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WASP: a software package 
for correctly characterizing 
the topological development 
of ribbon structures
Zachary Sierzega1,3, Jeff Wereszczynski1* & Chris Prior2

We introduce the Writhe Application Software Package (WASP) which can be used to characterisze the 
topology of ribbon structures, the underlying mathematical model of DNA, Biopolymers, superfluid 
vorticies, elastic ropes and magnetic flux ropes. This characterization is achieved by the general twist–
writhe decomposition of both open and closed ribbons, in particular through a quantity termed the 
polar writhe. We demonstrate how this decomposition is far more natural and straightforward than 
artificial closure methods commonly utilized in DNA modelling. In particular, we demonstrate how 
the decomposition of the polar writhe into local and non-local components distinctly characterizes 
the local helical structure and knotting/linking of the ribbon. This decomposition provides additional 
information not given by alternative approaches. As example applications, the WASP routines are 
used to characterise the evolving topology (writhe) of DNA minicircle and open ended plectoneme 
formation magnetic/optical tweezer simulations, and it is shown that the decomponsition into local 
and non-local components is particularly important for the detection of plectonemes. Finally it is 
demonstrated that a number of well known alternative writhe expressions are actually simplifications 
of the polar writhe measure.

Quantifying the varying and complex geometries of three dimensional curves is an important task in many fields. 
For example, flexible biomolecular structures such as polymer chains, DNA helices, and chromatin fibers adopt 
a wide range of conformations when exposed to different solvent/cosolute environments and external forces and 
 torques1–3. Characterizing the evolving morphology of these chains poses significant mathematical challenges 
that naturally draw on the fields of topology and differential geometry.

One of the most useful metrics for quantifying large scale structural changes in these complexes is writhe. 
The writhe is a global geometric quantity commonly used to characterize the conformational variety of circular 
DNA  structures4. Its utility relates to the fact that, for ribbon structures (see Fig. 1a) which can be used to model 
structures ranging from DNA molecules to magnetic flux ropes, it forms part of the invariant sum:

Here Lk is the linking number, a topological measure of the entwined nature of the two edges of the ribbon that 
is invariant under any change in shape which forbids their crossing (i.e it categorizes the ribbon’s entanglement). 
The writhe Wr represents the contribution to Lk from the self linking of the axis curve on itself (Fig. 1a). The 
twisting Tw is a measure of the rotation of the ribbon about its  axis5 (Fig. 1a). As an example of its use, Lk can 
be used as a fixed model constraint on the number of DNA sequence repeats. The constraint is then applied to 
an energy model of the DNA backbone which often has the twisting Tw as an elastic energy  component6–11. The 
writhe can then be used to constrain the allowed global (axial) shape of the molecule. In DNA models writhe 
measures supercoiling.

The most commonly known version of the link–twist–writhe relationship, Eq. (1), is for closed ribbons/curves 
such as DNA minicircles. The relationship given in Eq. (1) was originally derived by Călugăreanu12–14 and was 
popularised (but not derived) for a biological audience by  Fuller5,15. However, the theorem as originally derived 
is not applicable to open-ended ribbons such as those shown in Fig. 1a. This is because (i) the linking (Lk, as 
defined in that version of the theorem) is not an invariant for open-ended ribbon  structures16 and (ii) there is 

(1)Lk = Wr + Tw.
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no evidence that the equality in (1) holds if the ribbon is not closed. Therefore, it cannot constrain the interplay 
between internal twisting (Tw) and global self entanglement of the ribbon’s axis (Wr). Many interesting target 
applications which can be modelled by ribbons are open structures such as DNA molecules subjected to optical 
tweezer experiments and chromatin fibers.

To overcome this problem, Fuller originally suggested that one could extend the closed ribbon theorem to 
open ribbons by artificially extending the  structure15 as shown in Fig. 1b. This approach has been popular in 
the field of DNA  modelling7,8,17–21 and elastic tube  applications22–24. It is complicated by the fact that the closure 
will generally contribute to both the writhing and the linking of the composite and hence the extraction of clear 
geometrical insight from the calculated quantities cannot be consistently  achieved16,25,26. Alternative approaches 
have been formulated which approximate the writhing  value7,8,15,17,23,27,28, however, these will in general not charc-
terize the  writhing16,25 and hence cannot consistently be used to constrain the topology of the ribbon. Finally, 
some authors have simply chosen to utilize the definition of the original closed formula without a closure. In this 
case the Lk measure is no longer a topological invariant and the relationship loses its fundamental topological 
anchoring (the sum Tw +Wr is no longer fixed).

Previously, Berger and  Prior16 introduced a version of (1) which is applicable to open-ended ribbons. It is 
based on a definition of Lk (called the net-winding) which is invariant to all deformations of the ribbon that 
do not permit rotation at its ends. In supercoiling ribbon models it would be equivalent to the natural linking 
of the DNA plus the applied over-coiling of the structure. The twisting Tw is the same quantity as in the closed 
case and a definition of the writhing (termed the polar writhe) was based on the difference of these quantities. 
For closed ribbons this is equivalent to the original Călugăreanu theorem, but, since the net winding is also an 
appropriate topological constraint for open ribbons, it has a wider range of applications than the original theo-
rem. This framework has been regularly applied in the field of Solar physics since the original paper e.g.29–35 and 
is increasingly being applied in Elastic tube  modelling26,36,37 as well. However, it has not been widely adopted 
in the biophysical community and artificial closure methods are still readily employed for problems such as 
characterizing DNA supercoiling.

Here, we seek to introduce polar writhe to the biophysical community and to provide a user-friendly tool 
for its implementation. The first aim of this article is to introduce the open-ribbon version of Eq. (1) derived 
 in16 and extended to consider knotting deformations  in26. Both papers are somewhat technical, necessarily 
involving mathematical proofs. In this note we illustrate the properties of the polar writhe which underpin this 
open decomposition though instructive examples of constrained DNA supercoiling simulations. The second 
aim is to demonstrate how decomposing the polar writhe into local and non-local components, which measure 
“spring-like extension” deformations and “buckling-type” deformations/supercoiling changes respectively (see 
Fig. 1c,d), can provide critical additional insight into the curve’s geometry through a series of instructive exam-
ples. Third, we demonstrate how an extension of (1) as defined  in26 can detect transitions to knotting possible in 
open ribbon structures even when the ends of the ribbons are constrained from moving. Finally, we introduce 
the Writhe Analysis Software Package (WASP) which can calculate the components of Eq. (1) in both closed and 
open ended cases. WASP allows non-expert users to easily apply these calculations to standard curve files and 
is particularly geared towards usage with molecular dynamics trajectories, supporting common trajectory file 
types including those generated by popular MD software including AMBER and OxDNA as well as more general 
MD file types such as PDB files.

Figure 1.  Illustrations of concepts discussed in the introduction. (a) is an illustration of the meaning of the 
Wr + Tw decomposition. The left figure is a ribbon structure composed of an axis curve (red) and a second 
curve wrapping around this axis (blue). The linking of these two curves (invariant if the ends of the ribbon are 
fixed) can be decomposed into the self linking of the ribbon’s axis (Wr) and the total rotation of the second 
curve around the axial direction of the first Tw. (b) indicates an artificial extension of the ribbon (a closure). 
(c,d) illustrate what is meant by local and non-local writhing. The curve in (c) coils helically at its centre; the 
local writhe measures this helical coiling along the curve’s length. The curve in (d) is knotted/self entangled, that 
is to say distinct sections of the curve wrap around each other. This is non-local writhing.
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The paper is structured as follows. In the first section, we introduce the polar writhe through a series of 
instructive example calculations. This includes highlighting the local/non-local decomposition and the additional 
information it provides. The Methods section provides a description of the DNA simulation experiments that 
were performed and designed to highlight aspects of the open Lk–Tw–Wr decomposition described  in16,26. This 
includes a description of how the algorithms in WASP function. The Results section details the analysis of these 
experiments and highlights how aspects of the polar writhe measure such as the local/non-local components and 
knot detection provide insight. In particular, we demonstrate how the non-local component of the polar writhe 
can serve as an indicator of plectoneme formation in both linear and circular DNA structures. These sections 
are aimed at providing a clear and easy to read guide to demonstrate how the WASP package can be used to 
provide insight into the evolving geometry of 3-D curves and ribbon structures such as those inherent in DNA 
structures. Additionally, in the final section we show how WASP can be used to detect knot and belt-trick type 
deformations, again through an instructive example. Finally, we provide a supplement which is of a much more 
technical nature and aimed at readers with a specific interest in ribbon topology. It details how the original closed 
Călugăreanu theorem (the closed ribbon Lk–Tw–Wr) and the Fuller writhing quantities all arise naturally as 
part of the framework described  in16,26. It is not necessary to read this supplement in order to use and interpret 
the WASP package, but it would be necessary in order to compare it to existing writhe calculation approaches.

Introduction to the polar writhe
In typical applications, Lk is a prescribed quantity (i.e. a fixed applied number of rotations of the structure in 
plectoneme experiments), and the twist Tw can be calculated as Lk-Wr. Thus, in this section, we focus on the 
definition of the writhing as the key quantity to be calculated.  In16,26 the definition of writhing was given the 
name the polar writhe which we label Wp to distinguish from the pre-existing closed ribbon definition (the 
reason for this name will be clarified shortly). In what follows, we introduce the quantity Wp through a series of 
instructive examples.

The polar writhe. The polar  writhe16 is the sum of a local component ( Wpl ) and a non-local component 
( Wpnl):

The twisted paraboloids shown in Fig. 2a provide an intuitive example of the behaviors tracked by these distinct 
components. The parabolas are described by the following formula:

The parameter θ , the winding angle, determines the number of rotations applied to the parabola (c.f. 
Fig. 2ai,ii). The height parameter h determines the relative stretching of this coil (c.f. Fig. 2aiii,iv). For this curve 

(2)Wp = Wpl +Wpnl .
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Figure 2.  Twisted paraboloids used to highlight aspects of the polar writhe. (a) paraboloids with varying 
heights h and winding angles θ . (a)(i),(ii) paraboloids with equal height but different winding exhibit differences 
in both Wpl and Wpnl as a result of large-scale rotation and increased helical density. (a)(iii),(iv) paraboloids with 
equal winding but varying height exhibit differences in Wpl only as the extent of buckling remains constant while 
helical density is varied. (b) The polar writhe decomposition as a function of the winding angle θ for a parabola 
for which Wp = 0.
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Wpnl = −θ/2π . The factor of 2π indicates that Wpnl measures the number of full rotations. The sign is due to the 
orientation of the curve as we shall explain shortly.

In the top row of Fig. 2a, h is fixed. In (a), θ = π , resulting in a single loop around the middle of the parabo-
loid. In this case Wpnl = −1 . In b there is an additional looping and Wpnl = −2 . The local component, which 
measures the local helical density of the paraboloid, is increased from (a)(i) to (a)(ii) due to additional winding 
at fixed height. In the bottom row we fix the winding ( Wpnl = −4 ) but vary the curve’s height h to highlight the 
effect on Wpl . As the height of paraboloid is increased from (a)(iii) to (a)(iv), the overall winding (and hence the 
non-local writhe) is unchanged. However, as the coil becomes increasingly less tightly wound, the local writhing 
decreases as its helical density is decreased. Note that in these cases the two components are generally of opposite 
sign, however, this is not a general property of the pair (Wpl ,Wpnl) . As shown  in16, if one chooses h ≈ 0.37 then 
Wp ≈ 0 irrespective of the choice of θ (see Fig. 2aii). We see the added value of the local/non-local decomposition 
providing information about the increasingly tight helical coiling which is missing from the total sum.

Curve splitting. The idea behind the polar writhe calculation is that we split the curve into sections sharing a 
mutual vertical height. If we have a Cartesian coordinate system (x, y, z) where z is the height, then we split the 
curve at turning points for which the curve changes direction from upward to downward pointing: ẑ · dx/dz = 0 . 
Examples of the parabolas (1 turning point, 2 sections) and a locally looped structure (2 turning points, 3 sec-
tions) are shown in Fig. 3a,b. In general, we label the subsections i of the curve that span heights z ∈ [zmin

i , zmax
i ] 

as xi . The local writhe quantifies the coiled geometry of each individual subsection and the non-local writhe 
quantifies the mutual winding of all distinct pairs of sections.

Local polar writhe. If the unit tangent vector of the curve x is T = dx/ds (s being the arclength of the curve), 
then:

The numerator represents the rotation of the unit tangent vector around the vertical direction. It is positive if the 
curve coils in a right-handed fashion and negative if left-handed. The denominator indicates (i) the rotation is 
given more weight if the curve is rotating relatively tightly (as with a small h parabola) and (ii) the modulus sign 
means that the orientation would be the same for a curve whether it points up or down, i.e. it only depends on 
the local helical chirality of the curve. The fact that this rotation is measured around the ẑ direction, which on a 
unit sphere of directions is the north pole, and that Wpl can be interpreted as an area on the unit sphere bound by 
the curve T and the pole is the reason for the name the polar writhe  (see16). However, this is not a crucial point 
in what follows and we do not mention it any further.

Non‑local polar writhe. Consider the parabola example. The curve is separated into sections x1 and x2 (as 
shown in Fig. 3c). We define an angle �12(z) which is the angle made by the vector joining section x1 to x2 at a 
fixed height z as shown in Fig. 3c. Wpnl measures the total number of rotations of this angle:
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Figure 3.  Illustrations of the non-local writhe calculation. (a,b) are curves split by their turning points. Their 
orientations are shown by arrows. (a) The parabola’s turning point is at its peak and the two sections (red and 
green) which are partitioned by this turning point are shown. (b) A looped curved which could represent the 
beginning of plectoneme formation. It has two turning points at the top and bottom of the loop. The curve is 
split into three sections, red, green and blue respectively, by these turning points. (c) The two sections of the 
parabola x1 and x2 share a common mutual height z ∈ [0, h] . At each height a vector is drawn from x1 to x2 . As 
indicated, they make an angle �12(z) with respect to a fixed direction. The non-local polar writhe measures the 
rotation of this angle. (d) Subsections x1 and x3 of the curve shown in (b) which share a mutual z range between 
two planes z = zmin

13  and zmax
13  . These subsections are shown in bold coloring. (e) The Wpnl calculations for the 

mutual subsections shown in (d). The difference in the angles �13(z
min
13 ) and �13(z

max
13 ) which characterises the 

non-local writhing contribution from these two sections is depicted.
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To ensure that Wp forms part of an invariant sum with the twisting, the orientation of the curve sections is 
accounted for by multiplying by an indicator function σi with σi = +1 if the curve section xi is moving upwards 
and σi = −1 if it is moving downwards. Additionally, the calculation is counted twice. This is necessary to form 
part of the invariant sum Wp + Tw . Thus for the parabola:

For the looped curve shown in Fig. 3b we follow a similar procedure for the pairs (x1, x2) , (x1, x3) and (x2, x3) . 
The only extra complication is that the curve sections do not share the same mutual z ranges and the winding is 
only measured for subsections of the curve which share the same mutual z range z ∈ [zmin

ij , zmax
ij ] as indicated in 

Fig. 3d. The non-local writhe for the pair (x1, x3) would be:

as indicated in Fig. 3e. Note that the product of σ1σ3 here is positive as both sections have the same vertical 
orientation. The total Wpnl of this curve would be:

In general, Wpnl is just the mutual winding of all subsections of the curve which share a mutual height range. In 
the general case where the curve xi has n sections (and n− 1 turning points) the non-local writhing is calculated 
as:

Looped local to non‑local transition. We consider a second illustrative example: a curve transitioning from a 
locally helically coiled curve to a looped curve, the first part of plectoneme formation. In this case, the looped 
curve is the curve shown in Fig. 3b and used as an example above. This transition is described by a set of curves 
which are equilibria of elastic rod models:

Here s ∈ [−5, 5] is the curve’s arclength and τ is a parameter which acts to twist the tube as it is decreased, here 
from 3 to 0.2. As the tube is twisted, its axis transitions from a curve with a helical perversion around its centre, 
see Fig. 4(i), to a looped curve indicative of the beginning of plectoneme formation as shown in Fig. 4(ii). One 
can obtain this behaviour by steadily twisting a cable under tension; that they are are equilibria of an elastic tube 
model is shown  in38, and thus they represent the deterministic counterpart of a worm-like ribbon model e.g.7,8. In 
Fig. 4 we see its Wp values as τ is decreased from 3 to 0.2 in 200 evenly spaced steps. The polar writhe Wp is seen 
to steadily increase as the curve becomes at first increasingly helically coiled at its centre and then increasingly 
looped. For curves 1–138 all of the contribution to Wp is local due to the helical kinking of the curve around 
its centre ( Wpnl = 0). After this, the loop begins to form and the curve develops non-local writhing ( Wpnl > 0 ). 
What is interesting is the dramatic inter-conversion of local and non-local writhing which occurs whilst the sum 
changes smoothly through this transition, indicating that the heilical coiling becomes distorted to form the loop. 
Again we see the local/non-local decomposition providing significant extra information which characterizes the 
geometrical development of the curve.

Non‑local writhing detecting plectoneme formation. An example of a highly plectonemed curve is shown Fig. 4. 
Marked on the curve are 8 clear crossings indicating looped geometry. Since we have seen in the parabola exam-
ple (Fig. 2) that loops typically have a Wpnl value of ±1 , we should expect the non-local writhing of this curve to 
have a magnitude of around 8. In fact, for this curve, Wp = 8.88 , Wpnl = 8.55 , and Wpl = 0.33 (all to 3.s.f). Thus, 
we can infer that for highly plectonemed curves, Wp will be largely dominated by non-local writhing and will 
roughly count the number of loops of the plectoneme.

Finally, for the interested reader, an additional set of example calculations including local/non-local decom-
positions of example curves can be found in Chapter 4  of39  and16 and examples of elastic rod equilibria can 
be found in in chapter 6  of26. Shortly, we will turn our attention to calculating this quantity for the output of 
numerical supercoiling experiments.
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Self crossing detection. Both the linking Lk (the net winding) and the polar writhe Wp change by a a value 
of ±2 if the ribbon intersects itself (the twist changes continually). This would, for example, be relevant in DNA 
models for topoisomerase action.  In26,36, this fact was used to detect whether solution branches for an elastic tube 
model were physically valid. A series of evolving elastic equilibria were obtained using a continuation method 
and when the values of Wp jumped by ±2 the equilibrium path could be automatically ruled out as not physi-
cally accessible (as elastic tubes cannot self intersect). Of course in DNA modelling we typically expect this to be 
impossible due to localized repulsion of the polynucleotide chains.

Methods
Numerically simulating DNA tweezer experiments. Plectonemic DNA structures were generated 
via coarse-grained molecular dynamics simulations of magnetic/optical tweezer experiments. 600 base-pair lin-
ear DNA helices were constructed with three different net-windings: Lk = 40 (≈ 24◦per turn) (underlinked) 
, Lk = 60 (≈ 36◦ per turn) (torsionally relaxed), and Lk = 80 (≈ 48◦per turn) (over-linked). Their evolution 
was simulated using the oxDNA2  model40. To simulate tweezers experiments, each helix was first aligned such 
that its axis was along the ẑ direction. Anchor restraints were placed on the bottom five base-pairs of each helix 
to permanently fix their position and harmonic restraints were applied to the top five base-pairs of each helix to 
allow the respective base pairs to move only in the ẑ direction and also to prevent the DNA from shedding its 
winding by simply untwisting. In addition to these restraints, a range of extension forces (0pN, 2pN, 4pN, 6pN, 
8pN) were applied to each helix in separate simulations by pulling the top five basepairs in the +ẑ direction. Each 
helix was simulated for a total production run of 1.2×108 timesteps using the oxDNA2 model with a salt con-
centration of 0.5 M. We only detail three specific cases below for brevity. These cases are chosen as they highlight 
the critical characteristics of the polar writhe measure as applied to these numerical supercoiling experiments.

Atomistic molecular dynamics simulations of supercoiled DNA minicircles. 108 base-pair 
minicircles were constructed with Lk = 14 ( �Lk = +4 ) to promote conformational variety/structural buckling 
predicted by previous experimental/simulation explorations of minicircle  dynamics4,41. Two base-pair sequences, 
(AA)27(AT)27(AA)27(AT)27 and (GG)27(GC)27(GG)27(GC)27 , were explored as well. Simulations were performed 
in explicit solvent using AMBER with a modified DNA BSC1 force field to correct for the circularized DNA and 
Smith and Dang ion modifications for Na and Cl  ions42–44. DNA minicircles were solvated in a TIP3P rectangular 
water box with a 15.0 Å buffer. Following solvation, the appropriate cosolute (spermine) was placed along with 
the DNA within the water box and the entire system was neutralized with Na+ ions. Initial minimization was 
performed on the cosolute and water molecules with a 10 kcal/mol restraint placed on the DNA residues. After 
the initial minimization, restraints were removed from the DNA and the entire system was allowed to minimize. 
Following the minimization phase, restraints were reapplied to the DNA residues and the system was heated 
from 100 to 300 K. Consequent to heating, restraints were progressively removed from the DNA residues over a 
period of ≈ 4 ns. MD was performed without restraints on the equilibrated system for 100ns for each trial in the 
NVT ensemble. The number of spermine molecules in each simulation varied between trials to explore different 
ranges of cosolute concentration.

Obtaining a DNA axis. To calculate Wp , it is first necessary to generate an axis for the DNA molecule. In 
order to properly characterize the geometry of a given DNA structure, it is important to generate an axis curve 
in a manner such that its total curvature is minimized. Failure to do so may result in the misrepresentation of the 
DNA geometry due to excess local writhe introduced to the axis curve as a result of the helical nature of the DNA 
backbone strands. Simplistic axis curve formulations such as the axis curve obtained by taking the midpoint of 
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Figure 4.  Polar writhe calculations of plectoneme geometries. (a) Wp values of a loop forming curve 
deformation. (b) A curve with significant plectoneme structure. The individual loops present are marked.
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the C1’ atoms located on opposite sides of each base-pair along the helix result in coiled axes that exhibit the 
same helical periodicity as their encompassing backbone strands. To avoid such misrepresentation, the WASP 
package uses an implementation of the WrLINE axis curve method developed by Sutthibutpong, Harris and 
 Noy45 which effectively smooths the contour of the axis curve and eliminates the unwanted “coiling” and helical 
periodicity exhibited by alternative methods that generate unwanted excess local writhe. Full details regarding 
the WrLINE formulation can be found  in45, but key features of the formulation are summarized below maintain-
ing similar notation as  in45.

Unlike a basic midpoint method in which an axis is obtained by simply calculating the midpoint mi of the 
pair of C1’ atoms ( rC1’,A & rC1’,B—see Fig. 5) on opposite sides of a corresponding basepair j:

for each base-pair along the DNA helix, the midpoint ri of each “dinucleotide” (2 base-pair) step along the DNA 
helix consisting of the two pairs of C1’ atoms on opposing sides of a set of two consecutive base-pairs j & j + 1 
on the helix is calculated as:

The remainder of the WrLINE method can then be roughly summarized by the following procedure: 

1. Given a dinucleotide midpoint ri , calculate the base-pair step twist θi from the dinucleotide step correspond-
ing to ri

2. Determine the number of base-pairs (2m) required to complete a full helical turn around the base-pair step 
corresponding to ri (i.e. m base-pairs above ri and m base-pairs below ri).

3. Calculate a weighting factor w related to the sum of the base-pair twists θi−1, θi+1, θi−2, θi+2 ... throughout 
the helical turn around ri.

4. Use ri , m, and w to determine a point on the axis curve hi.

The above procedure is then repeated for each midpoint ri to obtain a full set of axis points hi that represent the 
DNA helical axis. Note that the summary of the WrLINE method provided above has been included solely for 
the purpose of familiarizing the reader with the axis curve method utilized in WASP as well as to highlight the 
intricacies of determining a proper helical axis. The reader is strongly encouraged to refer  to45 for a comprehen-
sive treatment of the WrLINE method.

It is important to note that the WrLINE method is intended to be used primarily with closed DNA structures 
such as DNA minicircles. As such, the algorithm requires that there exist a full helical turn of DNA around each 
point ri as specified above. This requirement is problematic in the case of linear DNA helices where a full heli-
cal turn of DNA cannot exist around points ri near the ends of the helix. In order to circumvent this issue, two 
options are available: 

1. Treat the DNA structure as though it were closed (joined at the ends) despite the fact that it is, in reality, 
not. This allows the WrLINE method to be utilized verbatim as outlined  in45, but will result in a number of 
undesirable stray axis points generated in arbitrary positions external to the DNA structure. The number 
of stray axis points will be proportional to the extent of supercoiling of the helix (how many base-pairs are 
required to make a full helical turn) and can be safely, manually deleted via knowledge of the system/visual 
inspection. These stray axis points will always constitute the “ends” of the unaltered axis as they are a product 
of end effects produced by the WrLINE algorithm. This option is the most general, but should be utilized 
with extreme caution.

2. Start the WrLINE method on the first points ri such that one full helical turn of DNA can be formed around 
the respective points ri on each end of the DNA helix (satisfying the criteria for the calculating the �m 
 parameter45) as determined prior to beginning the axis curve computation.

(11)mj =
rC1’,A + rC1’,B

2

(12)ri =
rC1’,A + rC1’,B + rC1’,C + rC1’,D

4
.

Figure 5.  Left: Side perspective of backbone atoms along a helical fragment of DNA. Beads r represent C1’ 
atoms along the DNA backbone. Right: Top view of backbone atoms along the helical fragment.
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At the time of writing, options 1 and 2 are implemented in WASP via the deleteatoms and autodelete arguments 
respectively. In either case, the total number of resulting axis points will be less than the total number of base-
pairs when evaluating open DNA structures using the WrLINE method properly.

Calculating Wp. The WrLINE algorithm yields a discrete curve 
{

xj

}n

j=1
 . The algorithm for calculating Wp for 

this curve is as follows: 

1. Split the curve into n sections xi by locating its turning points. This is done from the set of tangent vectors 
Tj = xj+1 − xj and use of tricubic interpolation.

2. For each section xi calculate Wpl(xi) using Eq. (4). The WASP package uses a modified version of Simpson’s 
 rule46.

3. Identify the range of mutual overlap of all pairs of sections (xi , xk) . The WASP package uses a simple binary 
search algorithm.

4. Use Eq. (9) to calculate Wpnl (a branch cut tracking method is used to track full windings).

This is implemented in C++ for the WASP package, but the main routines can be accessed by a Python interface.
In addition, for comparison to existing calculations, we calculate the writhe as defined by:

using the algorithm specified  in47. This is the expression for writhing used in the closed ribbon Călugăreanu theo-
rem (applied here to open curves). As discussed in the introduction, this measure has been used in open ribbon 
studies to characterise the writhing geometry of the ribbon’s axis and we present the results here for comparison. 
We do not present any results using closures. We highlight that whilst (13) is a valid quantity for open curves, it 
does not generally form an invariant sum with the twisting Tw and we lose the topological control associated with 
this invariance. In these plectoneme experiments (for example), this means the sum Wp + Tw is exactly equal 
to the experimentally applied Lk whilst the sum Wr + Tw is not. It was demonstrated in  both16  and26 that there 
is always a closure for which the closed ribbon structure will have the exact same writhe value as Wp (in fact it is 
the typical stadium closure). A numerical demonstration of this fact is also detailed  in26. Further, it was shown 
that the closure can account for a significant proportion of the calculation, hence obscuring the interpretation. 
This last fact is an additional reason that the polar writhe local/non-local decomposition is a preferable measure 
for quantifying the ribbon’s evolving geometry in addition to the fact it forms part of an invariant sum for open 
ribbons whereas Wr does not.

Results
Undertwisted helices ( Lk = 40). Undertwisted helices exhibited relatively modest writhing dynamics 
throughout their trajectories. In contrast with torsionally relaxed helices, helical strain due to under-twisting 
results in the formation of small kink structures in the curve as indicated in Fig. 6a. We detail the results of two 
particularly pertinent cases here: a weak 2pN stretching force and a stronger 8pN force.

The 2pN results are shown in Fig. 6b. The values of both writhe measures Wr and Wp settle at values of about 
−1 , a twentieth of the applied (under) rotation. The Wp value is consistently lower than the Wr value, although 
not by a substantial amount. As indicated in the figures, there is no plectoneme formation, however, partially 
looped sub-sections often form. The local/non-local decomposition of Wp represents this mixture of helical (local) 
distortion and non-local coiling (see Fig. 6c). There are occasional spikes in the non-local writhing (relative to 
the local value). One such example is shown to arise from a tight loop formation as shown in Fig. 6d.

The 8pN results are shown in Fig. 7a. The additional force further restricts the writhing of the curve and the 
magnitude of both quantities is typically bound between [−0.5, 0.5] . The value of Wr is typically significantly 
larger than its Wp counterpart. We verified that the ratio |Wp −Wr |/(|Wp| + |Wr |) was larger than 0.5 for over a 
third of the calculations ( > 50% difference). In Fig. 7b we see that for vast the majority of the curve’s geometries 
there is only local writhing, a clear difference from the 2pN case which indicates that the force is acting to restrict 
loop formation. The non-local writhe values arose when small kinks in the structure developed, although again 
these are significantly restricted by comparison to the 2pN case. Intuitively speaking, in the context of this exam-
ple, the local writhe is seen to reflect the vertical spring-like “bobbing” of the DNA in which the helix oscillates 
between stretching and compressing without any buckling/plectoneme formation occurring. The intermittency 
of the non-local writhe indicates the formation of buckling points that are not sustained, unlike the plectonemic 
formations in the following case.

Overtwisted helices ( Lk = 80). Overtwisted helices exhibit dramatic writhing as a result of high tor-
sional strain on the DNA helix. As a result, helices contract over time in the ẑ direction by forming plectonemic 
structures (Fig. 8a). Time series plots of Wp and Wr are shown in Fig. 8b for a helix experiencing no extension 
force. There is a steady increase in writhing up to nearly 10 in both cases as the curve forms plectoneme struc-
tures. This is half the applied over-rotation which indicates that there has been a significant conversion of (over)
twisting into writhing. We note that the two measures Wp and Wr are nearly identical unlike in the under-twisted 
case. The reason for this is discussed in greater detail in the supplement. It suffices to state here that both assign 
the same value to the loops in the plectoneme structures which dominate the axis curve’s geometry.

The local/non-local decomposition is shown in Fig. 8c. Generally, except in the initial stage of simulation, 
there is far more non-local than local writhing, again due to the plectoneme formation. The consistent, gradual 

(13)Wr ≡
1

4π

∫

x

∫

x

Tx(s)× Tx(t) ·
x(s)− x(t)

�x(s)− x(t)�3
ds dt.
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increase of the non-local writhe reflects the formation of plectonemes within the DNA helix. In contrast, the 
local writhe remains relatively constant, fluctuating only slightly due to the significant stress on the DNA helix 
causing any spring-like compression of the helix to be quickly converted into plectonemic buckling. In the first 
curve shown in Fig. 8b, sampled frame 50 has significant helical looping in its upper part. Near the lower end of 
the curve we see the initial formation of the first plectoneme, this contributes non-local writhing. As indicated 
in Fig. 8c, there is a reasonable balance of local and non-local writhing reflecting this two part geometry. The 
looped section has formed a plectoneme by timestep 200 as shown in Fig. 8b. By this stage, the non-local writh-
ing is dominant (Fig. 8c). The final curve shown in Fig. 8b shows two plectonemes, the second developed from 
one of the small loops in the upper half of the curve at step 200.

DNA minicircles. To further highlight the utility of Wp , we have included sample analyses of two DNA 
minicircles (Fig. 9). Both trajectories represent 108 base pair Lk = 14 minicircles exposed to a 10 mM spermine 
cosolute. The minicircle in Fig. 9a has the base pair sequence (GG)27(GC)27(GG)27(GC)27 and the minicircle in 
Fig. 9b has the sequence (AA)27(AT)27(AA)27(AT)27 . In both trajectories, Wpnl is observed to gradually increase 
throughout the beginning of the trajectory and then fluctuate around an average as the minicircle system reaches 
an equilibrium state. In these examples, the measurement of Wpnl reflects the gradual formation of plectonemic 

(a)

100 200 300 400 500 600

- 4

- 3

- 2

- 1

(b)

100 200 300 400 500 600

- 2.0

- 1.5

- 1.0

- 0.5

(c) (d)

Figure 6.  Results from simulations of an Lk = 40 DNA helix (undertwisted) placed under a 2pN extension 
force. Small kinked structures occasionally form along the length of the structure as shown in (a). Shown in (b) 
are writhe time series plots. The Wp values are shown in red and the Wr values are shown in blue. The Wr values 
are consistently larger in magnitude but the variations in magnitude follow a very similar pattern. Example axis 
curves from the time series are shown; they correspond to the times marked by the dashed vertical lines. The 
curves’ width/height ratios are 0.3, chosen for clarity (0.1 would be the actual ratio). (b) A comparison of Wpl 
and Wpnl for the Wp calculations shown in (a). There is a mixture of local Wpl and non-local writhing values Wpnl 
of roughly equal value. Some spikes in Wpnl were found to arise from temporary loop formation. The dashed 
line indicates one such example whose curve is shown in (d). The spike in Wpnl can be seen to correspond to the 
tight loop towards the bottom end of the curve.
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Figure 7.  Writhe time series plots for an undertwisted DNA molecule ( Lk = 40 ) subjected to an 8pN pulling 
force. (a) A comparison of Wp and Wr for the time series. The Wp values are shown in red and the Wr values are 
show in blue. The Wr values are consistently larger in magnitude. Example axis curves from the time series are 
shown; they correspond to the times marked by the dashed vertical lines. The curves’ width/height ratios are 
0.3, chosen for clarity (0.1 would be the actual ratio). (b) A comparison of Wpl and Wpnl for the Wp calculations 
shown in (a). For the significant majority of curves, there is only local writhing.
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loops/buckling points within the minicircle structures caused by spermine bridging. Spermine molecules adsorb 
to the backbone of the DNA minicircles early in the trajectories and gradually bridge together adjacent tracts of 
the DNA minicircles over time resulting in the formation of loops/buckling points within the minicircle struc-
tures as shown in Fig. 9c. The observed bridging dynamics are in accordance with results from previous studies 
as sequence dependent interactions have been observed between spermine molecules and AT/AA rich groups 
of linear DNA helices in which spermine molecules were observed to adsorb parallel to the DNA backbone and 
bridge together adjacent DNA  helices48.

As shown in Fig. 9a, the axis of the GC/GG minicircle forms a figure 8 structure with a smaller loop occa-
sionally forming at a consistent location on the curve. The Wp value is generally dominated by the non-local 
component with variations being linked to the development (and reduction) of the smaller localised loop. In 
panel (b) it is shown that the AT/AA minicircle quickly forms two clear loops giving a Wp value which oscillates 
around 2. Again there is a small localised loop which variably develops/recedes. At the point t = 49 (marked 
with a dashed line) we see a relatively large spike in the local writhing corresponding to the loop localising and 
forming a tight local helical loop.

For both the AT/AA and GC/GG minicircles, the small localised loops that develop/recede within the minicir-
cle structures are caused by spermine molecules that “jump” around the backbone of the DNA in various loca-
tions. These spermine molecules intermittently adsorb to the DNA backbone, bridging sections of the minicircle 
together which ultimately results in the formation of small loops that recede once the spermine molecules detach 
from the backbone and move to a new location. It is interesting to note that the non-local component of Wp 
serves as a direct indicator of this phenomena, fluctuating directly in response to the aforementioned spermine/
loop formation dynamics.
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Figure 8.  Results from simulations of an Lk = 80 DNA helix (over twisted) experiencing no extension force. In 
(a) we see the formation of significant supercoiling. In (b) we see that the development of this supercoiling is 
reflected by the steady increase in both writhing measures. Example axis curves from the time series are shown; 
they correspond to the times marked by the dashed vertical lines. The curves’ width/height ratios are 0.5, 0.4, 0.3 
respectively and chosen for clarity (0.1 would be the actual ratio). (c) shows the local/non-local decomposition 
of Wp . Except in the initial stage, the non-local writhing is dominant and increases over time as the curve forms 
increasing numbers of plectoneme type loops.
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Figure 9.  Polar writhe calculations for two DNA minicirlce cases. (a) indicates the writhing evolution of a 
108 base pair Lk = 14 minicircle with a (GG)27(GC)27(GG)27(GC)27 sequence exposed to a 10 mM spermine 
cosolute concentration. (b) indicates the writhing evolution of a 108 base pair Lk = 14 minicircle with an 
(AA)27(AT)27(AA)27(AT)27 sequence exposed to a 10mM spermine cosolute concentration. (c) depicts spermine 
bridging in an (AA)27(AT)27(AA)27(AT)27 minicircle. Spermine molecules are shown in red. Spikes in Wpnl in 
(a) indicate the formation of plectonemic loops within the DNA minicircle.
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Writhe star and winding classes
A complication with open ribbons such as extended DNA structures is the possibility of (un)knotting and belt-
trick type deformations such as those shown in Fig. 1017. These are classes of shape changes in which a section 
of the ribbon structure loops over one of its end points (as in Fig. 10b–d). In such cases, both Lk and Wp can 
change by values of ±226. Thus, when one prescribes a fixed value of Lk, it is only constrained up to an integer, but 
critically an integer change can only occur when an “over-the-top” deformation occurs. For many applications 
this will not be possible, for example, DNA structures in restricted environments and magnetic bead experi-
ments where the bead itself is barrier. However, other potential applications of the writhing such as a measure 
of the development of tertiary structure in protein folding may need to consider such deformations. Prior and 
 Neukirch26 considered how over-the-top deformations affect the polar writhe formulation; we briefly introduce 
that framework here through some examples of how this integer change can be tracked. This facility is built into 
the WASP package. We should stress that if this over‑the‑top transition is prevented then one simply needs to use 
the Wp calculations as described in the previous sections and what follows is unnecessary.

End angles and pulled-tight topology. We can think of the two ends of an open ended ribbon as being 
bound between planes. If any section of curve passes through the end of these planes, it makes an angle with 
the end point as shown in Fig. 11a. This angle forms part of the non-local writhing calculation (Eq. (9)). As the 
curve loops over the top of the end point, this angle increases (see Fig. 11a–d). This change would affect both 
Wp and Lk. If the curve then comes back down on the other side of the end point then this angle will have gone 
through a change of 2π and since this is counted twice it leads to a change in ±2 of both Wp and Lk . Thus, overall 
the change of ±2 is detected.

However, this means that both Wp and Lk would be changing continuously (although still such that 
Lk −Wp = Tw ). This change does not happen if the curve is bound between the two end points where Lk is a 
fixed quantity. For magnetic field applications where the end planes represent the edge of the system, i.e. the sun’s 
 surface49,50 or the edge of the measurement domain in a plasma  experiment51, evaluating this angle is crucial. 
However, for plectoneme formation and protein topology type applications it is important that the section of 
curve leaving the bounding planes is included in the calculation. Prior and  Neukirch26 derived a variant of the 
Lk = Wp + Tw formula with quantities W∗

p  and Lk∗ which in effect ignore these end angles and just register a 
jump in both Wp and Lk. More precisely, it was shown one could always extend the ribbon with straight sections 
(with no Tw) such that the ribbon remains bound between two planes. This adds no local writhing or winding 
and in effect remains a measure of the topology of the original unextended ribbon, except in one crucial aspect: 
when the curve/ribbon passes over its end point. In this case, the ribbon self intersects and there is a jump in ±2 
in both Lk and Wp and thus Lk is fixed up to integer multiples of 2. This has the following intuitive interpreta-
tion. If we imagine taking ribbon’s axis curve end points and pulling them directly apart, then a section of curve 
passing over the end point marks the point in its deformation where the curve would change its “pulled tight 
state”, i.e. Fig. 10a–f. For those readers familiar with the literature of artificial closures, there would be the same 
jump when the curve intersects its closure.

In summary, the sum

is invariant under all deformations which forbid curves passing over their end points and changes by values of 
±2 when these over-the top deformations occur. This integer change can be used to indicate the ribbon’s pulled-
tight topology (the shape obtained by pulling its ends directly apart) has changed.

Examples. First we note that the parabola and looped example calculations shown in Figs. 2 and 4 would be 
identical, as would the undertwisted DNA results shown in Figs. 6 and 7.

(14)W∗
p + Tw,

Figure 10.  An “over-the-top” unknotting deformation. An initially tight knot shown in (a) is relaxed (a,b). A 
section of this knot is then allowed to loop over the top of one end of the curve (b–d). The curve is then pulled 
straight to an unknotted straight line (d–f).
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Knot undoing. The curves depicting the undoing of a knot in Fig. 10 are part of a continuous set of deforma-
tions. This deformation was discretized into 360 steps. The first 100 steps, Fig. 10a,b, are simple in that the shape 
of the knotted (trefoil) curve does not change but its size with respect to the straight end extensions is increased; 
in short, the shape of the curve is effectively unchanged. From curve 101 to 260, the knot is undone as a sec-
tion of the curve loops over its top end point, Fig. 10b–d. Then, from step 261–360, the curve is pulled straight 
(Fig. 10d–f). The net effect is the undoing of a knot.

The values of Wp , W∗
p  and Wr (given by (13)) are shown in Fig. 12. For the first 100 steps, both Wp and W∗

p  
are identical and unchanged, correctly representing the fact the knot’s shape is essentially unchanged and the 
corresponding net winding would not change (assuming as always that the ends of the ribbon are prevented 
from untwisting). The Wr calculated via the Gaussian integral (Eq. (13)), however, does change. The reasons 
for this change are somewhat technical and are discussed in the supplement; it suffices to note here that it is not 
characterizing the knots unchanging shape and the sum Wr + Tw would not be a fixed quantity.

Figure 11.  Illustrations of the loss in writhing which occurs to a section of the curve’s interior looping over one 
of its end points and the extension used to make this loss a discontinuous jump which tracks the pulled tight 
topology of the ribbon. (a) An interior section of the curve rises above one of the planes containing the curve’s 
endpoints. The angle � represents the difference of two contributions to the Wpnl calculation which involves 
angles made with the curve’s end point. In (b,c) the curve section rises higher and the angle � increases. In (d) 
the angle is nearly 2π and the curve section has (just) passed directly over the top of the curve’s end. (e) is a 
ribbon corresponding to one of the curves in Fig. 11; a section of the curve is in the plane above the ribbon’s end 
points. (f) The planar extension to the ribbon is shown. Now the whole ribbon structure is bounded between 
two planes. The extension is composed of planar curves with no twisting.
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Figure 12.  W∗
p  calculations. Panel shows (a) writhing values of the curves shown in Fig. 10. (b) A comparison 

of Wp and W∗
p  for the overtwisted DNA simulations performed. (c,d) The detection of an over-the top 

deformation contributing one of the large jumps in the W∗
p  measure shown in (b). The end of the curve at 

neighboring timesteps and the end plane containing the point are shown in both (c,d). A red section of curve 
extending vertically downward from this point is shown (an extension used in the W∗

p  calculation in the WASP 
package). A section of the curve’s interior passes through this extension leading to a jump in the W∗

p  quantity.
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The set of writhe values for configurations 101–260 (the over-the-top unlooping of the knot) highlight the 
difference between Wp and W∗

p  . For the first part of this deformation they are identical until the looped section 
passes above the end point’s plane (as shown in Fig. 11). Then Wp begins to measure a changing value due to the 
end angle measures between this loop and the end point. W∗

p  does not account for this change. Near the end of 
this un-looping, the curve passes directly over the top of its end point and we see a jump of −2 in W∗

p  where the 
measure has classed the curve as jumping into a different pulled tight topological class. In the final set of defor-
mations 260–360, the curve is pulled straight; here all three measurements are in rough agreement that there is 
a steady decrease in writhe. Note, however, that W∗

p  measure registers a relatively smooth change.

Overtwisted DNA reconsidered. The discontinuous jump in the W∗
p  measure can lead to jumpy time 

series if a section of the curve is continually deforming in the region directly above one of the curve’s end 
points. It happens that this is exactly what is occurring in the overtwisted plectoneme formation simulation in 
the previous section. The comparison of Wp and W∗

p  is shown in Fig. 12b. The W∗
p  measure has some significant 

discontinuities; each one was analyzed and in each case it was found to result from a section of the curve passing 
over the bottom end of the curve. An example is shown in Fig. 12c,d.

A second observation is that W∗
p  is consistently a small amount larger than Wp . This is due to a difference 

between Wpnl and W∗
pnl ( Wpl is always the same for both), specifically the ignoring of the end angle depicted in 

Fig. 11. It is interesting that the molecule appears to deform such that it partly performs the over-the-top loop, a 
potential means to shed topology, but never completes this deformation, instead forming a second plectoneme 
loop.

A final mathematical point is that if one only calculated W∗
p  for the given curve set, then, without looking at 

the individual curves themselves, it is hard to tell if the jump occurs due to self crossing or over the end deforma-
tions. The Wp calculations, which have no changes on the order of 2 indicate it is not self-crossing but over the 
top deformation instead. Thus, one can make this distinction solely from the numerical calculations (rather than 
visulising the curve set). Of course we should have expected this for the DNA model used as repulsive forces 
prevent self-crossings, but in other scenarios the combination of information provided by both the Wp and W∗

p  
quantities could be of significant utility.

The previous two examples highlight aspects of the W∗
p measure which the user should consider when deciding 

if it is appropriate for their application. The W∗
p  measure was explicitly designed for elastic rod models in which 

both knotting and belt-trick style deformations clearly occurred: the end state had unambiguously changed. 
The pulled tight definition is designed to capture this change. The plectoneme simulation cautions that this 
change may not always be meaningful. In addition, it is also possible that the net change in W∗

p  in some knotting 
deformation might add up to zero (an equal number of positive and negative jumps) even though the essential 
knotting entanglement might have changed. The WASP package gives the user the option to calculate both Wp 
and W∗

p  and we believe these examples will provide a guide as to how to interpret these measures.

Conclusions
Writhe is a fundamental measurement for characterizing the topology of ribbon structures and is extensively 
utilized in multiple fields ranging from biophysics to solar physics to aneurysm detection (to name just a 
few)30–32,52,53. However, the most commonly utilized formalism for writhe (as derived by Călugăreanu ) is only 
applicable to the subset of problems in which the system under study is a closed loop. Although this limitation has 
been overcome through the development of polar writhe, it is largely underutilized in the biophysical community. 
Here, we have sought to rectify that problem by demonstrating the utility of polar writhe in DNA plectoneme 
and DNA minicircle calculations. Our results show that polar writhe is not only applicable to the analysis of open 
curves such as those formed by extended DNA structures but that it can be decomposed into local and nonlocal 
contributions that can provide additional information about DNA topology that cannot be obtained from the 
Călugăreanu formalism. In particular, we demonstrate how the non-local component of the polar writhe can 
be used as a potential indicator of plectoneme formation in both linear and circular DNA structures which we 
believe will be of particular value to the host of studies performed on effects of plectoneme formation in DNA 
and braided  polymers54,55. To aid in the adoption of polar writhe, we have developed a software package, WASP, 
that can be used to analyze molecular dynamics simulations of DNA. WASP is an open source software tool that 
is built to analyze trajectories from popular simulation packages. It is our hope that WASP will be utilized to 
rigorously analyze the growing field of DNA simulations in which changes of writhe are linked to biophysical 
phenomena (Fig. S1).

Code availability
The source code for WASP is located in the following repository: https ://githu b.com/Weres zczyn skiGr oup/WASP
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