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Development of a new 
poly‑ε‑caprolactone with low 
melting point for creating 
a thermoset mask used in radiation 
therapy
Takahiro Aoyama1,2*, Koichiro Uto3, Hidetoshi Shimizu1, Mitsuhiro Ebara3, 
Tomoki Kitagawa1, Hiroyuki Tachibana1, Kojiro Suzuki4 & Takeshi Kodaira1

This study aimed to develop a poly‑ε‑caprolactone (PCL) material that has a low melting point 
while maintaining the deformation ability. The new PCL (abbreviated as 4b45/2b20) was fabricated 
by mixing two types of PCL with different molecular weights, numbers of branches, and physical 
properties. To investigate the melting point, crystallization temperature, elastic modulus, and 
elongation at break for 4b45/2b20 and three commercially available masks, differential scanning 
calorimetry and tensile tests were performed. The melting point of 4b45/2b20 was 46.0 °C, and that 
of the commercially available masks was approximately 56.0 °C (55.7 °C–56.5 °C). The elastic modulus 
at 60 °C of 4b45/2b20 was significantly lower than the commercially available masks (1.1 ± 0.3 MPa 
and 46.3 ± 5.4 MPa, p = 0.0357). In addition, the elongation at break of 4b45/2b20 were significantly 
larger than the commercially available masks (275.2 ± 25.0% and 216.0 ± 15.2%, p = 0.0347). The 
crystallization temperature of 4b45/2b20 (22.1 °C) was clinically acceptable and no significant 
difference was found in the elastic modulus at 23 °C (253.7 ± 24.3 MPa and 282.0 ± 44.3 MPa, p = 0.4). 
As a shape memory‑based thermoset material, 4b45/2b20 has a low melting point and large 
deformation ability. In addition, the crystallization temperature and strength are within the clinically 
acceptable standards. Because masks made using the new PCL material are formed with less pressure 
on the face than commercially available masks, it is a promising material for making a radiotherapy 
mask that can reduce the burden on patients.

In radiotherapy for head and neck cancer, a patient-specific thermoplastic mask is created to improve the patient’s 
positional accuracy because head and neck cancer is often in proximity to critical organs such as the brain stem, 
spinal cord, and optic  nerves1–8. Poly-ε-caprolactone (PCL), which has thermoset properties, is a widely used 
material in commercially available  masks9. The melting point of PCL is generally around 55 °C–60 °C10,11. To 
create the mask, it is necessary to heat PCL above its melting point, which creates the risk of burns, a physical 
burden due to the use of sedatives for pediatric patients, and a mental burden due to pressing a high-temperature 
material against the patient’s  face3,12. Thus, the current commercially available masks are of great disadvantage 
to the patients.

To lower the melting point of PCL, the molecular weight of the material should be  decreased13,14. However, 
when the melting point of PCL is lowered, its deformation ability  reduces15. In clinical practice, because the mask 
is molded by pressing the heated PCL against the patient’s face, the pressure applied when creating the mask 
is increased, or a mask with sufficient accuracy cannot be created when the deformation ability of the PCL is 
reduced. In recent years, to eliminate the burden on patients caused by heat against their face, many reports have 
detailed the efficacy of patient-specific masks using three-dimensional print technology (3D printed mask)16–23. 
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However, 3D-printed masks do not have widespread clinical use yet owing to many problems that remain to be 
solved, such as production technology, cost, time limits, and dose  verification20,21. Thermoplastic polyurethane, 
which is used in body immobilization  systems24, is inappropriate for use as a mask because hydrolysis occurs 
and the stability of the mask decreases when it is immersed in high-temperature  water25,26. In contrast, PCL is 
inexpensive, easy to form, and has a long history of being used as a mask for radiotherapy; moreover, the per-
formance of the immobilization system is  guaranteed1–6. In addition, the use of PCL has been approved by the 
United States Food and Drug Administration and can be safely used for radiotherapy. Therefore, a mask made 
of PCL that has a lower melting point while maintaining the deformation ability would be useful; however, to 
date, no such product exists.

Uto et al. proposed a method for lowering the melting point by mixing two types of PCL with different 
molecular weights, numbers of branches, and physical  properties27. According to this method, by changing the 
mixing ratio, a PCL that has an arbitrary melting point between the melting points of other PCLs can be pro-
duced. In addition, the melting point can be lowered while maintaining the deformation ability by combining 
a PCL that has a low melting point with one that has a large deformability. To investigate this possibility, this 
study aimed to develop a PCL that has a low melting point while maintaining the deformation ability to reduce 
the burden on the patient.

Methods
Development of the cross‑linked PCL. Synthesis of branched PCL macromonomer. PCL was prepared 
by cross-linking tetra-branched PCL with acrylate end groups in the presence of linear telechelic PCL with 
acrylate end groups according to a previously reported  protocol28–30. Briefly, linear and tetra-branched PCL were 
synthesized by ring-opening polymerization of ε-caprolactone (Tokyo Chemical Industry [TCI] Co., Tokyo, 
Japan) that was initiated with tetramethylene glycol (Wako Pure Chemical Industries, Osaka, Japan) and pen-
taerythritol (TCI) as initiators, respectively. Then, acryloyl chloride (TCI) was reacted to the hydroxyl end group 
of the branched chains to obtain the macromonomers. The structures and molecular weights were estimated by 
proton nuclear magnetic resonance spectroscopy (1H NMR) (JEOL, Tokyo, Japan). The spectra of the reaction 
mixture is shown in Fig. 1 and Supplementary figure S1. The average degrees of polymerization of each branch 
for linear and tetra-branch PCL estimated by 1H NMR were 20 and 45, respectively. The linear PCL with average 
degrees of polymerization of 20 was abbreviated as 2b20, and the tetra-branched PCL with average degrees of 
polymerization of 45 was abbreviated as 4b45 (Fig. 2).

Fabrication of cross‑linked PCL macromonomers. The 2b20 and 4b45 macromonomers were dissolved in 50 
wt% in xylene containing 1.5 wt% (against polymer) benzoyl peroxide (Sigma-Aldrich, St. Louis, MO, USA) 
and were mixed at a ratio of 33.3 wt% and 66.7 wt%. The solution was injected between glass slides with a 0.2-
mm thick Teflon spacer. The samples prepared using thermal polymerization at 80 °C for six hours to obtain 
the cross-linked PCL were washed using acetone (a good solvent) and shrunk using methanol (a poor solvent), 
and then dried for 12 h at a reduced pressure. From these processes, a mixed cross-linked PCL, abbreviated as 
4b45/2b20, was fabricated.

Figure 1.  1H NMR spectra of linear (a) and tetra-branched (b) PCL.
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Physical characterization of the developed PCL. Measurement of melting point and crystallization 
temperature of the PCLs. To investigate the melting points of 2b20, 4b45/2b20, and 4b45, the thermal prop-
erties were measured (temperature range: 0–100 °C) by differential scanning calorimetry (DSC) (DSC-6100, 
SEIKO Instruments, Chiba, Japan) at a heating rate of 5 °C/min. In addition, to investigate the crystallization 
temperature, DSC was performed at − 10 °C/min. The melting point and crystallization temperatures were de-
fined as the endothermic and exothermic peaks on DSC.

Measurement of elastic modulus and elongation at break. To investigate the elastic modulus of 4b45/2b20 at 
heating and room temperature, a tensile test (AG-50kNXplus, Shimadzu, Kyoto, Japan) according to the Japa-
nese industrial standards (JIS) K7161-2 was performed at 60 °C and 23 °C. Additionally, the elongation at the 
break was measured from the tensile test at 60 °C. The sample was attached using probes with a flat screw grip 
made of cast iron (Fig. 3). As for the 60 °C conditions, the tensile test was started after heating using the test 
machine for 15 min at 60 °C. The tensile tests were conducted with a loading rate of 200 mm/min. The elastic 
modulus was determined using the initial slope of the stress–strain curve on the tensile test, and the elongation 
at break was defined as the materials’ breakage point. Every measurement was repeated three times to confirm 
the reproducibility.

Physical characterization of the commercially available masks. Measurement of melting point, 
crystallization temperature, elastic modulus, and elongation at break. To investigate the physical characteri-
zation of the three types of commercially available masks Type-S (CIVCO, Iowa, USA), Portrait (Qfix, PA, 
USA), and Create (Shenzhen Tengfei Yu Technology Co., Shenzhen, China), analysis was performed using DSC 
(DSC823e, Mettler-Toledo LLC, Tokyo, Japan). Additionally, tensile test using the Type-S mask was conducted 
at 60 °C and 23 °C. The heating rate of DSC was 5 °C/min and − 10 °C/min, and the loading rate of the tensile test 
was 200 mm/min. Every measurement was repeated thrice to confirm the reproducibility.

Statistical analysis. The Mann–Whitney U test was used to compare differences in the elastic modulus and 
elongation at break between 4b45/2b20 and Type-S. The two-sided p values < 0.05 were significantly different. 
The statistical analyses were conducted, using EZR version 1.3.6 (Saitama Medical Centre, Jichi Medical Uni-
versity, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, 
Vienna, Austria)31.

Figure 2.  Schematic illustrations of (a) macromonomer synthesis and (b) cross-linking reaction.
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Results
Melting point and crystallization temperature. The melting point and crystallization temperatures 
were evaluated using DSC as presented in “Physical characterization of the developed PCL” and “Physical char-
acterization of the commercially available masks”. The melting points of 2b20, 4b45/2b20, and 4b45 were 39.7 °C, 
46.0 °C, and 53.0 °C, respectively, and their crystallization temperatures were 2b20, 4b45/2b20, and 4b45 were 
18.4 °C, 22.1 °C, and 26.2 °C, respectively. The melting points of the commercially available masks were 56.2 °C 
(Type-S), 55.7 °C (Portrait), and 56.5 °C (Create), and their crystallization temperatures were 29.7 °C (Type-S), 
32.2 °C (Portrait), and 33.2 °C (Create) (Figs. 4 and 5).

Figure 3.  Photographs of the machine for the tensile test. The poly-ε-caprolactone (PCL) is sandwiched 
between chuck and pulled in the direction of the black arrow at 200 mm/min.

Figure 4.  Differential scanning calorimetry charts of the developed poly-ε-caprolactone materials: (a) 2b20, (b) 
4b45/2b20, and (c) 4b45, and commercially available masks: (d) Type-S, (e) Portrait, and (f) Create. The melting 
points measured from endothermic peak are shown.
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Elastic modulus and elongation at break. The elastic modulus and elongation at break were measured 
using the tensile test as presented in“Physical characterization of the developed PCL” and “Physical characteriza-
tion of the commercially available masks”. The stress–strain curves on the tensile test of 4b45/2b20 and the com-
mercially available mask (Type-S) at 60 °C are shown in Supplementary figure S2. The elastic muduli at 60 °C 
were 1.1 ± 0.3 MPa (4b45/2b20) and 46.3 ± 5.4 MPa (Type-S), and the elongation at break were 275.2% ± 25% 
(4b45/2b20) and 216 ± 15.2% (Type-S). The elastic moduli at 23  °C were 253.7 ± 24.5  MPa (4b45/2b20) and 
282.0 ± 44.3 MPa (Type-S). Considerable differences were observed in the elastic modulus at 60 °C (p = 0.0357) 
and elongation at break (p = 0.0347), but no significant difference was found in the elastic modulus at 23  °C 
(p = 0.4) (Table 1).

Discussion
The melting point of 2b20 (39.7 °C) was lower than that for 4b45 (53.0 °C). The tendency for the melting point to 
decrease with the decrease in the molecular weight of PCL was the same as described in previous studies  [13,14,33]. 
In contrast, the melting point of the newly developed PCL (4b45/2b20) was 46.0 °C, which was an intermediate 
point between 2b20 and 4b45 and was approximately 10 °C lower than the three commercially available masks 
(55.7 °C–56.5 °C). When the skin temperature is increased to approximately 50 °C, pain is gradually elicited, 
with grade 1 burns occurring within 3 min and grade 2 burns occurring within 6  min32,33. The PCL melting point 
of ≤ 50 °C is useful for decreasing the patient burden because the heating temperature can be < 50 °C which is less 
than that required for a grade 1 burn as just described. Crystallization temperature indicates the temperature 
around which the material begins to crystallize when creating the mask. Because of the time required for creating 
the mask when the crystallization temperature is far below room temperature, a crystallization temperature that is 
around room temperature is preferable for PCL. Therefore, the results shown herein for 4b45/2b20 with a melting 
point of 46 °C and crystallization temperature of 22.1 °C are useful and within a reasonable range for clinical use.

The elastic modulus of PCL during heating indicates the maximum pressure exerted on the patient’s face 
when creating the mask. The elastic modulus of 4b45/2b20 was significantly lower than that of the commercially 
available masks under same conditions. Additionally, the elongation at break indicates the amount of maximum 
elongation of the material at 60 °C, and that of 4b45/2b20 were significantly larger than the commercially avail-
able masks. Linear PCL made of tetramethylene glycol has lower transition temperature (melting point) than 
tetra-branched PCL and exhibits relatively large deformation ability. As tetramethylene glycol was used for the 
low melting point PCL of 4b45/2b20, its deformation ability was maintained despite the low melting point. The 

Figure 5.  Differential scanning calorimetry charts of the developed poly-ε-caprolactone materials: (a) 2b20, 
(b) 4b45/2b20, and (c) 4b45, and commercially available masks: (d) Type-S, (e) Portrait, and (f) Create. The 
crystallization temperatures measured from exothermic peak are shown.

Table 1.  Elastic modulus and elongation at break of the 4b45/2b20 and the commercially available mask 
(Type-S). PCL; poly-ε-caprolactone.

Type of PCL

Elastic modulus (MPa) Elongation at break at heating (%)

60 °C 23 °C 60 °C

4b45/2b20 1.1 ± 0.3 253.7 ± 24.5 275.2 ± 25.0

Type-S 46.3 ± 5.4 282.0 ± 44.3 216.0 ± 15.2

p-value 0.0357 0.4 0.0347
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elastic modulus at 23 °C indicates the strength of the material at room temperature, and no significant differences 
between 4b45/2b20 and the three commercially available masks were observed (Table 1).

Based on these results, it was confirmed that the 4b45/2b20 has both a low melting point and a large deforma-
tion ability as well as clinically acceptable strength. The developed PCLs have an advantage because the handling 
method is the same as that for commercially available masks, and thus, it can be easily introduced into clinical 
settings. Additionally, in our previous research, we confirmed using computed tomography images and the simi-
larity index that the PCL created in the same process as this research (“Development of the cross-linked PCL” and 
“Physical characterization of the developed PCL”) has almost a perfect shape memory  performance34. Therefore, 
even when the mask creation fails for whatever reason (e.g., patient’s movement during mask formation), the 
shape can be restored to its original shape (i.e., flat) by heating the material again so that the mask can be easily 
recreated (Supplementary figure S3). Additionally, because the PCL has been approved for cleaning with 70% 
alcohol based on the recommended cleaning procedures according to the World Health  Organization35,36, it can 
be used safely for at least six months to one year. Thus, the new PCL is promising as a material for a radiotherapy 
mask that can reduce the burden on patients.

This study has two major limitations. First, the tensile test of the commercially available masks could not be 
performed in actual conditions for clinical use, which is to heat for few minutes at 75 °C as recommended in the 
package insert and technical  paper9. However, in the tensile test, to ensure uniform temperature of the material, 
it was necessary to heat the material for approximately 15 min. Because prolonged heating is not expected to be 
performed in the clinical setting, the commercially available masks are not sufficiently cross-linked, and the mate-
rial melted during heating at 75 °C. Therefore, in this study, the tensile test at 75 °C could not be performed. To 
investigate the pressure to the patient’s body under clinical conditions, additional data is needed using a pressure 
 sensor37. Second, this study did not evaluate any mixture other than 2b20 and 4b45. If the melting point is set 
too low, unintended deformation may occur during transportation depending on the season. Additionally, if the 
crystallization temperature is too close to room temperature, the time required for the mask to harden increases. 
The PCL which was mixed with 2b20 and 4b45 at a ratio of 33.3% and 66.6%, has sufficient deformation ability, 
appropriate melting point, and crystallization temperature. Therefore, the 4b45/2b20 is acceptable for clinical 
use. However, because the physical characteristics change based on the molecular weight, number of branches, 
and mixing  ratio27–30, determining the optimal combination by conducting additional evaluations is necessary. 
In the future, using any reinforcement material also needs to be considered as regards good face-mask adhesion. 
Although issues, such as price and radiation scattering remain, it is necessary to evaluate by adding additives, 
such as cellulose to develop better materials.

Conclusions
In this study, we developed a new PCL (4b45/2b20) by mixing two different PCLs and investigated the results of 
the analysis performed using DSC and tensile tests between the developed PCL and three commercially available 
masks. The new PCL 4b45/2b20 has a low melting point (46 °C) and large deformation ability, and its crystalliza-
tion temperature and strength are within the clinically acceptable standards. These results show that 4b45/2b20 
will be useful as a material for a thermoset mask for radiotherapy with reduced patient burden.

Data availability
The datasets during and/or analyzed during the current study available from the corresponding author on 
reasonable request.
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