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Identifying critical higher‑order 
interactions in complex networks
Mehmet Emin Aktas1*, Thu Nguyen2, Sidra Jawaid1, Rakin Riza2 & Esra Akbas3

Diffusion on networks is an important concept in network science observed in many situations such 
as information spreading and rumor controlling in social networks, disease contagion between 
individuals, and cascading failures in power grids. The critical interactions in networks play critical 
roles in diffusion and primarily affect network structure and functions. While interactions can occur 
between two nodes as pairwise interactions, i.e., edges, they can also occur between three or more 
nodes, which are described as higher‑order interactions. This report presents a novel method to 
identify critical higher‑order interactions in complex networks. We propose two new Laplacians 
to generalize standard graph centrality measures for higher‑order interactions. We then compare 
the performances of the generalized centrality measures using the size of giant component and 
the Susceptible‑Infected‑Recovered (SIR) simulation model to show the effectiveness of using 
higher‑order interactions. We further compare them with the first‑order interactions (i.e., edges). 
Experimental results suggest that higher‑order interactions play more critical roles than edges based 
on both the size of giant component and SIR, and the proposed methods are promising in identifying 
critical higher‑order interactions.

Diffusion on networks is an important concept in network science observed in many situations such as informa-
tion spreading and rumor controlling in social networks, disease contagion between individuals, and cascading 
failures in power grids. Depending on various factors, some elements in a network play critical roles in the dif-
fusion process as they affect the network structure and functions significantly more than others. For example, 
in social networks, one can spread messages in the network quickly through the critical  nodes1; in epidemic 
networks, one may reduce the diffusion of epidemic by controlling influential  nodes2. Therefore, identifying 
critical (influential) nodes and edges has practical importance in network science. There are many studies in the 
literature for the critical node detection problem in networks. While some studies are based on degree of nodes 
such as degree  centrality3 and H-index4, some use paths in networks such as closeness  centrality5 and between-
ness  centrality6. Others use eigenvectors of graphs such as  PageRank7 and DFF  centrality8. In addition, some 
researchers use node deletion or contraction to distinguish the importance of  nodes9,10.

Moreover, edges in networks also play a critical role in information  diffusion11–19. For example, the identi-
fication of critical edges can be helpful to analyze the vulnerability in electrical transmission networks. Many 
researchers focus on finding critical edges based on network topology. For instance, the authors  in11 use the 
degree values of two nodes connected by an edge to measure the importance of that edge.  In12–14, the authors use 
the betweenness centrality of edges to detect critical edges. In other words, they assume that edges connecting 
two connected components are important. There are also other studies that use flow/reachability15,16,  bridgeness19, 
 neighbors17, and clique  degrees18 to measure the edge importance.

On the other hand, as we see in different real-world applications such as human communication, chemical 
reactions, and ecological systems, interactions can occur between not only two nodes as pairwise interactions, 
i.e., edges, but also between three or more  nodes20, which are described as higher-order interactions. Hypergraphs 
are used to model higher-order interactions in complex systems where entities are represented as nodes, and 
higher-order interactions among them are represented as hyperedges. For example, in coauthorship networks, 
nodes represent authors and hyperedges represent articles. In drug–drug interaction networks, nodes represent 
substances that make up the drug, and hyperedges represent drugs. Moreover, hyperedges play a critical role 
in information diffusion. For instance, in order to find the most influential article in a coauthorship network, 
we need to find the most influential hyperedge. Similarly, in a social network, manufacturers intend to detect 
influential hyperedges for promoting their products to maximize the number of influenced customers.

There are a few studies that explore other critical structures in graphs, such as critical groups of nodes and 
edges. But, these studies do not consider higher-order interactions in hypergraphs.  In21, the authors study the 
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problem of finding the most and least influential cliques of fixed size in graphs based on group degree, group 
closeness, and group betweenness centralities. However, the proposed methods only detect the most critical 
group of a fixed size and are unable to compare groups of any size.  In22, the authors use the group betweenness 
centrality to find the most influential group of nodes and a general group of graph elements (containing nodes 
and edges) of a fixed size. However, they are not able to compare higher-order interactions but rather groups (not 
necessarily connected).  In23, the same authors find the most influential group of nodes using the group close-
ness centrality and further, identify a subset of critical edges whose removal maximally degrades the closeness 
centrality of those vertices. But again, this paper is not focusing on higher-order interactions.  In24,25, the authors 
find influential higher-order interactions based on closeness and H-closeness centrality only. Furthermore, the 
authors  in26 study the problem of detecting initially-influenced seed users of a fixed size in a directed hypergraph. 
Similarly, the authors  in27 detect the smallest set of initially influenced nodes in hypergraphs such that all the 
users are influenced at the end of the influence diffusion process. But these studies only focus on nodes rather 
than higher-order interactions.

On the other hand, modeling diffusion in hypergraphs via Laplacians, which is the key concept to compute 
the centralities, is not a simple task. This is because hyperedges can include more than two vertices, and edge 
incidence and vertex adjacency are set-valued in hypergraphs. To handle this issue, researchers limit their atten-
tion to uniform hypergraphs, where hyperedges have the same  cardinality28,29. But this is not realistic since real-
world hypergraphs are almost never uniform. As another approach to this issue, researchers reduce non-uniform 
hypergraphs to graphs using the line graph and clique expansion. However, these reductions unsurprisingly 
result in information loss and are unable to uncover hypergraph  structure30,31. Some studies study random 
walks on hypergraphs for modeling diffusion, but much of them only consider uniform  hypergraphs32–34. In the 
non-uniform case, these random walks are equivalent to a random walk on the graph clique expansion of the 
 hypergraph35,36.

As another solution, Horak et al.37 defines the simplicial Laplacians for the hypergraphs with the simplicial 
complex structure, i.e., subsets of hyperedges are also hyperedges. However, these Laplacians have three critical 
issues. First, it is defined only for hypergraphs with the simplicial complex structure, i.e., subsets of hyperedges 
are also hyperedges, which is often not the case in real-world hypergraphs. Second, for a hyperedge of size k, the 
simplicial Laplacian models the diffusion only through the hyperedges of sizes k − 1 and/or k + 1 . However, in 
the diffusion framework, information on a hyperedge can diffuse through other hyperedges regardless of their 
sizes. Third, when we use the simplicial Laplacians in modeling diffusion, we need to assume that information 
only diffuses between fixed size hyperedges. However, a hyperedge can affect other hyperedges regardless of their 
sizes. Hence, there is a need for more broad and general hypergraph Laplacians to model diffusion to detect the 
critical higher-order interactions.

In this report, to address these limitations, we propose two new hypergraph Laplacians based on the diffusion 
framework that allow us to find the influential higher-order interactions in a hypergraph of any size and with 
any desired classical centrality measure; one is based on diffusion between fixed size hyperedges, and the other 
is based on diffusion between all hyperedges. The previously developed hypergraph Laplacians are only defined 
for special hypergraphs, and more importantly, neglect the relations between hyperedges. Thanks to the pro-
posed Laplacians, we can model the complete relations between hyperedges of any size. Next, using the relations 
between hyperedges, we extend four graph centrality measures, namely DFF ( HDFF ), degree ( HDeg ), betweenness 
( HBtw ), and closeness ( HCls ), to hypergraphs and rank higher-order interactions based on these measures. One 
can also similarly extend other classical centrality measures, but we believe working with four centralities would 
be enough to show the effectiveness of the proposed method. For evaluation, we experiment on several undirected 
real-world network datasets and evaluate the performance using the size of giant  component38 and Susceptible-
Infected-Recovered (SIR) simulation  model39. We further compare influential higher-order interactions with 
the first-order interactions (i.e., edges) to show the effectiveness of using higher-order interactions. The experi-
mental results suggest that higher-order interactions are more influential than edges based on both the size of 
giant component and SIR, and our methods are quite promising in finding influential higher-order interactions.

Results
In this section, we first describe the datasets we use in our experiments. Then, we explain the size of giant com-
ponent measure and how we model SIR on hypergraphs using the proposed Laplacians for evaluation. Next, we 
generalize four classical graph centrality measures, namely DFF, degree, betweenness, and closeness, to hyper-
graphs and present results on the datasets.

Data description. In our experiments, we use four undirected real-world networks to evaluate the effec-
tiveness of redefined centrality measures using hypergraph Laplacians (see Table 1 for the networks’ statistics). 
(1) Enron: each vertex represents the email address of a staff member at Enron. A hyperedge represents all the 
recipients, including the sender, of an email sent between the Enron staff. (2) High school: this dataset is made 
from a network of high school students in Marseilles, France. A vertex is a student, and a hyperedge is a set of 
students in close contact with each other. (3) Primary school: this dataset is made from a network of primary 
school students and teachers. A vertex is a student or a teacher, and a hyperedge is a set of students and/or teach-
ers in close contact with each other. (4) NDC-classes: a vertex is a pharmaceutical class label used to classify a 
certain property of a drug. The network of drugs is taken from the National Drug Code Directory. A hyperedge 
is drug with many class labels. These datasets can be found  in40.

Evaluation metrics. For the evaluation of the proposed methods, we use the size of giant component and 
the SIR simulation model. In both methods, we compare higher-order interactions with the first-order interac-
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tions (i.e., edges) to show how higher-order interactions improve the experimental results. To compare with the 
first-order interactions, we project hypergraphs into graphs by representing pairwise relations in hyperedges 
with edges. We further investigate the effect of parameter setting in the SIR models for each centrality measure 
of higher-order interactions here.

The size of giant component σ. In this evaluation method, we first rank the interactions from the most influen-
tial to the least for each centrality. We then remove the interactions from the network one by one starting from 
the most to the least, and calculate the size of the giant (largest) connected component. A more effective method 
should have a faster fall in its size of giant curve and the area under its curve should be smaller.

The results are shown in Fig. 1 and Table 2. As we see in Fig. 1, the influential higher-order interactions have 
all faster falls than the influential edges. This means the influential higher-order interactions break down the 
networks more quickly. The reason is whenever we remove an edge between two vertices, these vertices are likely 
still connected through other edges. On the other hand, when we remove a higher-order interaction, it is less 
likely to have connections between its vertices. More specifically, HCls and HBtw curves in Enron and Primary 
school, and High school and NDC-classes networks fall the fastest, respectively.

For a more detailed comparison, we also calculate the area under the size of the giant component curves in 
Fig. 1. The smaller area means the better performance. As we see in Table 2, the higher-order interactions all have 
smaller areas than edges. Furthermore, in general, HBtw outperforms other hypergraph centralities.

SIR model. We use the Susceptible-Infected-Recovered (SIR) simulation model on networks as an evalua-
tion metric to objectively analyze the effect of higher-order interactions in diffusion between nodes. In the 
SIR model, each node is classified as a Susceptible (S), Infected (I), or Recovered (R) at any given moment. A 
selected node is initially infected, and the rest of the network is susceptible to be infected. In each propagation, 

Table 1.  Basic properties of the real-world datasets we use are provided here. |V| is the number of vertices, 
|H| is the number of hyperedges, |E| is the number of edges in the projected graph, 〈k〉 is the average weighted 
degree, and kmax is the maximum hyperedge size.

Dataset |V| |H| |E| 〈k〉 kmax

Enron 143 1630 1800 106.3 19

High school 327 8264 5818 81.9 6

Primary school 242 13041 8317 197.2 6

NDC-classes 1149 2330 6222 62.5 25

Figure 1.  The size of giant component, σ , over varying ratio, p.
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the infected node can infect its neighboring nodes with probability µ . As this process is repeated, infected nodes 
can recover with probability β and are not susceptible to be infected again. The process stops when there is no 
infected node present in the network or after 500 propagations if there is still. The diffusion level is measured by 
the total number of nodes that were infected, including nodes that recovered, after all propagations are complete. 
A greater number means a greater spreading ability and a greater influence on diffusion.

In our experiments with the SIR model, we set the infection rate µ based on µc , where µc =
�k�

�k2�−�k�
 , as 

derived  from41, and 〈k〉 is equal to the average weighted degree of the network. We set the infection rate µ as µc 
multiplied by a factor depending on the different results we obtain, as explained in the following paragraphs. 
Furthermore, for the infection rate, we can also consider the weights of interactions. As we explain in the methods 
section, the proposed Laplacian between vertices assigns weight to each interaction as the number of shared 
hyperedges between two vertices. In this paper, we set the infection rate of an interaction of weight w > 0 to 
µw = 1− (1− µ)

w ,  following42. For simplicity, the recovery rate is set as β = 1 . The experiment is run 100 times 
for each dataset, and the average of the 100 trials is taken to obtain more reliable results.

As18 suggests, we use the normalized final effected scale for evaluation, which is defined as

where nu is the number of affected nodes when node u is infected, and n is the total number of nodes. To compute 
the influence of higher-order interactions, we calculate the average influence of all nodes after removing a certain 
fraction of hyperedges as the following diffusion index

where Fi is the average final infected scale of all nodes, i.e., Fi = 1
n

∑

u∈V F(u) for i ∈ {1, 2} , and F1 and F2 are 
results of the original network and the network after removing p of higher-order interactions respectively. The 
larger diffusion index means the removed interactions are more influential.

In our experiment, we first rank the first-order and higher-order interactions from the most influential to 
the least for each centrality and divide them into 50 equal parts, i.e., the first part includes the top 2% influential 
interactions and the last part includes the bottom 2% influential interactions. In each iteration, we only remove 
one part among the 50 parts (other 49 parts are remaining) and calculate the diffusion index Rs (1). We repeat 
this process for each part. Since the larger diffusion index means the removed interactions are more influential, 
we expect to see that the first part that corresponds to the top 2% influential interactions has the largest diffusion 
index, and the diffusion index decreases monotonically till the last part. To measure this correspondence, we 
use the spearman correlation coefficients. We first sort these diffusion indices from the biggest to the smallest. 
Now, we have two sequences for each centrality; one is coming from centrality scores and the other is coming 
from diffusion indices. To check the effectiveness of each centrality, we take the sequence coming from the dif-
fusion indices as the ground truth and find the spearman correlation coefficients between this sequence and the 
sequence coming from centrality scores.

As we see in Table 3, the proposed hypergraph centrality measures can find the influential higher-order inter-
actions in diffusion effectively. All the correlations are high for the Enron dataset and are about 90%, except for 
85% for HDFF . In the High school dataset, all of the centrality measures’ rankings are highly correlated with the 
SIR findings: they are all about 98% . It is the same for the Primary school dataset, except HBtw . The correlations 
are a little lower for the NDC-classes dataset than the other datasets (it is in between 76–80% for all but about 
55% for HBtw ). The reason is that since the ratio between the number of nodes and hyperedges is low in this 
dataset, the infection rate becomes relatively small. This makes diffusion difficult in the SIR simulations, and as 
a result, it makes it slightly more difficult to see the effects of removing higher-order interactions. In general, 
HDFF , HDeg , and HCls provide similar effectiveness, and HBtw is slightly less effective on the NDC-classes and 
Primary school datasets. We should also note here that our main goal here is not to compare these proposed 
hypergraph centralities but to show how effective they are in finding influential higher-order interactions. As we 
see in Table 3, overall, they are quite effective in finding influential higher-order interactions.

Furthermore, as we see in Table 3, the first-order interactions have negative or very small spearman correla-
tion coefficients, which shows they as critical as higher-order interactions in the diffusion process on networks. 
This is due to the same reason as we explain in the size of giant component.

F(u) =
nu

n

(1)Rs =
F1 − F2

F1

Table 2.  Area under the size of giant component curves in Fig. 1 for edges (E) and higher-order interactions 
(H). The smaller values means the better performance. The cells for the best (smallest) value in each row for 
each dataset is typed bold.

Enron High school Primary school NDC-classes

E H E H E H E H

DFF 0.928 0.892 0.953 0.908 0.977 0.935 0.804 0.469

Degree 0.928 0.893 0.953 0.867 0.977 0.936 0.803 0.495

Betweenness 0.934 0.859 0.953 0.755 0.976 0.873 0.807 0.321

Closeness 0.930 0.826 0.953 0.864 0.975 0.886 0.810 0.483
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We further investigate the effect of parameter setting in the SIR models for each centrality measure of higher-
order interactions with two experiments. First, we fix the infection rate and vary the ratio of the removed influ-
ential higher-order interactions, Second, we fix the ratio of the removed higher-order interactions and vary the 
infection rate.

As the first experiment, we fix the infection rate at µ = 1.5µc and vary the ratio of the removed influential 
higher-order interactions in Fig. 2. The graphs are plotted with the diffusion index Rs on the y-axes and the vary-
ing ratio of hyperedges (p) on the x-axes. When analyzing the graph for the Enron dataset, it can be inferred that 
degree, betweenness, and closeness are seen to overlap each other and possesses a higher diffusion index Rs in 
comparison to DFF centrality. Therefore, it can be concluded that for the Enron dataset, degree, betweenness, 
and closeness centralities can be considered to be almost equally effective due to a consistently high Rs value with 
the increasing ratio of hyperedges. For the High school dataset, it can be observed that DFF centrality is the most 
effective of the four centrality measures with betweeness and closeness centralities overlapping and following 
the same set of values for Rs with an increase in the varying ratios. In contrast, the degree centrality proved to be 
least effective for its low Rs value below 0.5. Primary school dataset has the most consistent increase in the value 
of diffusion index Rs for all the centrality measures as there are little or no anomalies within the curves plotted 
for the four different centrality measures. The degree and the DFF centralities are considered the most effective 
centralities as they both yield the highest value of Rs in comparison to betweenness and closeness centralities. 
Finally, for the NDC-classes dataset, it can be seen that initially the DFF centrality had a higher diffusion index 
( Rs ) in comparison to the degree centrality. Still, after the ratio (p) increases above 12.5, the degree centrality 
proves to be more effective than the DFF centrality and the other two centrality measures. In conclusion, all 

Table 3.  Spearman correlation coefficients between the ranking scores and the diffusion indices for edges 
(E) and higher-order interactions (H). The results are averaged over 100 independent implementations with 
µ/µc = 1.5 . The cells for the best value in each row for each dataset is typed bold.

Enron High school Primary school NDC-classes

E H E H E H E H

DFF − 0.3720 0.8587 − 0.1032 0.9893 0.0190 0.9764 − 0.2099 0.7943

Degree − 0.4022 0.9025 − 0.3499 0.9779 − 0.1821 0.9805 − 0.1708 0.7684

Betweenness − 0.4448 0.9067 − 0.1360 0.9839 − 0.2830 0.8364 0.2948 0.5432

Closeness − 0.2964 0.9055 0.0145 0.9854 − 0.3438 0.9558 0.0099 0.7811

Figure 2.  Varying ratio of hyperedges through the implementation of the SIR Model. Here the infection rate is 
kept constant while the influential hyperedges are obtained by using each of the centrality measures. A higher 
diffusion index ( Rs ) determines the effectiveness of each of these methods.
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the four centrality measures proved to be effective with varying ratios of higher-order interactions used within 
this SIR model.

As the second experiment, we fix the ratio of the removed higher-order interactions at 5% and vary the infec-
tion rate µ , by varying the factor multiplied by µc , to compare the centrality measures further in Fig. 3. A greater 
diffusion index or Rs indicates that the removed hyperedges are influential, and therefore, the method is more 
effective. With the Enron dataset, closeness centrality performs the most effectively with betweenness centrality 
after it. DFF overall performs about as well as degree centrality but is outperformed by betweenness centrality 
and closeness centrality. However, the differences in performances are not drastic, and all the centrality measures 
overall perform well. In the Primary school network, degree centrality outperforms all the other centrality meas-
ures. Closeness and DFF overlap at several infection rates, with DFF performing slightly more effectively at other 
infection rates. In the High school dataset, DFF outperforms all the other centrality measures. However, after the 
infection rate reaches 1.8, betweenness centrality performs better than the rest of the centrality measures. Close-
ness centrality also performs well. In this dataset, degree centrality does not perform as well. When analyzing the 
NDC-classes network, it can be concluded that DFF outperforms all the centrality measures. Degree centrality 
performs better than closeness centrality at the lower infection rates. The two centrality measures’ effectiveness 
is about the same when the infection rate is set in between 1.4 and 1.6. At the greater infection rates, closeness 
outperforms degree centrality. Betweenness centrality is the least effective of the centrality measures in this 
dataset, but performance is not drastic. It can be noted that with Enron and NDC-classes, as the infection rate 
increases, the diffusion index or Rs increases as well. However, for High school and Primary school, Rs initially 
increases but then decreases. This is due to the network structure of these two datasets. These networks have a 
large number of hyperedges per vertex comparing the other networks. As a result, the change in the weights is 
larger than the other networks when 5% of hyperedges are removed and the critical value of the function of the 
difference between the infection rates before removing and after removing is smaller. For High school and Pri-
mary school networks, when we increase µ/µc from 1 to 2, the difference function reaches the critical value and 
starts decreasing after this point. For the other two networks, this is not the case. Overall, the centrality methods, 
with varying performances depending on the network applied to, effectively identify influential higher-order 
interactions in complex networks for various infection rates used in the SIR model.

Discussion
By proposing two new hypergraph Laplacians, we are able to generalize DFF, betweenness centrality, closeness 
centrality, and degree centrality hypergraphs to determine the influential higher-order interactions of a network. 
These centrality measures are applied to four real-world network datasets. The performances of the centrality 
measures in identifying influential higher-order network interactions are compared and evaluated by the size of 
giant component and the SIR model and using spearman’s rank correlation coefficients. Overall, all the central-
ity measures, adjusted to work with higher-order hyperedges, are effective in finding influential higher-order 

Figure 3.  Varying infection rate when using the SIR model on the selected networks. The ratio of hyperedges 
removed in each trial is the top 5% of influential hyperedges found by each of the centrality measures. A greater 
diffusion index or Rs indicates that the method is more effective.
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interactions. The high spearman correlations values for the centrality measures indicate this effectiveness as in 
Table 3. We also study the role of first-order interactions (edges) in the diffusion process compared to higher-
order interactions using both evaluation methods. Our experimental results show that higher-order interactions 
play more critical roles than first-order interactions. Furthermore, the proposed methods are effective when 
varying the ratio of the removed influential higher-order interactions and when varying infection rates.

As mentioned earlier, there are not many known centrality measures capable of effectively analyzing and 
identifying influential higher-order interactions in complex networks. Being able to utilize several centrality 
measures provides more flexibility, expanding the uses of determining significant higher-order interactions. 
It also provides more options to select the best possible method of analyzing higher-order interactions based 
on specific types of networks as well as computational complexity and more room to expand on methods for 
finding influential higher-order interactions. The results found are significant as they provide a basis for DFF, 
betweenness centrality, closeness centrality, and degree centrality, through hypergraph Laplacians, to be utilized 
in real-life applications such as rumor controlling, marketing, disease spreading, advertising, and more.

Methods
In this section, we start with defining the graph Laplacian. We then present our two hypergraph Laplacians 
that allow detecting the influential higher-order interactions. Lastly, we present the redefined graph centrality 
measures. We conclude this section with an illustrative example.

Let G be a weighted undirected graph. We define the graph Laplacian L as L = D − A , where D is the weighted 
degree matrix and A is the weighted adjacency matrix. The graph Laplacian only uses pairwise interactions, i.e., 
edges, between vertices and ignores higher-order interactions. Furthermore, it only allows to model diffusion 
between vertices, not higher-order structures.

To address these concerns, we first represent a complex network with a hypergraph. A hypergraph H denoted 
by H = (V ,E = (ei)i∈I ) on the finite vertex set V is a family (ei)i∈I (I is a finite set of indexes) of subsets of V 
called hyperedges. In a hypergraph, nodes represent entities and hyperedges represent higher-order interactions 
in the network. The size of a hyperedge is the number of the nodes in the corresponding higher-order interaction.

We use the diffusion framework on hypergraphs for identifying critical higher-order interactions. In this 
work, we model diffusion over a hypergraph inspiring from the the simplicial Laplacians defined in Horak 
et al.37. In the simplicial Laplacians, a hyperedge of size k + 1 is called a k-simplex. For example, vertices are 
called 0-simplices, edges are called 1-simplices and triangles are called 2-simplices. Let Dp ∈ R

np+1

2 × R
np
2  be 

the incidence matrix that encodes which p-simplices are incident to which (p+ 1)-simplices where np is number 
of p-simplices. It is defined as

where σ p
j  is the j-th p-simplex. Let Wp ∈ R

np × R
np be the diagonal weight matrix of the p-simplices. Then, the 

i-dimensional up Laplacian, Lup
i ∈ R

ni × R
ni , can be expressed as the matrix

Similarly, the i-dimensional down Laplacian, Ldown
i ∈ R

ni × R
ni , can be expressed as the matrix

Lastly, the i-dimensional Laplacian in both directions, Lboth
i ∈ R

ni × R
ni , is

We now define the proposed hypergraph Laplacians to find the critical higher-order interaction in hypergraphs. 
To be consistent with the simplicial Laplacian definition, we prefer to call a hyperedge of size k + 1 as k-simplex 
while defining our Laplacians. We first update the incidence matrix in (2) for simplices of any dimension as 
follows.

for p < r with σ p
j  being the j-th p-simplex. Here, Dp,r encodes which p-simplices are incident to which r-sim-

plices. Next, for a hypergraph with the maximum simplex dimension of n (i.e., hyperedge size of n+ 1 ), Laplacian 
between k-simplices through other simplices, Lk ∈ R

nk × R
nk , is defined as

for k ∈ {0, . . . , n} , where

with Wk being the diagonal weight matrix of k-simplices. Here, Lk encodes how k-simplices are related to each 
other where the relations can be through the shared neighboring simplices of any dimension. Next, we improve 

(2)Dp(i, j) =

{

1 if σ
p
j is on the boundary of σ

p+1
i

0 otherwise

L
up
i = W−1

i DT
i Wi+1Di .

L
down
i = Di−1W

−1
i−1D

T
i−1Wi .

L
both
i = L

up
i + L

down
i .

Dp,r(i, j) =

{

1 if σ
p
j is on the boundary of σ r

i

0 otherwise

Lk = Lk,0 + Lk,1 + · · · + Lk,n−1 + Lk,n

Lk,l =

{
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l DT

k,lWkDk,l if k ≤ l

Dl,kW
−1
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this Laplacian by considering relations between simplices of any dimension. Using the Laplacian Lk , we define 
the generalized hypergraph Laplacian, LH ∈ R

|E| × R
|E| with |E| being the number of hyperedges in H, as the 

following block matrix

where Dp,r =
∑n

i=0 D
i
p,r with p < r and Dq

p,r(i, j) = s , and s is the number of the q-simplices that are adjacent to 
both σ p

j  and σ r
i  for q /∈ {p, r} and Dp

p,r = Dr
p,r = Dp,r . Here, the blocks on the main diagonal are the Laplacians 

we develop initially, i.e., they provide the relation between simplices of fixed dimension through simplices of 
any dimension. Besides, the off-diagonal blocks do the same thing but for different dimensions. Therefore, LH 
is able to capture the relations between all simplices through simplices of any dimension, which addresses all 
the limitations.

To compute the influence of the higher-order interactions (i.e., hyperedges), we redefine four graph centrality 
measures, namely diffusion Frechet function (DFF)8,43, degree, betweenness, and  closeness5, which are originally 
defined for vertices, to hyperedges, thanks to the generalized Laplacian LH . We use this Laplacian to model rela-
tions between hyperedges, and define the centrality measures accordingly.

DFF centrality employs the diffusion Fréchet function (DFF) defined as the weighted sum of the diffusion 
distance between a hyperedge and the rest of the network. The diffusion distance measures the similarity between 
two given hyperedges by finding the similarity of the heat diffusion on a given time interval when the heat source 
is located on these hyperedges. More formally, let E = [E1, . . . , En]

T ∈ R
n be a probability distribution on the 

hyperedge set E of a hypergraph H. For t > 0 , the diffusion Fréchet function on a hyperedge ei ∈ E is defined as

with

where 0 ≤ �1 ≤ · · · ≤ �n are the eigenvalues of the hypergraph Laplacian LH with orthonormal eigenvectors 
φ1, . . . ,φn . A hyperedge with a smaller diffusion Fréchet function value is considered an influential hyperedge 
in the network since the heat diffusion centered at this hyperedge is similar to many hyperedges. The degree 
centrality is the number of connections of each hyperedge. The degree can be computed considering the con-
nection weights. The betweenness centrality measures how often each hyperedge appears on the shortest path 
between two hyperedges in the hypergraph. Since there can be several shortest paths between two hyperedges s 
and t, the centrality of hyperedge u is

where nst(u) is the number of shortest paths from s to t that pass through hyperedge u, and Nst is the total num-
ber of shortest paths from s to t. Shortest paths can be computed by considering the connection weights. Lastly, 
the closeness centrality uses the inverse sum of the distance from a hyperedge to all other hyperedges in the 
hypergraph. The centrality of a hyperedge u is

where Cu is the sum of the distances from hyperedge u to all other hyperedges. The distance from a hyperedge 
to another hyperedge can be computed by considering the connection weights.

Lastly, we model SIR on vertices of the hypergraph by utilizing the Laplacian L0 for evaluation. As we men-
tioned before, L0 reveals how vertices are connected through hyperedges of any size.

We now provide an illustrative example of the proposed methods.

Example 1 The hypergraph in Fig. 4 has six vertices (0-simplices), eight edges (1-simplices), and three triangles 
(2-simplices). Its Laplacian between 0-simplices, L0 , and generalized Laplacian, LH , are found below. In both 
Laplacians, the diagonal entries show the number of neighboring simplices for each k-simplex (we also count 
each hyperedge as its neighboring hyperedge in order to stress the importance of the direct neighborhood rela-
tion), and the off-diagonal entries show the number of the shared neighboring simplices with other simplices. 
The diffusion between simplices happens based on the number of the shared neighboring simplices with other 
simplices in these Laplacians.

FE ,t(i) =

n
∑

j=1

d2t (i, j)Ej .

d2t (i, j) =

n
∑

k=1

e−2�kt
(φk(i)− φk(j))

2

HBtw(u) =
∑

s,t �=u

nst(u)

Nst

HCls(u) =
1

Cu
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To find the influential higher-order interactions, we apply the SIR model and calculate centralities using L0 
and LH , respectively. As we see in Table 4, t1, t2, t3 are the most influential higher-order interactions based on 
HDFF and HDeg and these results are aligned with the corresponding diffusion index Rs . Similarly, t3 is the most 
influential based on HBtw and HCls . On the other hand, although e3 can be considered as one of the most central 
and, as a result, influential higher-order interaction, its diffusion index is relatively low. The reason for this is 
that its neighboring simplices, v3, v4, t2, t3 , are of high degree; hence, its removal relatively affects the diffusion.

Figure 4.  A hypergraph with six vertices (0-simplices), eight edges (1-simplices) and three triangles 
(2-simplex).

Table 4.  The cells for the best result in each row is colored gray.

hdff hdeg hbtw hcls rs

Rank Score Rank Score Rank Score Rank Score Rank Score

e1 11 1.412 11 7 6 0.026 11 0.533 4 0.078

e2 6 1.218 6 20 2 0.054 3 0.762 5 0.057

e3 4 1.123 4 28 3 0.034 2 0.800 11 0.029

e4 9 1.245 9 18 5 0.026 7 0.696 6 0.052

e5 8 1.231 8 19 9 0.017 8 0.696 7 0.045

e6 10 1.259 10 17 11 0.004 10 0.615 8 0.044

e7 7 1.231 7 19 10 0.015 9 0.696 9 0.040

e8 5 1.123 5 28 4 0.028 4 0.762 10 0.031

t1 3 1.092 3 31 8 0.021 6 0.727 2 0.125

t2 1 1.061 1 34 7 0.024 5 0.762 3 0.111

t3 2 1.081 2 32 1 0.065 1 0.800 1 0.139
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