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Cytokine signature and COVID‑19 
prediction models in the two waves 
of pandemics
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Michele Cennamo1, Daniela Terracciano1, Valentina Parisi1, Francesco Oriente1, 
Giuseppe Portella1, Francesco Beguinot1,2, Luigi Atripaldi3, Mario Sansone4 & 
Pietro Formisano1,2*

In Europe, multiple waves of infections with SARS‑CoV‑2 (COVID‑19) have been observed. Here, we 
have investigated whether common patterns of cytokines could be detected in individuals with mild 
and severe forms of COVID‑19 in two pandemic waves, and whether machine learning approach could 
be useful to identify the best predictors. An increasing trend of multiple cytokines was observed 
in patients with mild or severe/critical symptoms of COVID‑19, compared with healthy volunteers. 
Linear Discriminant Analysis (LDA) clearly recognized the three groups based on cytokine patterns. 
Classification and Regression Tree (CART) further indicated that IL‑6 discriminated controls and 
COVID‑19 patients, whilst IL‑8 defined disease severity. During the second wave of pandemics, a less 
intense cytokine storm was observed, as compared with the first. IL‑6 was the most robust predictor 
of infection and discriminated moderate COVID‑19 patients from healthy controls, regardless of 
epidemic peak curve. Thus, serum cytokine patterns provide biomarkers useful for COVID‑19 diagnosis 
and prognosis. Further definition of individual cytokines may allow to envision novel therapeutic 
options and pave the way to set up innovative diagnostic tools.

Coronavirus disease-19 (COVID-19) has been initially defined as an atypical pneumonia caused by a zoonotic 
viral agent, then identified as Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)1.

In the first wave of the outbreak, most people with COVID-19 developed mild disease (40%), without evi-
dence of viral pneumonia or hypoxia, or moderate disease (40%), with clinical signs of pneumonia (fever, cough, 
dyspnea, fast breathing) but no signs of reduced oxygen saturation  (SpO2 ≥ 90% on room air). 15–20% of infected 
individuals developed a severe or critical disease with complications such as respiratory failure, acute respiratory 
distress syndrome, sepsis and septic shock, thromboembolism, and/or multiorgan failure, including acute kidney 
injury and cardiac injury. Exitus was eventually reported in two to eight weeks from symptom  appearance2.

Many countries have faced a second wave of COVID-19 pandemics. Compared to the first wave, a lower 
proportion of patients requiring invasive mechanical ventilation and a lower rate of thrombotic events have 
been  observed3,4. Hospitalized patients in the second wave are younger, require fewer days of hospitalization, 
have longer  survival5,6.

Although COVID-19 is mostly defined by pneumonia, it has been documented that extrapulmonary systemic 
hyperinflammation plays a crucial role in clinical  manifestations7, also contributing to COVID-19 associated 
 coagulopathy8. Peculiar COVID-19 immunophenotypes have been also  described7,9. At peripheral blood level, 
a decreased number of basophils and plasmacytoid dendritic cell depletion correlates with disease  severity9. 
Aberrant pathogenic T cells and inflammatory monocytes are rapidly activated and produce a large number of 
cytokines, thus inducing a so called “cytokine storm”. Many studies on first wave of COVID-19 outbreak have 
indicated an increase of both pro-inflammatory and anti-inflammatory cytokines, whose levels appear to correlate 
with severity of disease, both in adults and in  children9–12. Hence, targeted approaches have been envisioned to 
dampen COVID-related cytokine storm, particularly IL-6, IL-8, and TNFα13–15. However, to date, no available 
cytokine-based drug or therapy have demonstrated 100% efficacy for patients with COVID-19.
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Since March 2020, a large number of studies on cytokine storm in COVID-19 patients has been published. 
Main findings often display a high degree of variability and refer to the first wave of the  outbreak11. In this study, 
we have provided a cytokine profile of patients with mild and severe symptoms of COVID-19 during two peaks 
of epidemic curves in Campania region (Italy). Moreover, by using machine learning methods, we have analyzed 
whether a specific cytokine profile could guide disease diagnosis and prognosis.

Methods
Study design and ethics statement. Between March 2020 and May 2020, 65 consecutive patients with 
a positive SARS-CoV-2 PCR swab test, admitted at Federico II University Hospital and “Azienda Ospedaliera 
dei Colli” Hospital of Naples, Italy, were recruited for the study. 49 healthy adult volunteers were also enrolled 
as control cohort.

Similarly, during the second wave of pandemics, from September to October 2020, 36 patients with confirmed 
SARS-CoV-2 infection and 15 negative controls were included in the study.

The study was approved by the ethical committee of the University of Naples Federico II (prot. n. 140/20/
ESCOVID19). All the methods involving patients and volunteers have been performed in accordance with the 
Declaration of Helsinki. Also, an informed consent has been obtained from all participants.

Sample processing and cytokine assay. Blood samples in serum separator tubes were centrifuged and 
stored at − 80 °C. Serum samples were then screened for the concentration of Interleukin (IL)-1β, IL-1ra, IL-2, 
IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12(p70), IL-13, IL-15, IL-17, basic Fibroblast Growth Factor (FGF-b), 
Eotaxin, Granulocyte-Colony Stimulating Factor (G-CSF), Granulocyte–Macrophage Colony Stimulating Factor 
(GM-CSF), Interferon (IFN)-γ, Interferon gamma-Induced Protein (IP)-10, Monocyte Chemoattractant Protein 
(MCP)-1, Macrophage Inflammatory Protein 1-alpha/beta (MIP-1α, MIP-1β), Platelet-Derived Growth Factor 
(PDGF), Regulated on Activation Normal T-cell Expressed and Secreted RANTES/CCL5, Tumor Necrosis Fac-
tor (TNF)-α, and Vascular Endothelial Growth Factor (VEGF), using the Bio-Plex multiplex Human Cytokine 
and Growth factor kits (Bio-Rad) according to the manufacturer’s protocol and as previously  described16.

Statistical analysis. A Shapiro–Wilk test was used to evaluate whether the continuous data were normal 
distributed, and according to the results, values were expressed as median and interquartile range and compared 
using the Kruskall-Wallis non-parametric test followed by Mann Whitney U test for pairwise comparisons. The 
non-parametric Jonckheere–Terpstra test was used to analyse trend between an ordinal independent variable. 
Categorical values were described by number of occurrences and percentages and compared by chi-square test.

Three machine learning methods have been used for prediction of COVID-19: linear discriminant analysis 
(LDA), classification and regression tree (CART) and neural network (NNET).Performance of algorithms in 
terms of sensitivity, specificity and overall accuracy were computed.

The predictive accuracy of the single factors and of the machine learning methods was measured by the area 
under the receiver operating characteristic (ROC) curve (AUC)17.

Algorithms have been first designed (trained) and then evaluated (test) on proper sets of data. To avoid over-
fitting and to robustly evaluate classification performance, a cross-validation approach was used. In detail, one of 
the subjects was excluded from the training set and used as test: the procedure was iterated over all the subjects 
and average performance were thus computed. Thisleave-one-out approach better suites for small data-sets18,19:

Data from the first wave of outbreak have been used to produce cross-validated classifiers (LDA, CART): 
those classifiers have been then applied on data from the second wave. Performance have been evaluated using 
confusion matrix indices (sensitivity, specificity, overall accuracy).

Processing and statistical analysis have been conducted using R software. Differences were considered statisti-
cally significant for p value less than 0.05.

Results
Wave 1 cytokine signature. Between March 2020 and May 2020, 65 patients with a positive SARS-CoV-2 
PCR test were enrolled. In agreement with World Health Organization (WHO) eight-point scale for COVID-19 
trial  endpoints20, patients were classified in “mild” (WHO scores 3–4; N = 46) and “severe” (WHO scores 5–8; 
N = 19). A cohort of 49 healthy blood donors was enrolled as control. No differences for gender were observed 
in the three groups (Table  1). Severe COVID-19 patients were significantly older compared with both mild 
COVID-19 patients and controls. At variance, no differences in age were detected between mild COVID-19 
patients and controls (Table 1).

A significant increasing trend of IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12(p70), IL-15, 
IL-17, FGF-b, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, PDGF, TNF-α, and VEGF was observed in the 
three groups (Controls ≤ Mild COVID-19 ≤ Severe COVID-19) (Table 1, Fig. 1). Moreover, significantly higher 
concentration of all these factors was detected in serum of mild and severe COVID-19 patients compared to con-
trols (Table 1). Only FGF-b did not change between severe COVID-19 and controls (Table 1). Finally, IL-1ra and 
IL-6 levels were significantly higher in severe versus mild COVID-19 patients, while PDGF decreased (Table 1).

Thus, patients with COVID-19 displayed higher levels of cytokines and chemokines, as also shown by the 
starplot in Fig. 2.

Cytokine‑based prediction models. Next, we attempted to define a cytokine-based COVID-19 predic-
tion model. As shown in Fig. 3, LDA algorithm allowed to classify subjects in the three groups (control, mild 
COVID-19, severe COVID-19) with accuracy 0.96, 95% CI: (0.91, 0.99) (Fig. 3, Supplementary Tables 1–3). 
ROC analyses revealed that almost all cytokines could achieve high diagnostic discriminative power (Fig. 4). 
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However, IL-6, IL-8, IL-10 and IP-10 showed either diagnostic and prognostic classification performance, with 
an AUC > 0.95 in at least 2 out of the 3 groups (Control vs mild + severe COVID-19; mild vs control + severe 
COVID-19; severe vs control + mild COVID-19) (Supplementary Table 4). Thus, machine learning algorithms 
(LDA, NNET and CART) were set up using only the concentrations of the four selected cytokines. ROC analyses 
revealed a high performance of the three classifier algorithms, with an AUC of 0.97 for LDA, 0.81 for NNET 
and 0.94 for CART (Fig. 5A). Indeed, CART algorithm clearly indicated that IL-6 discriminated controls and 
COVID-19 patients. Moreover, combination of IL-6 and IL-8 well defined disease severity. Test overall accuracy 
was 0.85; 95% CI: (0.77, 0.91) (Fig. 5B,C, Supplementary Tables 5, 6).

Wave 2 cytokine signature. During September and October 2020 (wave 2), other 36 patients with con-
firmed SARS-CoV-2 infection and 15 negative controls were enrolled. 26 patients were classified as mild ad 
10 patients as severe. As for wave 1, significant differences and increasing trends of IL-1β, IL-1ra, IL-2, IL-6, 
IL-8, IL-10, GM-CSF, IFN-γ, IP-10, were observed in the three groups (Controls ≤ Mild COVID-19 ≤ Severe 
COVID-19) (Table  2). At variance, compared to wave 1, neither significant trend, neither significant differ-
ence was detected for IL-4, IL-5 IL-7, IL-17, FGF-b, G-CSF, PDGF, TNF-α, and VEGF among the three groups 
(Table 2). Interestingly, in wave 2, only IL-1ra, IL-2, IL-6 IL-8 and IFN-γ concentrations were significantly higher 
in serum of mild and severe COVID-19 patients compared to controls (Table 2). Higher concentrations of IL-1β 
and IL-12(p70) were detected only in serum from mild COVID-19 patients, while IP-10 only in serum of severe 
COVID-19 patients, compared to controls (Table 2). Reduced levels of eotaxin in mild COVID-19 patients were 
also observed (Table 2). Notably, compared to wave 1, only IP-10 concentrations were significantly higher in 
severe versus mild COVID-19 patients, with no change of IL-1ra and IL-6 levels (Table 2).

Table 1.  Serum concentration (pg/ml) of cytokines, chemokines and growth factors (Wave 1). Results are 
expressed as median and range [25% percentile; 75% percentile] or number of cases (%). Jonckheere–Terpstra 
test was used to assess the trend between groups. The non parametric Kruskall Wallis test was applied to assess 
the difference among three groups followed by Mann Whitney U test for pairwise comparisons.

CONTROL (n = 49)
MILD COVID-19 
(n = 46)

SEVERE COVID-19 
(n = 19) Trend p value Overall p value

Mild versus 
control

Severe versus 
control

Severe versus 
mild

Gender, male n. (%) 24 (48.9) 27 (58.7) 15 (78.9) 0.0795

Age 53 [49; 56] 59 [45; 68] 67 [60; 76] 0.0085 0.0066

IL-1β 3.55 [3.32; 4.34] 4.82 [3.96; 5.71] 4.82 [3.96; 7.59]  < 0.0001  < 0.0001  < 0.0001 0.0065

IL-1ra 252 [194.1; 394.6] 371 [284.1; 723.5] 889.6 [417.1; 2060]  < 0.0001  < 0.0001 0.0002  < 0.0001 0.0477

IL-2 11.98 [11.33; 12.96] 13.41 [12.93; 14.67] 14.85 [12.93; 16.79]  < 0.0001  < 0.0001 0.0001  < 0.0001

IL-4 2.04 [1.73; 2.47] 3.08 [2.64; 3.65] 3.22 [2.35; 4.35]  < 0.0001  < 0.0001  < 0.0001  < 0.0001

IL-5 67.89 [62.28; 76.56] 99.43 [86.37; 109.5] 105.6 [84.07; 136.7]  < 0.0001  < 0.0001  < 0.0001  < 0.0001

IL-6 5.56 [4.83; 6.07] 11.3 [8.07; 26.98] 92.39 [37.95; 157.3]  < 0.0001  < 0.0001  < 0.0001  < 0.0001 0.0170

IL-7 28.5 [26.44; 30.76] 38.66 [33.48; 44.79] 37.28 [28.24; 46.15]  < 0.0001  < 0.0001  < 0.0001 0.0003

IL-8 16.09 [13.42; 18.6] 69.71 [32.63; 176.7] 171.5 [63.86; 1122]  < 0.0001  < 0.0001  < 0.0001  < 0.0001

IL-9 301.8 [280.3; 319.2] 294.4 [272.5; 333.4] 280.5 [193.9; 314] 0.23 0.3484

IL-10 7.39 [6.69; 8.01] 11.1 [9.98; 13.46] 16.19 [12.17; 22.07]  < 0.0001  < 0.0001  < 0.0001  < 0.0001

IL-12 (p70) 11.26 [10.84; 12.88] 12.31 [11.27; 13.23] 12.84 [11.66; 13.43] 0.005 0.0018 0.0031 0.0398

IL-13 5.75 [4.81; 6.64] 7.02 [3.91; 12.18] 3.46 [2.83; 9.89] 0.704 0.0780

IL-15 255.4 [243.5; 278.1] 333.9 [303.2; 364.6] 258.6 [276.6; 405.9]  < 0.0001  < 0.0001  < 0.0001  < 0.0001

IL-17 22.88 [20.18; 25.48] 26.22 [23.86; 28.61] 27.81 [25.43; 30.61]  < 0.0001  < 0.0001 0.0011 0.0009

Eotaxin 55.24 [38.54; 70.51] 73.8 [39.91; 114.3] 49.88 [17.39; 78.83] 0.481 0.0328

FGF-b 65.31 [60.11; 70.38] 71.88 [65.66; 76.76] 69.54 [59.83; 78.74] 0.015 0.0124 0.0093

G-CSF 111.7 [91.71; 127] 199.5 [155.5; 269.6] 285.4 [200.4; 581.7]  < 0.0001  < 0.0001  < 0.0001  < 0.0001

GM-CSF 7.72 [7.41; 8.15] 8.79 [7.57; 10.39] 9.27 [7.19; 14.4]  < 0.0001 0.0012 0.0033 0.0183

IFN-γ 19.43 [18.1; 22.22] 28.29 [23.51; 31.09] 37.02 [27.78; 63.27]  < 0.0001  < 0.0001  < 0.0001  < 0.0001

IP-10 526.4 [425.1; 636.7] 1490 [780.1; 4387] 3547 [1734; 10989]  < 0.0001  < 0.0001  < 0.0001  < 0.0001

MCP-1 45.29 [35.99; 67.23] 133.1 [63.27; 185.5] 312 [69.55; 604.6]  < 0.0001  < 0.0001  < 0.0001  < 0.0001

MIP-1α 2.73 [2.49; 2.97] 6.45 [4.715; 10.17] 15.3 [6.95; 57.51]  < 0.0001  < 0.0001  < 0.0001  < 0.0001

MIP-1β 376.7 [351.3; 410.4] 363.1 [329.2; 393.7] 382.1 [206.1; 583.1] 0.404 0.3104

RANTES 34,222 [25916; 
42539] 24,109 [15796; 45255] 22,739 [2683; 

108506] 0.056 0.1442

TNF-α 86.85 [81.23; 100.8] 104.9 [90.9; 120.3] 121.5 [73.9; 150.5]  < 0.0001 0.0016 0.0104 0.0077

VEGF 394.2 [360.4; 422.3] 618.2 [524.2; 710.4] 571.4 [477.2; 814.5]  < 0.0001  < 0.0001  < 0.0001  < 0.0001

PDGF 1497 [1230; 1933] 3046 [2063; 4705] 1838 [555.4; 5089] 0.001  < 0.0001  < 0.0001 0.0249
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Figure 1.  COVID-19 patients display increased trend in circulating cytokines. Box plots denote median and 
25th to 75th percentiles (boxes) and minimum to maximum (whiskers) and Jonckheere–Terpstra trend test was 
performed to analyse data. Figure reports only factors with statistically significant different trends. p values and 
the number of patients for each group are reported in Table 1.
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Challenge of cytokine‑based prediction model. To validate cytokine-based COVID-19 prediction 
algorithms defined with data of the first wave (Fig. 5), CART analysis was carried out using data of the second 
wave as test sample. Test accuracy was 0.68; 95% CI: (0.54, 0.80), with a low sensitivity for the discrimination of 
severe COVID-19 and low specificity for mild COVID-19 patients (Supplementary Tables 7, 8).

Thus, a prediction model was set up with cytokine data derived only from control and mild COVID-19 
cohorts of wave 1. ROC analyses revealed that IL-5, IL-6, IL-7, IL-8 and IL-10 showed the best discriminative 
power (Supplementary Table 9). Based on these selected cytokines, CART algorithm indicated that IL-6 was 
able to discriminate control and mild COVID-19 patients with an overall test accuracy of 0.92; 95% CI: (0.85, 
0.97) (Supplementary Tables 10, 11). Interestingly, challenge of this prediction model with data from the second 
wave achieved an accuracy of 0.83; 95% CI: (0.68, 0.93), sensitivity of 0.88 and specificity of 0.73 (Supplementary 
Tables 12, 13), indicating IL-6 as the best predictor of COVID-19.

Discussion
COVID-19, caused by the SARS-CoV-2, leads to fast activation of innate immune cells, with a profound cytokine 
response, especially in patients developing severe disease, resembling a hyper- inflammatory  state21. The identi-
fication of specific cytokines as indicators of disease severity might improve clinical management of COVID-19 
patients having a great impact on the diagnostic and therapeutic decision making. However, discrepancies exist 
on factors involved in cytokine storm and the majority of studies refers only to the first wave of outbreak.

Here, we have shown that: (1) second wave of COVID-19 pandemics is characterized by a less impressive 
cytokine storm compared to wave 1; (2) 27 cytokine-based algorithm allows to predict disease state and severity 
with an accuracy of about 96%; (3) IL-6 was significantly associated with COVID-19 diagnosis regardless of 
peak epidemic curve.

Accumulating evidence has clearly indicated that cytokine storm occurs in patients with COVID-19; however, 
the different cytokine profiles analyzed revealed variable results. Consistent with previous  studies12,22, results 
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obtained in our population during the wave 1 reveal an activation of type 1, type 2 and type 3 immunity. In 
detail, we found increased levels of many pro-inflammatory and suppressive cytokines, as well as chemokines 
and growth factors, including IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12(p70), IL-15, IL-17, 
FGF-b, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, PDGF, TNF-α, and VEGF. IL-6 and IL-1ra levels fur-
ther increased in patients who were critically ill. It is widely recognized that IL-6, an important biomarker of 
inflammation for multiple conditions, has a crucial role in COVID-19 cytokine  storm23,24. Its levels correlate with 
serum viral load detected by RT-PCR in critically ill COVID-19 patients and with disease  outcome23–25. IL-1ra 
has inhibitory roles against pro-inflammatory cytokine activation and T lymphocyte  responses26,27. It regulates 
IL-1, TNF-α and IFN  production27, arguing a potential role in constraining a further increase of these cytokines 
in severe patients. The simultaneous increase of IL-6 and IL-1ra in critically ill patients suggests an overactive 
immune response, which may participate to the inflammation-induced tissue damage.

Cytokines display a large interindividual variability, and their functions and release depend on multiple 
signals, different cell targets, physiological and lifestyle factors. Thus, it is particularly challenging to evaluate 
cytokines’ diagnostic ability due to the difficulty of setting up cytokine cut-off  levels28,29. Notably, here we have 
shown that a 27-cytokine profiling could be used to stratify patients with COVID-19. However, currently, a 
diagnostic tool based on the measurement of the whole cytokinome may raise problems for high costs to the 
National Health Systems.

Thus, we selected IL-6, IL-8, IL-10 and IP-10 as the cytokines with the highest performance in the discrimina-
tion of mild COVID-19, severe COVID-19 patients and healthy volunteers. Our results are in agreement with 
the work by Laing and colleagues who identified IL-6, IL-10 and IP-10 as a “severity-related triad”9. IL-10 is a 
cytokine with anti-inflammatory functions. It suppresses macrophage and dendritic cell activation and limits Th1 
and Th2 effector  responses28. In COVID-19, IL-10 could be involved in counteracting the hyperactive immune 
response, thereby limiting injury but also boosting infection persistence. IP-10 has versatile biological functions 
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on different cell types, which include chemoattraction of inflammatory cells, but also migration and proliferation 
of endothelial  cells30. IP-10 is commonly secreted in response to IFNγ. However, it could be directly induced 
also by virus-related  mechanisms9. IL-8 is a potent pro-inflammatory cytokine. It is involved in the recruitment 
and activation of  neutrophils31,32. Thus, its increase may be related to the neutrophilia often detected in patients 
with COVID-19.

Interestingly, these four cytokines were fed into three machine learning methods: CART, NNET, and LDA. 
We found that all these methods were able to predict COVID-19 occurrence and severity with a comparable 
high performance. Although LDA and NNET provided superior or comparable accuracy, CART is considered 
the best performer regardless of sample size, group size ratio, effect size, and type of model and virtually always 
provides more accurate predictions. Moreover, CART, compared to the other prediction methods, provides the 
clinician with useful information regarding the relative importance of predictors in group separation with the 
advantage of producing human-readable  rules33. Thus, we moved on to CART algorithm and found that IL-6 is 
the best predictor for COVID-19 disease. The addition of IL-8 well defined disease severity.

However, to obtain a best validation of the algorithm, we challenged the method with the determination of 
serum cytokines of patients enrolled in a different epidemic peak.

Characteristics of patients with COVID-19 have largely changed over  time3–5. In Italy, patients who died in the 
second phase of the epidemic were older, more likely to be women, and had higher probability of superinfections, 
larger comorbidity burden, and longer survival from symptom onset compared to people who died in the first 
phase (March–May 2020)5. Here, we found that in wave 2 the cytokine storm profile developed at lower levels, 
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Figure 4.  Diagnostic relevance of COVID-19 related cytokines. The diagnostic performance of cytokines, 
chemokines and growth factors was estimated using ROC curve analysis and compared with the AUC in 
Controls versus Mild + Severe COVID-19 patients.
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compared to wave 1. Many cytokines that during wave 1 were increased in serum of COVID-19 patients were 
undistinguishable in patients compared to controls, during wave 2. For example, IL-4 and IL-5 levels were not 
increased in wave 2 COVID-19 patients, suggesting lack of type 2 immunity activation. Moreover, in comparison 
to wave 1, only IP-10 levels were significantly higher in severe versus mild COVID-19 patients, with no change 
of IL-1ra and IL-6 levels. IP-10 increase was not paralleled by IFN-γ increase, suggesting a direct relationship 
with viral pathogenic mechanisms.

The treatment approach has changed over the two periods, as critically ill patients in the second phase were 
less likely to receive antivirals and/or IL-6R inhibitors and more likely to be treated with steroids and FANS. Thus, 
the reduction of cytokine storm extent observed in wave 2 may reflect the different therapeutic strategies adopted 
in the two epidemic moments. For instance, in wave 2, the loss of IL-6 augmentation in severe COVID-19 may 
be explained with the treatment approach, definitely not based on tocilizumab administration.

The discrepancies we found among cytokine profiles in the two COVID-19 outbreaks has led to a modification 
of discriminative power of the previously identified algorithm. In particular, the challenge of the method with 
the results obtained during the second wave has revealed a different pattern of cytokines with best predictive 
performance and a reduction in the classification between mild and severe COVID-19. However, CART analysis 
was still able to define controls and mild COVID-19 patients, with high accuracy by an algorithm based on IL-6 
concentration. Thereby, we have confirmed that IL-6 remains an excellent predictor and found that it represents 
a COVID-19 biomarker regardless the epidemic peak curves.

In conclusion, it is conceivable that a detailed knowledge of the role of single cytokines in SARS-CoV-2 infec-
tion and a prediction model built on cytokine levels might strongly help to foster novel diagnostic tools and to 
inform innovative therapeutic interventions.

Figure 5.  IL-6 and IL-8 performance in discriminating COVID-19 disease and severity. Comparison of 
classification accuracy of LDA, NNET and CART algorithms. AUC of ROC analysis indicates performance 
of the three classifier algorithms (A). Scatterplot from CART analysis identifies the groups labelled by their 
terminal nodes (B). The decision tree shows the rules and split points to estimate COVID-19 disease and 
severity. In each box, the first number estimates controls, the second number estimates mild COVID-19 
patients, the third number severe COVID-19 patients. Decision binary tree reveals an optimal cut-off of 
IL-6 > 6.8 pg/ml for predicting COVID-19 disease and of IL-8 > 117 pg/ml for severity (C).
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