF1 O-ZSF1 p-value

Food intake (g/d) 15 ± 1.3 23 ± 1.5  < 0.0001

Body weight (g) 235 ± 9 468 ± 24  < 0.0001

Heart weight (g) 0.93 ± 0.05 1.38 ± 0.07  < 0.0001

Kidney weight (g) 0.95 ± 0.06 1.54 ± 0.11  < 0.0001

Liver weight (g) 7.20 ± 0.64 18.16 ± 1.9  < 0.0001

Tibia length (mm) 37.1 ± 1.0 37 ± 0.5 0.642

NT-proBNP (pg/ml) 895 ± 371 1200 ± 338 0.047

Glucose (mmol/L) 22.4 ± 3.1 31.2 ± 1.3  < 0.0001

LV-EF (%) 55 ± 12 63 ± 15 0.140

E/e ‘ 15.0 ± 2.8 21.7 ± 3.6  < 0.001

Heart rate (bpm) 216 ± 18 214 ± 17 0.812

Heart circumference 106 ± 3 111 ± 4 0.014

LV thickness 10 ± 1.5 12 ± 1.4 0.067

Septum thickness 7.7 ± 1.2 8.9 ± 1.2 0.044

RV thickness 3.6 ± 0.5 3.3 ± 0.5 0.160
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intensities. Median signal intensities of every pair was normalized to one and all analyzed samples were then 
finally compared group-wise using non-parametric, two sided t-test.

Statistics and visualization.  Data are reported as means ± standard deviation. Group-wise comparisons 
were done using Mann–Whitney U test or Kruskal Wallis test. A false discovery rate correction was applied for 
serial measurements from one sample. Gene expression data and Western Blot data were screened for values 
above or below three standard deviation (SD) units in a SD analysis. No value in Western Blot analysis but seven 
values in gene expression analysis were excluded from further analysis. Figures were prepared using GraphPad 
Prism 8 (GraphPad Software, San Diego, USA) or GIMP 2.10.14 (open source software, GIMP team, www.​gimp.​
org).

Results
HFpEF rats and controls.  O-ZSF1 rats had a 50% higher food intake than L-ZSF1. At sacrifice at an age of 
20 weeks, O-ZSF1 had significantly higher body weights as well as heavier hearts, livers and kidneys (p < 0.0001 
for all, respectively), while their tibia lengths were comparable with those of L-ZSF1 (Table 1). We observed 
increased NT-proBNP (1.3-fold, p = 0.047), glucose (1.4-fold, p < 0.0001), E/e’ (1.4-fold, p < 0.001) and systolic 
blood pressure (1.2-fold, p < 0.001) in O-ZSF1 rats. LV ejection fraction (LV-EF), heart rate and diastolic blood 
pressure were comparable (Table 1). In histological analyses, we found that the heart circumference (p = 0.014), 
as well as septum thickness (p = 0.044) and by trend LV thickness (p = 0.067) were about 10% higher in the 
O-ZSF1 animals, while RV thickness was comparable in both groups.

Arg derivatives in serum, urine, LV, kidney and liver.  Metabolites of Arg-involving pathways were 
measured in serum, urine, LV, kidney and liver of 20-weeks old female ZSF1 rats (Table 2).

In O-ZSF1, serum lysine (Lys), Arg and hArg concentrations were significantly lower (by at least 28%, all 
p < 0.05) compared to those of L-ZSF1 (Supplementary Fig. 4). The serum concentrations of ADMA and SDMA 
were comparable in both groups. The highest difference (more than threefold) between the groups was observed 
for serum hArg concentrations. In urine, where all measurements were creatinine-corrected, hArg concentration 
by trend was lower in O-ZSF1 while all other amino acids including DMA were comparable in both groups.

In kidney homogenates no differences between the experimental groups were observed for any analyzed 
amino acid. In liver homogenates of O-ZSF1 Ornithine (Orn) and hArg were significantly lower compared to 
L-ZSF1 (Supplementary Fig. 5) while concentrations of the other amino acids were comparable. In LV homogen-
ates Lys, hArg and SDMA were lower in O-ZSF1. Orn was only detected in LV homogenate of one L-ZSF1 and 
in LV homogenate of three O-ZSF1. All other analyzed amino acids were unchanged.

Gene expression of enzymes processing Arg and its derivatives.  We prepared a gene expression 
profile of Arg consuming enzymes in ZSF1 rat organs (Supplementary Fig. 1). Arg1, coding for arginase 1, had 
the highest gene expression in liver, moderate expression in kidney and weak expression in the other organs. 
In kidney, we detected the highest gene expression of Arg2 (coding for arginase 2), Gatm, Ddah1, Ddah2, and 
Agxt2. While Agxt2 was also highly expressed in liver, its gene expression in other organs was low. In heart, we 
detected only moderate to weak gene expression of all analyzed enzymes.

Gene expression was then determined in all samples from liver and kidney (as these organs showed reasonable 
expression levels) and in heart due to its central role in HFpEF (Fig. 1). In kidney, Ddah1 expression was lower 
in L-ZSF1 compared to O-ZSF1 (0.81 ± 0.22 vs. 1.11 ± 0.09, p = 0.012). Renal Agxt2 expression was also lower in 
L-ZSF1 compared to O-ZSF1 (0.72 ± 0.25 vs. 1.23 ± 0.2, p = 0.001). In contrast, renal Arg2 expression was higher 
in L-ZSF1 compared to O-ZSF1 (1.33 ± 0.39 vs. 0.85 ± 0.17, p = 0.03). In the liver, Agxt2 expression was also lower 
in L-ZSF1 compared to O-ZSF1 (0.80 ± 0.19 vs. 1.23 ± 0.35, p = 0.01). In the heart, Arg1 expression was lower 
in L-ZSF1 compared to O-ZSF1 (0.66 ± 0.58 vs. 1.32 ± 0.53, p = 0.05) (Fig. 1). Argininosuccinate lyase 1 (coded 
by Asl1) and inducible NO synthase (coded by Nos2) expression was comparable in all tissues in both groups.

Protein expression of enzymes processing Arg and its metabolites in kidney, liver and 
heart.  We performed Western Blot analysis for all enzymes with differential gene-expression in either liver, 
kidney or heart and we included GATM due to its relevance in Arg metabolism, i.e., the conversion of Arg to 
guanidinoacetate or hArg. We first compared the exposure time that was necessary to get a representative signal 
that was suited to evaluate the protein quantity of each enzyme (see Supplementary Table 3). Only proteins with 
signals acquired in less than 10 min were evaluated. For normalization of protein content, we determined alpha 
tubulin and GAPDH (Supplementary Fig. 2). We observed significant regulation of GAPDH in liver (> 50% 
upregulated in O-ZSF1, p < 0.0001) and of alpha tubulin in kidney (> 20% upregulated in O-ZSF1, p < 0.05) and 
heart (> 50% upregulated in O-ZSF1, p < 0.0001). Thus, we further normalized the protein expression in liver to 
alpha tubulin content and in heart as well as kidney to GAPDH.

Arginase 2 and GATM were only detected in kidney (Fig. 2). GATM expression was comparable in both 
experimental groups. Arginase 2 by trend was higher in kidneys of L-ZSF1 compared to O-ZSF1 (1.3 ± 0.37 vs. 
0.81 ± 0.33, p = 0.07). Arginase 1 was only detected in liver, where it was significantly higher in L-ZSF1 compared 
to O-ZSF1 (1.64 ± 0.54 vs. 0.65 ± 0.12, p < 0.0001) (Fig. 2). DDAH1 was detected in all three organs without group 
differences. AGTX2 was detected in liver and kidney without group differences, but was undetectable in the heart.

Arginase 1 concentrations in blood.  We measured arginase 1 concentration in serum using an ELISA 
assay. Two O-ZSF1 had arginase 1 concentrations of 1,218 and 1,358 ng/ml, whereas these values differed by 
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more than 10 SD from the mean of the other ten O-ZSF1. When excluding these two animals from further analy-
sis the serum arginase 1 concentrations were still significantly higher in O-ZSF1 (101 ± 112 ng/ml) compared to 
L-ZSF1 (17.5 ± 11.9 ng/ml, p = 0.018) (Fig. 3). Nine O-ZSF1 rats had comparable mean arginase 1 concentrations 
in the range of 19.5–105 ng/ml; one O-ZSF1 also had a remarkable high arginase 1 concentration of 397 ng/ml.

As serum arginase 1 was the only arginine-consuming enzyme in O-ZSF1 rats that we found to be increased, 
we analyzed the three animals with exceptionally high serum arginase 1 levels in more detail. We compared 
them as subgroup G1 with the other nine O-ZSF1 (G2) and with L-ZSF1 to clarify the underlying reason for this 
observation (Supplementary Table 5). G1 rats were the heaviest O-ZSF1 (494 and 493 g; range in G2 415–485 g, 
p = 0.03). G1 serum also had the highest Orn and Citrulline (Cit) levels and the lowest Lys, Arg and hArg levels 
(see supplementary Table 5 for group-wise comparison p-values). In the LV, Lys, Cit and Arg levels were also 
significantly lower in G1. Orn was only detected in the LV from G1 rats, while it was absent in G2 rats and only 
detected once in one L-ZSF1 rat. ADMA and SDMA levels were highest in G1 rats.

We analyzed experimental conditions that may have influenced the three rats: During the experiment G1 rats 
were not housed in the same cages and had no obvious diseases. At sacrifice, they had no obvious outer or inner 
abnormalities. They were sacrificed at different days but at comparable day times. Tibia length, heart weight, E/e’ 
ratio, LV-EF% and NT-proBNP concentrations were comparable to G2 and L-ZSF1.

Table 2.   Arg and Arg-derived amino acids in O-ZSF1 and L-ZSF1 at the age of 20 weeks. Mean and standard 
deviation are given. P-value was calculated using Mann–Whitney-U-Test. P-values were corrected for multiple 
testing. Measurements in urine were normalized to creatinine. In urine Orn and Cit were measured together 
(*).O-ZSF1 status—Arrows indicate if concentration was higher, lower or even in O-ZSF1 compared to lean. 
Arrows in brackets indicate a trend p < 0.1

L-ZSF1 O-ZSF1 p value O-ZSF1 status

Orn blood (µM) 53.6 ± 12.0 85.9 ± 28.7 0.011 ↑

Orn/Cit* urine (µM/mM) 6.3 ± 1.8 8.4 ± 3.8 0.588  ↔ 

Orn liver (nmol/mg) 11.5 ± 2.3 6.6 ± 1.9  < 0.001 ↓

Orn kidney (nmol/mg) 4.5 ± 1.0 5.4 ± 0.7 0.777  ↔ 

Orn heart (nmol/mg) 0.05 ± 0.1 0.4 ± 0.6 1.00  ↔ 

Lys blood (µM) 581 ± 112 420 ± 109 0.012 ↓

Lys urine (µM/mM) 25.8 ± 13.1 24.6 ± 15.4 1.00  ↔ 

Lys liver (nmol/mg) 31.1 ± 6.1 26.0 ± 3.9 0.168  ↔ 

Lys kidney (nmol/mg) 31.6 ± 3.0 33.4 ± 4.6 0.458  ↔ 

Lys heart (nmol/mg) 16.9 ± 3.4 9.4 ± 1.5  < 0.01 ↓

Arg blood (µM) 109 ± 24 74.6 ± 29.6 0.034 ↓

Arg urine (µM/mM) 7.9 ± 3.5 8.9 ± 5.8 0.604  ↔ 

Arg liver (nmol/mg) 0.6 ± 0.1 0.7 ± 0.2 1.00  ↔ 

Arg kidney (nmol/mg) 18.0 ± 2.7 19.3 ± 2.6 1.00  ↔ 

Arg heart (nmol/mg) 6.5 ± 1.1 4.2 ± 0.9  < 0.01 ↓

Cit blood (µM) 78 ± 10 92 ± 8.4  < 0.01 ↑

Orn/Cit* urine (µM/mM) 6.3 ± 1.8 8.4 ± 3.8 0.588  ↔ 

Cit liver (nmol/mg) 1.0 ± 0.3 0.8 ± 0.3 1.00  ↔ 

Cit kidney (nmol/mg) 1.5 ± 0.2 1.7 ± 0.2 1.00  ↔ 

Cit heart (nmol/mg) 3.2 ± 0.7 2.6 ± 0.9 1.00  ↔ 

hArg blood (µM) 1.94 ± 0.49 0.544 ± 0.367  < 0.0001 ↓

hArg urine (µM/mM) 0.118 ± 0.05 0.071 ± 0.05 0.07 (↓)

hArg liver (pmol/mg) 101 ± 20.4 61.1 ± 15.6  < 0.001 ↓

hArg kidney (pmol/mg) 58.7 ± 9.6 50.5 ± 9.3 1.00  ↔ 

hArg heart (pmol/mg) 72.1 ± 19.9 32.6 ± 7.3  < 0.001 ↓

SDMA blood (µM) 0.301 ± 0.028 0.308 ± 0.047 1.00  ↔ 

SDMA liver (nmol/mg) 27.3 ± 5.3 29.8 ± 5.4 1.00  ↔ 

SDMA kidney (pmol/mg) 80.8 ± 10.3 84.0 ± 20.5 1.00  ↔ 

SDMA heart (pmol/mg) 9.5 ± 1.5 6.2 ± 1.3 0.015 ↓

ADMA blood (µM) 0.728 ± 0.102 0.844 ± 0.118 0.131  ↔ 

ADMA urine (µM/mM) 0.198 ± 0.085 0.269 ± 0.254 0.364  ↔ 

ADMA liver (nmol/mg) 61.2 ± 21.0 48.0 ± 15.6 0.648  ↔ 

ADMA kidney (pmol/mg) 90.8 ± 22.1 80.0 ± 14.9 1.00  ↔ 

ADMA heart (pmol/mg) 4.7 ± 1.6 7.4 ± 5.6 1.00  ↔ 

DMA urine (µM/mM) 78.3 ± 27.2 70.8 ± 25.3 0.491  ↔ 
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Figure 1.   Gene expression of key enzymes involved in arginine metabolism in kidney (A), liver (B) and heart 
(C) in L-ZSF1 (white squares) and O-ZSF1 (grey squares). Y-axis shows arbitrary units that represent gene 
expression normalized to Hprt1 and the median of all measurements of the gene. Arg2 and Agxt2 expression 
in heart was generally low and not detectable in some animals (cycle threshold > 35) irrespective of phenotype 
and was thus excluded from view. Boxplots visualize the median, 25th and 75th percentiles and minimum/ 
maximum. P-values were calculated using Kruskal–Wallis test and were corrected for multiple testing using the 
Bonferroni-Dunn method. *p < 0.05, **p < 0.01.
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Figure 2.   Protein expression of key enzymes involved in arginine metabolism in kidney (A), liver (B) and heart 
(C) with measurements in right ventricle (RV) and left Ventricle (LV) in L-ZSF1 (white squares) and O-ZSF1 
(grey squares). Y-axis shows arbitrary units that represent protein expression normalized to GAPDH (kidney/ 
heart) or alpha Tubulin (liver). Boxplots visualize the median, 25th and 75th percentiles and minimum/ 
maximum. P-values were calculated using Kruskal–Wallis test and were corrected for multiple testing using the 
Bonferroni-Dunn method. #p < 0.1, ***p < 0.001.
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Cardiac inflammatory invasion.  We found significantly more macrophages in cardiac sections of 
O-ZSF1 when compared to L-ZSF1 (49 ± 23 vs. 12 ± 8 cells per section, p < 0.001). While macrophages were 
equally distributed throughout LV, RV and septum in L-ZSF1 we observed pronounced macrophage accumula-
tion in the LV of O-ZSF1 (Fig. 4). Cardiac granulocyte infiltration was rarely observed and there were no differ-
ences between both experimental groups.

NO production in aortic root.  NO production was analyzed in cardiac cryosections taken from the heart 
base including the aortic root directly above the aortic valve (Supplementary Fig. 3). NO production in the aorta 
of six L-ZSF1 and six O-ZSF1 was detectable and could be blocked using L-NAME. The fluorescence signal was 
slightly higher (11%) in O-ZSF1 compared to L-ZSF1 (normalized intensity O-ZSF1 1.055 vs. L-ZSF1 0.945, 
p = 0.027).

Figure 3.   Arginase 1 concentration (ng/ml) in serum of L-ZSF1 (left side) and O-ZSF1 (right side). Boxplots 
visualize the median, 25th and 75th percentiles and minimum/ maximum. Two samples of the O-ZSF1 group 
indicated with red boxes were excluded for p-value calculation that was done using Kruskal–Wallis test.

Figure 4.   Histological analysis of cardiac macrophage infiltration using CD68 antibody (brown) in sections 
of O-ZSF1 hearts. Nuclei are stained blue. Exemplary pictures show: (A) and (B) massive accumulation of 
macrophages, (C) and (D) single cells in different magnifications.
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Nitrite, nitrate and creatinine in urine.  Nitrite and nitrate are major circulating and urinary metabolites 
of NO. We measured nitrite and nitrate in urine as surrogates of whole body NO synthesis in the rats. Urinary 
creatinine excretion was lower in O-ZSF1 (0.910 ± 0.386 mM) compared to L-ZSF1 (2.42 ± 1.41 mM; p = 0.002). 
Thus, all measurements in urine were corrected for creatinine concentration. Creatinine-corrected nitrate and 
nitrite excretion was higher in O-ZSF1 compared to L-ZSF1: nitrate 135.4 ± 38.2 µM/mM vs. 78.8 ± 27.7 µM/
mM (p = 0.0004), nitrite 11.2 ± 3.1  µM/mM vs. 5.0 ± 2.4  µM/mM, (p = 0.00002). Urinary DMA is a surrogate 
of whole body ADMA synthesis18. Creatinine-corrected DMA excretion did not differ between O-ZSF1 and 
L-ZSF1 (Table 2).

Nitrite, nitrate, creatinine and MDA in serum.  We measured nitrite, nitrate, creatinine and MDA in 
serum samples of 12 O-ZSF1 and 11 L-ZSF1 rats. The serum nitrite concentrations were lower in the O-ZSF1 
(109 ± 18 µM) compared to L-ZSF1 rats (160 ± 51 µM; p = 0.004). Serum nitrate concentrations tended to be 
lower in O-ZSF1 (90.4 ± 3.7 µM) compared to L-ZSF1 rats (93.4 ± 4.4 µM; p = 0.090). Creatinine tended to be 
higher in O-ZSF1 (96.3 ± 32.9 µM) compared to L-ZSF1 (76.4 ± 18.7 µM; p = 0.093). MDA concentrations were 
higher in O-ZSF1 (3.25 ± 0.69 µM) compared to L-ZSF1 (2.43 ± 0.26 µM; p = 0.0014).

Discussion
We analyzed metrics of NO turnover as well as arginine metabolism associated amino acids and derivatives in 
serum, urine, liver, kidney and heart of O-ZSF1 rats—a model for HFpEF—and compared them with healthy 
L-ZSF1 rats. In O-ZSF1 we found: (1) a pronounced decrease of Arg and hArg in blood and heart; (2) an up-
regulation of presumably granulocyte derived arginase 1 accompanied by increased end product Orn in blood; 
(3) indicators for decreased NO production in serum; (4) a down regulation of arginase 1 and 2 in kidney and 
liver; and (5) no evidence for increased excretion of hArg and Arg through the kidneys. A simplified overview 
of arginine metabolizing enzymes and our findings is summarized in Fig. 5.

Rationale.  Different pathomechanisms for HFpEF have been suggested, with systemic, cardiac and cardi-
omyocyte-specific changes contributing to initiation and progression of HFpEF to different extents at different 
stages19. The impact of the Arg/NO pathway in HFpEF pathophysiology has been demonstrated in a high fat 
diet mouse model where the animals developed HFpEF characteristics following continuous NOS inhibition by 
the synthetic L-NAME4, a strong yet non-specific synthetic NOS inhibitor. The NG-methylated Arg derivatives 
ADMA and SDMA are endogenous NOS activity inhibitors20. In HFpEF patients pathophysiological altera-
tions of the heart and individual exercise capacity were found to relate to low Arg (endogenous NOS substrate) 
and high ADMA (endogenous NOS activity inhibitor) concentrations and a decreased Arg/ADMA ratio in 
the blood3. Higher circulating concentrations of hArg were found to be associated with milder symptoms and 
improved training effects in HFpEF patients3,21. The aim of the present work was to determine the status of Arg-

Figure 5.   Simplified schematic of findings and proposed status of Arg-involving pathways related to NO in 
heart, circulation, liver and kidney of O-ZSF1 and L-ZSF1 rats. Top—Enzymes (green) with substrates and 
metabolites (white). Bottom—Analyzed rat organs and tissues with arrows indicating the changes (p < 0.05) 
compared to L-ZSF1. ↑ higher in O-ZSF1, ↔ no differences, ↓ lower in O-ZSF1. Arrow in brackets indicates a 
trend (p < 0.1). *Orn/Cit were measured together in Urine. iNOS and Arginase were not determined in cardiac 
macrophages directly—the depicted regulation is hypothesis generating only.
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involving enzymes in O-ZSF1, which spontaneously manifest HFpEF over time because of obesity, hypertension 
and diabetes mellitus7. In confirmation of previous studies, O-ZSF1 rats in our study developed obesity, hyper-
tension, diabetes and HFpEF (higher NT-proBNP, diastolic dysfunction, normal LV-EF) at an age of 20 weeks 
with LV remodeling8,22. We analyzed the expression of genes and proteins in Arg/NO-involving pathways and 
their multiple metabolites in serum, urine and relevant organs of O-ZSF1 and L-ZSF1 as a control. In addition, 
MDA was determined as a measure of oxidative stress, notably lipid peroxidation23.

Status of serum Arg derivatives and endothelial NO synthesis in the aortic root of O‑ZSF1.  We 
found remarkable differences between the experimental groups for all analytes except for ADMA, SDMA and 
nitrate in serum. While the NOS and arginase substrates Arg and hArg were lower in O-ZSF1, concentrations 
of their turnover products Orn (indicating increased arginase activity) and Cit (indicating increased NOS activ-
ity) were higher. When we analyzed NO synthesis in cryosections of the aortic root we observed comparable 
and even slightly higher measurements in the HFpEF rats whereas the effect could be blocked using the NOS 
inhibitor L-NAME. This finding is contrary to recent findings showing lower NO-associated relaxation of aorta24 
in O-ZSF1. We assume that the reported endothelial dysfunction in the aorta24 may have other reasons than 
impaired NO synthesis. Unfortunately, we collected no other material to determine NO synthesis in other tissue 
than aortic root. Noteworthy, in HFpEF patients not only general present conduit endothelial dysfunction but 
especially microvascular endothelial dysfunction of the coronaries is discussed as important pathomechanism25. 
Future studies in ZSF1 rats should thus include peripheral arteries and microvasculature to detect and character-
ize more detailed the status of endothelial NOS activity, NO availability and endothelial dysfunction in HFpEF.

Regulation of Arg‑metabolizing enzymes in liver and kidney of ZSF1 rats.  To explain the imbal-
ance in Arg metabolism in the serum of HFpEF rats we characterized the expression of the metabolizing enzymes 
in different tissues and organs. Arg is a substrate for arginase 1 and 2 as well as for GATM. In line with human 
data, Arg1 in rats is mainly expressed in the liver, while Arg2 and Gatm are highly expressed in the kidneys. 
Both, arginase 1 and arginase 2, were downregulated on a protein expression level in liver and kidney, whereas 
Arg2 was also transcriptionally downregulated in the kidney. GATM was generally unchanged why we conclude 
that the enzyme is not responsible for the altered Arg concentration. Arg derivatives and metabolites in kidney 
lysates were unchanged while in the liver we found a significantly lower concentration of Orn. In this context it 
is noteworthy that arginase activity is usually proportional to the amount of arginase protein and arginase gene 
expression26. We conclude that the observed lower Arg and hArg level combined with higher Orn levels in blood 
are not a consequence of increased consumption by arginase in kidney and liver.

Regulation of arginases in blood and heart and the fate of Arg and hArg of ZSF1 rats.  Arginase 
1 is typically regarded as a key enzyme in hepatic urea cycle, but it is also expressed in granulocytes27, monocytes 
and macrophages28. Unfortunately, we did not collect these cells during the experiment, but we determined 
the free enzyme in serum. While arginase 1 levels in serum were equally low in L-ZSF1, levels were at least 
threefold higher in the O-ZSF1 rats. We did not detect arginase 1 in the heart on a protein level but we found 
Arg1 gene expression to be significantly higher in O-ZSF1. The detected expression may be attributable to the 
observed increased macrophage infiltration in the heart. Notably, Arg and hArg levels were markedly lower in 
blood and heart homogenates in the O-ZSF1. Three O-ZSF1 had exceptionally high arginase 1 concentrations 
and the arginase metabolite Orn was highest in the serum of these animals but was below the detection limit in 
all other animals except one L-ZSF1. It was reported that inflammatory tissue macrophages express arginase 1 
and increase inducible NOS associated NO production leading to Arg depletion in the microenvironment28,29. 
Notably, arginase 1 controls expression of inducible NOS and an imbalance between both enzymes resulted in 
aggravated inflammation in a mouse model28. The expression of Nos2, coding for inducible NOS, was compara-
ble in kidney, liver and heart of both experimental groups in our study. Activity of inducible NOS could not be 
determined due to sample limitations.

Cardiac macrophage infiltration is triggered by T helper cell cytokines27 and it was shown that these cells 
are also activated in human HFpEF30. Typically, the first line of inflammatory infiltration in ischemic heart 
disease is represented by granulocytes, which are then followed by macrophages and lymphocytes. However, in 
non-ischemic HF granulocytes are thought to play a minor role compared to monocytes and lymphocytes31. To 
complete our analysis, we also checked the O-ZSF1 hearts for granulocyte infiltration but found no evidence 
for an increase of those cells.

Importantly, O-ZSF1 develop kidney failure over time32 and hArg is excreted via the kidneys. Higher urine 
levels of hArg correlate with higher estimated glomerular filtration rate as a measure of kidney function; lower 
urine hArg levels are associated with adverse outcomes in renal disease33. In urine of O-ZSF1 excretion rates of 
most Arg metabolites were comparable, but the excretion rate of hArg was again lower. SDMA is cleared from 
circulation via the kidneys and is accepted as a sensitive parameter of renal function6. As SDMA was comparable 
in all animals, we conclude that O-ZSF1 rats showed no evidence for progressed kidney failure and lower hArg 
concentrations are presumably not a consequence of this condition.

Consumption of Arg and hArg by NOS in O‑ZSF1.  Arginase 1 and 2 are also expressed in endothe-
lial cells where they are supposed to diminish NO synthesis26. Unfortunately, in this study we did not isolate 
endothelium (except cryopreserved aortic root) from the rats to characterize arginase and NOS expression pat-
terns and their activity in the endothelium. Nevertheless, we can assume the impact of the low concentrations 
of Arg and hArg on NOS and want to discuss the evidence we found. Although, the affinity of NOS for hArg is 
much lower than for Arg, a role of hArg in NO signaling has been proposed. Independent associations between 



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20684  | https://doi.org/10.1038/s41598-021-00216-7

www.nature.com/scientificreports/

low hArg levels and increased mortality in cardiovascular diseases with an involvement of endothelial dys-
function underpin this assumption5,34,35. Low hArg concentrations combined with low Arg concentrations as 
observed in our study may have an impact on endothelial NOS activity. This should be addressed in another 
study. It was reported that endothelial NOS prefers endogenous Arg derived from intracellular protein turnover 
or produced by argininosuccinat-lyase (ASL), an enzyme primarily expressed in liver and kidney26. Importantly, 
ASL can also utilize Cit as a substrate26, which was found to be higher in the serum of O-ZSF1. We thus analyzed 
Asl1 gene expression in liver, kidney and heart, but found no differences between the two study groups. ASL 
protein levels were reported to be closely associated with gene expression changes36 and were thus not further 
analyzed.

Implications for NO turnover in ZSF1 rats.  NO is extremely short lived in living organisms, especially 
in the circulation, and evades direct measurement. NO is oxidized to nitrite and nitrate which can be measured 
in fluids and tissues and serve as surrogates for NO37. Therefore, we determined the concentration of nitrite and 
nitrate in serum and urine samples of the rats by a reliable GC–MS method38. The lower serum concentration 
of nitrite in O-ZSF1 is a strong indication of a lower NO bioavailability in the circulation, notably in the vessel 
endothelium39. This is supported by the higher oxidative stress measured as increased MDA in O-ZSF1. MDA 
is generally considered a biomarker of oxidative stress, notably of lipid peroxidation23. Nevertheless, the higher 
nitrate excretion in O-ZSF1 urine suggest that O-ZSF1 are associated with higher whole-body NO synthesis, 
presumably due to higher activity of the inducible NOS isoform as discussed above. Importantly, endothelium 
independent nitrate-nitrite-NO production was discussed in HFpEF as well40 and needs to be considered with 
regard to the massive increase of urinary nitrate as observed in O-ZSF1. Although the renal clearance of nitrate 
was also increased in O-ZSF1 the differences in blood concentrations were more pronounced. Under normoxic 
conditions, nitrate-nitrite-derived NO has only minor vasodilatory effects but these are increased in hypoxia. 
In addition, while NO synthesis by Arg utilizing NOS is inhibited by hypoxia and acidosis, free conversion of 
nitrite to NO is increased40.

Finally, we want to mention that all ZSF1 rats in this study show significantly different nitrite and nitrate 
concentrations compared to healthy Wistar Kyoto male and female rats41. We do not know whether this is a 
consequence of isolated breeding of the mother and father strains or a consequence of the leptin receptor defect. 
In this context it should be kept in mind that two third of the L-ZSF1 rats shall be heterozygous for one of the 
two inherited leptin receptor mutations. Importantly, it was shown in male Zucker diabetic fatty rats that argi-
nine supplementation improved NO turnover in adipose tissue and led to decreased ADMA concentrations42.

Post‑translational Arg modifications in O‑ZSF1.  ADMA and SDMA are Arg metabolites of post-
translational modification of Arg dimethylation in proteins and regular proteolysis26. We sacrificed the animals 
at a comparably young age at an early stage of HFpEF and found no differences in ADMA and SDMA. It needs 
to be analyzed how ADMA and SDMA develop over lifetime, especially older age. Kidney and liver play major 
roles in direct renal clearance and enzymatic metabolism of ADMA6. ADMA is metabolized by AGXT2, which 
we found to be higher on gene level, but unchanged on a protein level. ADMA is mainly hydrolyzed by DDAH1, 
with DDAH2 seeming to be of minor importance6. Although DDAH1 gene expression was higher in O-ZSF1 
kidneys and protein levels of DDAH1 were detectable in kidney, liver and heart, the latter were unchanged. 
Increased renal clearance of ADMA or its main degradation product DMA is also not supported by our data. We 
found Cit, the second product of DDAH activity, was higher in the blood of O-ZSF1 but unchanged in kidney, 
liver and heart lysates. This indicates that DDAH activity in the organs is unchanged and that increased Cit in 
the circulation is more likely attributable to increased inducible NOS activity. Actually, the picture is incomplete 
without an analysis of AGXT2 and DDAH1 activity. Unfortunately, currently accessible colorimetric AGXT243 
and DDAH activity44 assays were insufficient in our hands. We experienced severe interference of the native tis-
sue lysate color, which differed significantly between the experimental groups, with the detection wavelengths. 
A limitation in remaining sample amounts did not allow for further assay improvement, for instance by sample 
clean up prior activity measurements. In addition, it is worth mentioning that Cit is a major metabolite of other 
pathways such as the urea cycle, which we did not study.

Limitations.  Findings in animal models need to be interpreted carefully concerning comparability with 
humans. The murine metabolism as well as expression profiles of genes and proteins may differ. As animals were 
in early adolescence at sacrifice, hormone status presumably differed from the typical patient group. We analyzed 
rats at an age of 20 weeks when HFpEF is already manifest but progression is at an early stage. It is of importance 
to characterize the alterations in Arg metabolism prospectively.

Conclusion
Arg derivatives and turnover products as well as nitrite and nitrate concentrations are altered in O-ZSF1. This 
may mainly be attributable to increased Arg and hArg turnover in inflammatory cells. Consequentially, reduced 
accessibility of Arg and hArg in the heart and blood vessels could have an impact on endothelial NOS activity. 
Further, higher oxidative stress as indicated by increased MDA, may worsen the NO imbalance. Normalization 
of the arginine metabolism by supplementation of Arg or hArg may represent a promising intervention strat-
egy in HFpEF treatment. Further, Arg and hArg levels could be used for monitoring of disease progression or 
interventional success.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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