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High mechanical property silk 
produced by transgenic silkworms 
expressing the spidroins PySp1 
and ASG1
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Spider silk is one of the best natural fibers with excellent mechanical properties; however, due to the 
visual awareness, biting behavior and territory consciousness of spiders, we cannot obtain spider silk 
by large-scale breeding. Silkworms have a spinning system similar to that of spiders, and the use of 
transgenic technology in Bombyx mori, which is an ideal reactor for producing spider silk, is routine. 
In this study, the piggyBac transposon technique was used to achieve specific expression of two 
putative spider silk genes in the posterior silk glands of silkworms: aggregate spider glue 1 (ASG1) of 
Trichonephila clavipes (approximately 1.2 kb) and two repetitive units of pyriform spidroin 1 (PySp1) 
of Argiope argentata (approximately 1.4 kb). Then, two reconstituted spider silk-producing strains, 
the AG and PA strains, were obtained. Finally, the toughness of the silk fiber was increased by up to 
91.5% and the maximum stress was enhanced by 36.9% in PA, and the respective properties in AG 
were increased by 21.0% and 34.2%. In summary, these two spider genes significantly enhanced the 
mechanical properties of silk fiber, which can provide a basis for spidroin silk production.

The orb-weaving spider family, containing more than 25% of all living spider species, is one of the most diverse 
spider families, with seven morphologically differentiated silk gland types1,2. Each gland secretes one or more 
unique spidroins to generate a specific structure of spider silk fibers or jelly to form a protective shell, support 
the web structure, support the reproduction of offspring and acquire prey food3. Therefore, every spider silk has 
unique material properties, including viscosity, strength, hardness and extensibility. For example, dragline silk 
is the strongest fiber, approximately threefold tougher than aramid fibers and fivefold stronger than steel4. Due 
to its excellent mechanical properties, spider silk has been studied extensively.

Pyriform silk and aggregate silk are two of the seven spider silks on the orb web5. Pyriform silk secreted by 
the pyriform gland is generally mixed with dragline silk to form a textured composite filament, not a monofila-
ment, called an attachment disc6. Generally, spidroins are composed of many specific repetitive units or motifs 
with large molecular weights, and these motifs are considered the basis for the unique mechanical properties of 
spider silk. The major component of pyriform silk is a highly repetitive protein; according to previous research, 
the complete cDNA sequence of pyriform spidroin 1 (PySp1) of A. argentata contains 21 complete repeats7. 
Unlike the main motifs of other spidroins (MiSp, MaSp, Flag), which are GPGGX, An, GA, or GGX and GPG8, 
the repeat motifs in the primary structure of pyriform spidroin are PXPXPX and QQSSVAQS7,9,10. The model 
peptide studies have shown that the proline-rich motifs promote elastomeric properties11. The aggregate glands 
exist in pairs, and are known for their sticky aqueous secretions—aggregate silk glue12. Aggregate silk glue 
improves the extensibility of the capture threads13. Previous studies have identified the sequence of aggregate 
silk glue genes (ASG1 and ASG2) of the golden orb-weaving spider T. clavipes14 and reported that there are no 
repetitive fragments and that the motifs are NVNVN and QPGSG15, which also differ from those of MiSp, MaSp 
and Flag. These different motifs contribute to the specific properties of pyriform and aggregate silk.

Since realizing the potential of spider silk, researchers have been working on producing synthetic spider 
silk, trying to express spider silk genes in various systems, including Escherichia coli16, yeast17, tobacco18,19, and 
mammalian cell culture systems20,21; however, the protein obtained needs a completely artificial folding process 
under harsh conditions. Some researchers have also sprayed minerals, such as carbon nanotubes22,23, grapheme23, 
silver nanoparticles24, and ion precursors25, on the surface of mulberry leaves to feed silkworms and have even 
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forced spiders to spin silk artificially26. Consequently, the strength or toughness of silk fibers obtained by these 
methods was improved; however, for large-scale production, these methods are time-consuming and expensive.

Silkworm (Bombyx mori) silk is a highly utilized classic natural protein fiber with good biocompatibility, 
degradability, and flexibility and a high yield27–29. Although spiders and silkworms are not closely related in 
evolution, their characteristics of silk production are common in some ways. For instance, silkworms have a 
spinning system similar to that of spiders, and both spiders and silkworms can produce large amounts of soluble 
silk protein with high repeatability30; the silk production is achieved under mild conditions31; as well as the silk 
protein, stored in the form of a highly concentrated liquid crystalline solution, is then passed through a narrow 
duct to assemble into nanofibrils32; thus, silkworms are natural reactors for the production of reconstituted spi-
der silk. Although territorialism and cannibalism preclude spider farming as a viable manufacturing approach, 
silkworms can be cultivated on a large scale. With the upgrading of gene editing technology, especially piggyBac 
transposon technology, a new era of using transgenic technology to produce spider silk has begun. Studies have 
revealed that the overall mechanical properties of composite silk fibers improve as the re-MaSp1 chain length 
increases33, and the length and components of repeat motifs in spider silk play an important role in improving 
the mechanical properties of transgenic silk fibers34–36.

In this study, we generated two transgenic silkworm strains, PA and AG, which specifically expressed the 
1.4 kb pyriform spidroin gene 1 (PySp1) of A. argentata and the 1.2 kb aggregate silk glue1 (ASG1) of T. clavipes, 
respectively, in the posterior silk glands (PSGs) of Bombyx mori by piggyBac transposon technology. Based on 
our research results, these two unique spidroins have great potential for improving mechanical properties.

Materials and methods
Animals.  In this experiment, the polymorphic diapause strain Lan 10 (maintained in the Bombyx mori 
genetics and breeding laboratory of Zhejiang University) was used as the experimental system, and fresh mul-
berry leaves were raised and fed in accordance with the standard feeding conditions (25 °C, 80% relative humid-
ity) three times a day.

piggyBac vector construction.  We designed a series of plasmids separately including 2 repeats of PySp1 
(1.4 kb, KY398016) derived from the orb-weaving spider A. argentata7 and 1 repeat of ASG1 (1.2 kb, EU780014) 
derived from T. clavipes14. To ensure high expression of spider genes in the transgenic silkworms, the repetitive 
unit sequences of PySp1 and ASG1 were optimized according to codon usage of the Fib heavy (FibH) chain in 
Bombyx mori37. Then, these spider silk genes (Supplementary Figs. S1 and S2) were synthesized (GenScript, 
China) and subcloned into pUC57 (TaKaRa, China) to generate the intermediate vectors pUC-2xPA, and pUC-
1xASG1, which carried NheI and AgeI restriction sites. By digestion with these two restriction enzymes, the 
targeted spidroin fragments of 2 × PySp1 or 1 × ASG1 were inserted into the vector pBac[IE1-EGFP] (which 
was constructed and maintained in our laboratory) to produce the FibH-spider silk donor vectors pBac[IE1-
EGFP]-2 × PySp1-A.arg and pBac[IE1-EGFP]-1 × ASG1-N.cla.

Silkworm transformation.  The donor and helper (encoded the transposase, which is the critical sequence 
of the piggyBac system) vectors were prepared as previously described with some modifications38. Then, the 
eggs were injected with donor and helper DNA mixtures at a final concentration of 400 ng/µl. Two groups were 
independently microinjected: (1) the PA group, injected with pBac[IE1-EGFP]-PySp1-2 × A.arg and the helper 
vector; and (2) the AG group, transformed with pBac[IE1-EGFP]-1 × ASG1-N.cla and the helper vector. Finally, 
these G0 eggs were reared under standard conditions (25 °C, 80% R.H.) to the moth stage; then, every moth 
was mated with a wild-type moth to produce the G1 generation. Positive transgenic individuals in the G1 brood 
were screened for EGFP expression in the body using a fluorescence microscope (Olympus SZX16, Japan). Each 
positive individual in the brood was reared to the moth stage and mated with wild-type moths to produce the 
G2 generation for the selection of stable transgenic silkworms.

Inverse PCR analysis.  Inverse PCR was carried out to analyze the spidroin gene insertion site in the posi-
tive silkworms according to a previous study39. Genomic DNA was extracted from the EGFP-positive PSGs of 
the G2 PA and G2 AG groups. Subsequently, the DNA was digested with Sau3AI and was then circularized by 
T4 DNA ligase (TaKaRa, China). PCR amplification was carried out using the circularized fragments as tem-
plates under standard conditions with primers designed based on the left arm of the piggyBac transposable 
element—L1-F and L1-R for the first PCR and L2-F and L2-R for the second PCR (Supplementary Table S1). 
The PCR-amplified fragments were sequenced after cloning into the pClone007 Blunt vector (TSINKGE, No. 
TSV-007B). The sequencing data were analyzed using the silkworm genome database (http://​sgp.​dna.​affrc.​go.​jp/​
KAIKO​base/) to analyze the precise location in the chromosome.

Quantitative real‑time PCR analysis.  Quantitative real-time PCR analysis (qRT-PCR) was performed 
to analyze transcripts in transgenic strains40. The relevant primers were designed using Premier 5.0 (Supple-
mentary Table S2). Total RNA samples were extracted from PSGs and middle silk glands (MSGs) using TRIzol 
Reagent (Invitrogen, USA) on the last day of the fifth instar. cDNA was then synthesized using a PrimeScript RT 
Reagent Kit with gDNA Eraser (TaKaRa, China). qRT-PCR was performed and expression detected in real time 
using a CFX96 Real-Time PCR Detection System (BIO-RAD, USA). The reaction was performed for 40 cycles 
in a 20.0 µl reaction mixture containing 12.5 μl of TB Green Premix Ex Taq (TaKaRa, China), 2 μl of cDNA tem-
plate, and 1 μl of each PCR primer (10 μM). BmRp49 was selected as the endogenous control for qPCR analysis. 
To calculate the relative expression levels of the detected genes, a relative quantitative method (threshold cycle 
[ΔΔCt]) was used. All samples were analyzed in three independent replicates.

http://sgp.dna.affrc.go.jp/KAIKObase/
http://sgp.dna.affrc.go.jp/KAIKObase/
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Western blotting.  Extraction of proteins from the cocoons of each transgenic silkworm strain was per-
formed as previously described41. Briefly, 1 undegummed cocoon was selected randomly and cut into pieces, 
grinding with liquid nitrogen until to powder. 20-mg cocoon samples were suspended in 400 μl of SDS-protein 
extraction solution for 3 h at room temperature. Subsequently, the protein-containing supernatant of each sam-
ple was collected by centrifugation at 15,000 rpm for 10 min at 4 °C and diluted with protein loading buffer for 
further assays. The cocoon protein samples were loaded at equal volume into 4–15% gradient SDS-PAGE gels 
(Sangon, Shanghai). Proteins were visualized by staining with Coomassie brilliant blue R-250 (Sangon). Proteins 
extracted from the cocoons were transferred onto a PVDF membrane (Immobilon-P, Millipore) after separa-
tion by SDS-PAGE. The membrane was blocked with 3% BSA in TBS-T (10 mM Tris, 150 mM NaCl, and 0.1% 
Tween 20) and was then incubated with an anti-His antibody (1:5000 dilution, Sangon) as the primary antibody 
and peroxidase conjugate goat anti-rabbit IgG-HRP (1:5000 dilution, Sangon) as the secondary antibody. Signal 
detection was performed using a high-sensitivity ECL luminescence reagent kit (Sangon, Shanghai).

Field emission scanning electron microscopy of the composite silk fibres.  SEM analysis of the 
fibers was performed using a field emission scanning electron microscope (SU8010, Hitachi, Japan). The cross 
sections of the fibres were obtained after brittle fracturing in liquid nitrogen. The surface and cross sections of 
the fibres were placed on scanning electron microscopy stubs, and the fibers were observed and photographed 
after being coated with platinum using an ion sputtering instrument (MC1000, Hitachi) at an accelerating volt-
age of 2 kV for two minutes.

Mechanical testing of transgenic silk fibers.  Mechanical testing was performed as described in a pre-
vious study with some modifications33. Ten similarly shaped cocoons from each transgenic and control (non-
transgenic) strain were randomly selected and treated as follows: each cocoon was first bathed in 100 °C deion-
ized water for 2 min with slight shaking occasionally to remove the air inside the cocoon. The cocoon was then 
soaked in 65 °C water for 3 min to saturate all of the cocoon layers and immersed in deionized water at 100 °C 
for 2 min to soften the sericin. The cocoon was subsequently transferred to water at 85 °C for 15 min to remove 
the sericin. Finally, the cocoon was transferred to 70 °C deionized water, and five different parts of the silk fibers 
were obtained by manual drawing. Subsequently, 5 filaments from different parts of every cocoon were used for 
mechanical property measurements. The cross-sectional diameter of each two-brins silk sample was measured 
using a digital microscope (Keyence, Japan) at 1000× magnification; five measurements were obtained from 
each sample, and the average diameter was calculated, then obtained the two-brins cross-sectional area (S = ∏r2). 
Because the measured diameters may include the thin sericin layer, the cross-sectional areas were overestimated 
compared with the real silk fibre. Thus, the values for the mechanical properties might have been underestimated 
relative to the real silk fibres. The mechanical test were performed under ambient conditions using an AGS-J 
Universal Test instrument (Shimadzu Ltd., Japan) equipped with a 5 N load cell at a constant speed of 2 mm/
min and frequency of 250 MHz. The load–displacement data sets were recorded automatically with the control 
software (Trapezium2, Shimadzu).

Statistical analyses.  Statistical analysis was performed using a two-tailed Student’s t test to determine 
whether the averages were significantly different among the transgenic silkworm strains. A P value of < 0.05 was 
considered significant.

Results
piggyBac vector design and construction.  Synthetic gene modules of the two repetitive units of spider 
pyriform spidroin gene 1 (PySp1) of A. argentata and one repeat motif of aggregate silk glue1 (ASG1) of T. clavi-
pes (Fig. 1A,B) were subcloned into the plasmid pBac[IE1-EGFP], which was constructed and maintained in 
our laboratory, to generate the FibH-spider silk donor vectors pBac[IE1-EGFP]-2 × PySp1-A.arg and pBac[IE1-
EGFP]-1 × ASG1-N.cla (Fig. 1C,D). The key expression boxes included the polyA sequence of the Fibroin-heavy 
chain (Fib-H) gene, which was under the control of a Fib-H promoter sequence; two repeats of PySp1 (1.4 kb, 
Supplementary Fig. S1) or one repeat of ASG1 (1.2 kb, Supplementary Fig. S2), whose protein MWs were pre-
dicted to be 50 kDa and 45 kDa, respectively; and enhanced green fluorescence protein (EGFP) as the marker 
gene for screening positive individuals, which was induced by the IE1 promoter for nonspecific expression in 
the whole body.

Silkworm transformation.  In total, 600 eggs of the Lan10 strain were microinjected with a mixture of the 
donor and helper vectors. After injection, the embryos (G0) were reared to the larval stage to hybridize to pro-
duce the G1 brood. The positive G1 transgenic silkworms were screened for the green fluorescence signal in the 
body (Fig. 2). The data of the transgenic silkworms are shown in Table 1; 80% of G0 embryos hatched to larvae 
and were then hybridized to produce the G1 brood. Consequently, we separated 1 (3.84%) positive G1 individual 
of the PA strain and 1 (2.44%) positive individual of the AG strain. To obtain more stable transgenic strains, the 
G1 PA and AG moths were mated with wild-type moths to produce the G2 generation (PA; AG).

Inverse PCR analysis.  To analyze the precise insertion site in the obtained transgenic strain and identify 
the effect of the position on the expression of the spidroins, genomic DNA was extracted from the PSGs of the 
G2 EGFP-positive individuals, digested with Sau3AI and confirmed by inverse PCR. Only one precise integra-
tion site of these two donor vector was detected respectively, which was chromosome 4 in the AG strain (Fig. 3A, 
Supplementary Fig. S3), and chromosome 26 in the PA strain (Fig. 3B, Supplementary Fig. S4). The different 
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insertion sites of these two spidroins also suggested that the piggyBac transposon was inserted randomly, similar 
to observations in previous studies42–44.

Quantitative real‑time PCR (qRT‑PCR) analysis.  The relative mRNA levels of PySp1 and ASG1 in the 
PSGs and MSGs on the last day of the 5th instar of the G2 WT, PA and AG strains were analyzed using qRT-
PCR. Comparison showed that the signal was detected in PSGs of the transgenic strains but not the WT strain 
or MSGs (Fig. 4, Supplementary Fig. S5), indicating that the spidroin genes were integrated into the silkworm 

Figure 1.   Structures of the intermediate vectors and donor vectors used in this study. (A,B) The intermediate 
vectors pUC-2xPA and pUC-1xASG1 carried AgeI and NheI, respectively. (C,D) Donor vectors pBac[IE1-
EGFP]-2 × PySp1-A.arg and pBac[IE1-EGFP]-1 × ASG1-N.cla, respectively. The key elements are shown in 
different colors: purple represents one repeat of PySp1 of A. argentata (234 aa), and blue shows one repeat of 
ASG1 of T. clavipes (384 aa).

Figure 2.   Positive transgenic strains for EGFP-specific expression in the G1 stage. (a,a′) G1 eggs and (b,b′) 
larvae of the WT strains were viewed under white light and EGFP fluorescence microscopy, respectively; 
(c,c′) G1 eggs and (d,d′) larvae of the positive strains were viewed under white light and EGFP fluorescence 
microscopy, respectively. The phenotypes of these two transgenic strains were similar under green fluorescence 
microscopy.
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genome and stably inherited; the expression levels of PySp1 and ASG1 showed significant differences among 
the different transgenic strains (Fig. 4). The transcript level of AG was the highest and was twofold higher than 
that in PA (Fig. 4). Based on analysis of the length of spidroin genes, we speculated that the integration of larger 
exogenous genes can induce lower transcript expression levels.

Western blotting for transgenic silkworm proteins.  The proteins extracted from the cocoons were 
subjected to SDS-PAGE and Western blot analyses to further investigate PySp1 and ASG1 expression at the 
translational level. For the image of SDS-PAGE, it is impossible to distinguish the bands corresponding to the 
proteins of interest because of too many weak bands near the target area (Supplementary Fig. S6). As for the 
western blotting, a single band with the predicted size for each protein (PySp1, 50 kDa; ASG1, 45 kDa) was 
detected in cocoons of both the G2 PA and G2 AG strains (Fig. 5, Supplementary Fig. S7), suggesting that PySp1 
and ASG1 were successfully secreted into the transgenic silkworm cocoons and formed a reconstituted spider-
silk fiber. As for the relative expression level of these two proteins in cocoons, may be related to mRNA expres-
sion level and the structure of spidroin gene.

Mechanical testing of transgenic silk fibers.  To eliminate the influence of environmental differences 
on the comparability of silk strength, we selected composite silk and control silk from the same feeding season 
to ensure an accurate comparison. The fibers from transgenic and WT cocoons were randomly selected for scan-

Table 1.   Microinjection into embryos of the Lan10 strain.

Transgenic system Transgenic strain

Injected 
concentration 
(ng/µl)

Injected embryos 
(G0)

Hatched embryos 
(G0) Hatched (%) G1 broods

Positive broods 
(G1) G1 positive    (%)

pBacPySp1x2-A.arg 
+ helper PA 400 600 443 73.83 26 1 3.85

pBacASG1x1-N.cla 
+ helper AG 400 600 508 84.67 41 1 2.44

Figure 3.   The genomic insertion site in the transgenic strain. (A) The genomic insertion site in the AG strain, 
BmChr.4; (B) The genomic insertion site in the PA strain, BmChr.26. Both the AG and PA strains exhibited a 
single insertion.

Figure 4.   Comparative analysis of spidroin gene expression in the PSGs of transgenic strains on the last day of 
the fifth instar. The mean ± SD values were derived from three biological replicate experiments. The significance 
of the difference between transgenic strains (PA; AG) and WT was calculated using two-tailed Student’s t-tests. 
*P < 0.05; **P < 0.01; ***P < 0.001.
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ning electron microscopy analysis of the fibre surface and cross section. The results showed that the morphol-
ogy structure among WT, PA and AG exhibited no obvious differences (Supplementary Fig. S8). The mechani-
cal properties of single two-wire composite fiber from transgenic and WT cocoons were measured under the 
same conditions. The tensile tests produced unimodal stress–strain curves despite using 2-brin fibers. Figure 6 
shows that the mechanical properties of spider silk fibers, including the maximum stress, toughness and Young’s 
modulus, varied among the different transgenic strains but were generally higher than those of fibers from the 
control group. The maximum stress of the reconstituted silk fibers from the AG and PA strains was 34.2% and 
36.9% higher than that of the WT fibers, respectively (Fig. 6B, Table 2); the toughness of the reconstituted silk 
fibers from the AG and PA strains was 21.0% and 91.5% higher than that of the WT fibers, respectively (Fig. 6C, 
Table 2); the Young’s modulus of the reconstituted silk fibers from the AG and PA strains was 6.3% and 7.9% 
higher than that of the WT fibers, respectively (Fig. 6D, Table 2). Among these two transgenic strains, the PA 
strain showed better properties, and we speculated the difference of mechanical properties maybe caused by the 
different motifs in spidroin, which similar to findings of previous studies36.

Discussion
In this study, we reported a strategy to improve the mechanical properties of silk fibers by piggyBac technology, 
successfully expressing A. argentata pyriform spidroin 1 (PySp1, 1.4 kb) and T. clavipes aggregate spider glue 1 
(ASG1, 1.2 kb) in the PSGs of Bombyx mori. Western blot analyses suggested that PySp1 and ASG1 were suc-
cessfully secreted into transgenic silkworm cocoons and formed a recombined spider silk fiber. Table 2 shows 
that the mechanical properties of the recombined spider silk fibers were significantly superior to those in the 
control group, especially the toughness, which improved by 21.0% or 91.5%. The use of piggyBac technology to 
genetically modify silkworms has been previously reported, especially the use of the silk protein gene promoter 
to drive the expression of the chimeric spider silk gene, and the improved mechanical properties of transgenic 
fiber were confirmed33,35. However, in silkworms and other species, almost all studies focus on dragline silk16,17, 
and few experiments use other spider silk genes. Although great efforts have been made in research on dragline 
silk, it is necessary to introduce new ideas, such as the use of other spider silk proteins, with very different motifs 
from those of dragline silk proteins.

Previous studies reported the impact of both the size and motifs of transgenic spider silk protein on the 
mechanical properties of different transgenic silk fibers33. Proteins with different motifs vary in mechanical 
properties; MiSp and MaSp contain many GPGXX, GA, and GGX motifs, which contribute to the formation 
of β sheets and provide tensile strength45, the flagelliform silk (Flag) spun by Argiope trifasciata spiders shows 
remarkable tensile properties due to the dominant presence of the –GGX– and –GPG– motifs and polyglycine 
II nanocrystals in its sequence8, while the repeat motifs of PySp1 are PXPXPX and QQSSVAQS46. The proline-
rich motifs are predicted to produce a random coil configuration that promotes elastomeric properties46. In 
ASG1, the common motifs are NVNVN and QPGSG15, which differ from those of MiSp and MaSp, whereas the 
recombined PySp1 silk and ASG1 silk showed a significant improvement in toughness. It has been reported that 
ASG1 might not be a spidroin subtype at all, but instead a mucin-like matrix protein, which could nevertheless 
provide structural reinforcement5. In light of this, we hypothesize that the co-expression of structural proteins 
other than silk proteins could have a positive effect on the mechanical properties of silkworm silk. The repeating 
units in ASG1 are dominated by proline and threonine, and this repeating units are speculated to promote the 

Figure 5.   Western blot analysis of spidroin proteins extracted from cocoons. (A) Western blot analysis of 
cocoons of the G2 PA strains (50 kDa). (B) Western blot analysis of cocoons of the G2 AG strain (45 kDa). The 
red arrows indicate the predicted bands. Fibroin light chain (Fib-L), non-specific bands. The original figures are 
shown in Supplementary Fig. S7.
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mechanical properties of silk. Thus, we speculated that the various repetitive motifs were the primary molecular 
basis for the unique mechanical properties of various spider silks, while proteins with different repetitive motifs 
could be important for the outstanding mechanical properties of the reconstituted silk fibers despite the low 
expression levels of the PySp1 and ASG1 proteins. On the other hand, Bombyx mori is an excellent heterologous 
host for expressing recombinant spider silk protein. Several previous reports have confirmed that the fibers of the 
transgenic silkworms encoding the silkworm/spider silk proteins have excellent mechanical properties despite 
the extremely low expression of the spider silk proteins33,35, which indicates that the production of composite 

Figure 6.   Mechanical properties of the recombined spider silk fibers from the PA and AG strains. (A) Stress–
strain curves of WT and FibH-spider silk fibers, which were tested at a speed of 2 mm/min under equivalent 
conditions. The result for the WT fiber is shown in black, and the lines in red and blue indicate the results for 
the AG and PA strains, respectively. Fifty samples from each transgenic strain were tested. (B–D) Graphs of 
the maximum stress, toughness and Young’s modulus, respectively. The significance of the difference between 
transgenic fibers and WT was calculated using two-tailed Student’s t-tests. *P < 0.05; **P < 0.01.

Table 2.   Mechanical properties of the Spider Silk Fibers in spider silk-producing PA and AG strains. Ten 
similarly shaped cocoons from each transgenic and control (non-transgenic) strain were randomly selected, 
and 5 filaments from different parts of every cocoon were used to measure the mechanical properties at a speed 
of 2 mm/min. The average and SD values were derived from fifty biological replicate experiments.

WT AG PA

Ave. SD Ave. SD % Ave. SD %

Maximum stress (MPa) 251.55 69.51 337.57 69.43 34.2 344.34 123.33 36.9

Toughness (MJ/m3) 29.10 15.77 35.21 15.16 21.0 55.72 32.84 91.5

Young’s Modulus (MPa) 6784.35 1470.56 7211.92 1721.46 6.3 7318.93 1945.81 7.9
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silk fibers containing stably integrated chimeric silkworm/spider silk proteins in the silkworm has enormous 
potential.

The mechanical properties of the composite fibers increased with increasing length of the exogenous spi-
der gene, and there was a significant linear relationship between the mechanical properties and the length34. 
Moreover, the structure and number of various repeat motifs in silk genes play an important role in improving 
the mechanical properties of composite silk fibers33. A higher number of repeat motifs in the exogenous spider 
gene can increase the crystallinity of silk fibers, which is closely related to their mechanical properties. Thus, 
creating a strategy to produce spidroin with higher expression levels and larger molecules is of great importance 
in improving the mechanical properties of transgenic silk. According to our research, we postulate that it is 
worthwhile to further investigate whether the mechanical properties of reconstituted silk, such as the maximum 
stress, maximum strain and toughness, can be improved further by importing more repeats or motifs, even 
exceeding the length of the natural spider genes, into the silkworm genome.

In summary, two kinds of chimeric spider silk were obtained in this study, and their mechanical properties 
were significantly superior to those of wild-type silk. This study expanded the application of the spider silk gene 
and laid a foundation for obtaining composite silk with improved mechanical properties.
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