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Predicting intraocular pressure 
using systemic variables or fundus 
photography with deep learning 
in a health examination cohort
Kaori Ishii1, Ryo Asaoka1,2,3*, Takashi Omoto3, Shingo Mitaki4, Yuri Fujino1,5, 
Hiroshi Murata3, Keiichi Onoda4,6, Atsushi Nagai4, Shuhei Yamaguchi4, Akira Obana1,7 & 
Masaki Tanito5

The purpose of the current study was to predict intraocular pressure (IOP) using color fundus 
photography with a deep learning (DL) model, or, systemic variables with a multivariate linear 
regression model (MLM), along with least absolute shrinkage and selection operator regression 
(LASSO), support vector machine (SVM), and Random Forest: (RF). Training dataset included 3883 
examinations from 3883 eyes of 1945 subjects and testing dataset 289 examinations from 289 eyes 
from 146 subjects. With the training dataset, MLM was constructed to predict IOP using 35 systemic 
variables and 25 blood measurements. A DL model was developed to predict IOP from color fundus 
photographs. The prediction accuracy of each model was evaluated through the absolute error and 
the marginal R-squared  (mR2), using the testing dataset. The mean absolute error with MLM was 
2.29 mmHg, which was significantly smaller than that with DL (2.70 dB). The  mR2 with MLM was 0.15, 
whereas that with DL was 0.0066. The mean absolute error (between 2.24 and 2.30 mmHg) and  mR2 
(between 0.11 and 0.15) with LASSO, SVM and RF were similar to or poorer than MLM. A DL model 
to predict IOP using color fundus photography proved far less accurate than MLM using systemic 
variables.

Intraocular pressure (IOP) is a measure of the fluid pressure within the eye and it is an important marker for 
many ophthalmological diseases, including glaucoma, which is one of the world’s leading causes of irreversible 
 blindness1. IOP is the result of the balance between the rates of aqueous humor production at the ciliary body 
and aqueous outflow from the eye through the conventional and uveoscleral pathways. The magnitude of IOP 
is primarily decided by local factors, such as resistance of the trabecular meshwork and juxtacanalicular con-
nective  tissues2–4. However, in the conventional pathway, aqueous humor is drained into the Schlemm’s canal 
and ultimately the episcleral  vein2, and thus IOP is also affected by exogenous (systemic) factors, as suggested 
by a recent  study5. Indeed, we recently investigated the associations of various systemic factors with IOP using a 
dataset from a health examination program database, and it was suggested that some of these were significantly 
associated with IOP level, including age, percent body fat, systolic blood pressure (SBP), pulse rate, albumin, 
and hemoglobin A1c (HbA1c)3. The first purpose of the current study was to investigate how much of IOP can 
be explained using various systemic factors.

It would be beneficial to predict IOP accurately using only systemic factors and without a tonometry at various 
settings, such as medical check-up, however it is presumed that IOP is not only decided by systemic factors, but 
also local (ocular) conditions. A fundus photography is one of the most representative and basic ophthalmological 
measurement. There have been remarkable recent developments in artificial intelligence (AI) and its application 
to a fundus photography. For instance, Poplin et al. showed that the sex of an individual can be identified from a 
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color fundus photograph using DL with 97%  accuracy6. We have also reported that an accurate diagnosis of glau-
coma can be achieved, using a similar number of fundus photographs (3132 images) with the current  study7–9, 
similar to other recent  studies10–16. These results could imply that useful ophthalmological information can be 
extracted from a color fundus photograph using DL. The second purpose of the current study was to investigate 
the accuracy of predicting IOP using fundus photography and deep learning (DL).

Methods
Subjects. The Institutional Review Board of the Shimane University Faculty of Medicine approved this study 
(IRB No. 20190131-1), which was conducted according to the tenets of the Declaration of Helsinki. Each partici-
pant provided Informed Consent. The cohort database included 6272 examinations from 2577 subjects who par-
ticipated in a health examination system in the Shimane Institute of Health  Science17,18 from August 3, 1998, to 
March 28, 2019. We chose 6519 examinations from 5645 eyes of 2835 subjects from the database who had a com-
plete measurements of: age, sex, height, body mass index (BMI), systolic blood pressure (SBP), diastolic blood 
pressure (DBP), history of diabetes mellitus (DM), history of hypertension (HT), history of hyperlipidemia, past 
and current smoking habitat, 25 blood examinations (total protein (TP), albumin/globulin ratio (A/G), aspartate 
aminotransferase (AST), alanine aminotransferase (ALT), guanosine triphosphate (γGTP), alkaline phosphatase 
(ALP), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipo-
protein cholesterol (LDL-C), hemoglobin A1c (HbA1c), white blood cell (WBC) count, red blood cell (RBC) 
count, hemoglobin (Hb), hematocrit (Ht), platelet (Plt) count, fibrinogen, blood urea nitrogen (BUN), creati-
nine (Cre), sodium (Na), potassium (K), chlorine (Cl), calcium (Ca), uric acid (UA), and amylase), IOP, and a 
color fundus photograph. BMI was calculated as body weight (kg) divided by the square of the body height (m). 
Experienced laboratory technicians measured IOP using a non-contact tonometer (Full Auto Tonometer TX-F, 
Canon Incorporated, Tokyo, Japan). Color fundus photographs were obtained using a non-mydriatic fundus 
camera with a 45 view-angle (before December 2012 using CR6-45NM, Canon, Tokyo, Japan, and after January 
2013 using CR-2, Canon).

Training and validation datasets. All of the measurements obtained by December 31, 2016 were 
assigned to the training dataset, which consisted of 3883 examinations from 3883 eyes of 1945 subjects. A vali-
dation dataset was also prepared for the purpose of DL parameter tuning, using data obtained between January 
1, 2017 and December 31, 2017 (454 examinations from 454 eyes from 229 subjects).

Testing dataset. The testing dataset was prepared using data obtained between January 1, 2017 and 
December 31, 2017 (289 examinations from 289 eyes from 146 subjects). There was no overlap among the three 
datasets.

DL model to predict IOP from fundus photography. We adopted a type of convolutional neural net-
work (CNN) known as  ResNet6 to predict IOP from fundus photographs, following our previous studies in 
which a diagnosis of glaucoma was predicted from fundus  photographs7,8,19. Unlike the simple CNN, ‘identical 
skip connections’ that skip one or more layers are used in ResNet and features are propagated to succeeding lay-
ers, which is well-known to be useful for image classification and feature extraction. This is because it enables 
ResNet to facilitate a deeper and larger network, which is helpful to acquire more effective and conceptual fea-
tures without overfitting. In the current study, a ResNet model with 18 layers was pre-trained with the ImageNet 
 classification20. This methodology is inspired by recent successes in fine-tuning deep neural  networks21, whereby 
parameters of a network are first derived in a different but large pre-training dataset and then used to initialize 
training in a new and smaller training dataset. We attempted further improvements of the model by applying 
image augmentation of the training  data22: all of the images in the training; dataset were horizontally flipped. 
The last fully-connected layer in ResNet was used to output the predicted value of IOP. Left eyes were mirror 
imaged to right eyes. Details of the parameters used in ResNet were: learning rate: 0.01, batch size: 100, damping 
capacity: 0.9 and weight decay: 0.0001.

Models to predict IOP from systemic variables. First, using the training dataset, a multivariate linear 
regression model (MLM) was built to predict IOP using 35 variables (age, sex, height, BMI, SBP, DBP, history of 
DM, history of HT, history of hyperlipidemia, past and current smoking habitat, 25 blood examinations). Using 
this model, IOP values in the testing dataset were predicted, and the absolute prediction error was calculated. 
A number of other prediction models were also constructed using the following machine learning methods: 
(1) support vector machine (SVM)23, (2) Random Forest (RF)24, and (3) least absolute shrinkage and selection 
operator regression (LASSO)25,26. Support vector machine performs regression in a latent space (kernel space) 
to yield an accurate prediction even in a non-linear regression. Random Forest consists of many decision trees 
(regression trees), and outputs the averaged value from all individual trees. Each tree is constructed using a 
different bootstrap sample from the original data (bootstrapping is repeated sampling until the original sample 
size is reached, allowing duplication). In LASSO, the sum of the absolute values of the regression coefficients is 
constrained or penalized, so that the final model gives an accurate prediction. The details of each method follow.

1. Support vector machine: radial basis function, penalty parameter = 1.0
2. Random forest: number of trees = 10,000, criterion = Gini index, minimum number of samples required to 

split an internal node = 2, the minimum number of samples required to be at a leaf node = 1
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3. LASSO: optimum lambda value was decided the minimum prediction error with the leave-one cross valida-
tion within the training dataset.

Subsequently, using these models, IOP values in the testing dataset were predicted, and absolute prediction 
errors were calculated.

Statistical analysis. Absolute prediction errors were compared using the linear mixed model whereby 
values were nested within patients. The linear mixed model adjusts for the hierarchical structure of the data, 
modeling in a way in which measurements are grouped within subjects to reduce the possible bias derived from 
the nested structure of  data27,28.

Furthermore, the association between the predicted IOP values and actual IOP values in the testing dataset 
was calculated using the correlation coefficient. Again, considering the nested structure of the current dataset, 
the association was also calculated using the marginal R-squared  (mR2) value with the linear mixed model, fol-
lowing a method proposed by Nakagawa and  Holger29.

Results
The characteristics of the 1569 study subjects (819 men, 52%; 750 women, 48%; mean age, 62.2 ± 8.7 years; range 
27–92 years) are summarized in Table 1. The mean IOP was 12.8 ± 3.0 mmHg (range 7–33.1 mmHg) in the right 
eye and 12.8 ± 3.0 mmHg (range 7–33.8 mmHg) in the left eye.

The results of univariate analyses between various systemic parameters and the IOP are summarized in 
Table 2. Among 35 parameters, 28 parameters showed significant association with IOP when not adjusted for 
age and sex (p < 0.05). When adjusted for age and sex, 23 (among 33) parameters showed significant association 
with IOP.

The absolute prediction error with each method is shown in Table 3.
Table 4 shows the results of the MLM obtained with the training dataset. Among the 35 parameters, 11 showed 

a significant association with IOP p < 0.05), including Height, BMI, Age, sex, smoking habitat, TP, HbA1c and 
SBP.

The mean squared error, for the DL model, with the validation dataset saturated at < 100 epochs, as shown 
in Fig. 1. The predicted IOP values were derived from epoch = 100. The relationship between the predicted IOP 
values with each prediction method and actual IOP value is shown in Fig. 2a–e, using the Bland Altman plot. 
The correlation coefficient and  mR2 values of these variables are shown in Table 5. Significant correlations were 
observed between IOP and the predicted IOP values with MLM, LASSO, SVM, and RF (p < 0.05), but not with 
the DL model using color fundus photographs (p = 0.16 or 0.17). There was a significant association between 
(difference between predicted IOP and actual IOP) and (mean of predicted IOP and actual IOP) with all models 
(p < 0.001).

The absolute error associated with MLM is illustrated in Fig. 3.

Discussion
In the current study, IOP was predicted using a variety of modelling methods and different data. A considerably 
more accurate prediction of IOP was achieved using a MLM of systemic variables (mean absolute error = 2.29 dB 
and  mR2 = 0.15) compared to a DL model with color fundus photography (mean absolute error = 2.70 dB and 
 mR2 = 0.0066). Machine learning methods (LASSO, SVM and RF) did not improve prediction accuracy.

The MLM included 11 variables that were significantly correlated with IOP. We recently reported that sev-
eral systemic factors were associated with IOP level, including age, percent body fat, SBP, pulse rate, albumin, 
and  HbA1c30. We observe that older age, higher SBP, and higher HbA1c were again significantly associated 
with increased IOP. The effect of age on IOP is controversial. Previous cross-sectional studies from  Italy31 and 
the United  States32,33 suggested a significant positive association between age and IOP, however, the inverse 
effect has also been reported in cross-sectional or longitudinal studies from other countries, mainly in Asia, 
including  Japan34–39. The current study—conducted in Japan—also suggested a negative association between 
age and IOP. The significant positive correlation between higher SBP and IOP is in agreement with other 
previous  studies33,35,37–46, where the mechanism has been speculated as an increased filtration fraction of the 
aqueous humor through elevated ciliary artery pressure, increased serum corticoids and also sympathetic 
tone result in elevated  IOP47,48. The association between HbA1c and IOP is also in agreement with previous 
 studies33–35,37,39,42–44,46,47,49,50. Several mechanisms have been reported for obesity to be associated with increas-
ing IOP, such as sympathetic hyperactivation, increased corticosteroid, excessive intraorbital adipose tissue, 
increases in blood viscosity with high hemoglobin and hematocrit values, increased episcleral venous pres-
sure, a consequent decrease in the facility of aqueous outflow also transitory elevations in IOP resulting from 
breath-holding and thorax compression while tonometry is performed during slit-lamp examinations in obese 
 patients47,51–54. Our previous study suggested percent body fat is associated with increased IOP, whereas this was 
the case for BMI in the current study. Smoking status was significantly associated with elevated IOP, agreeing 
with a previous  study55.

It is widely acknowledged that ordinary statistical models, such as linear or binomial logistic regression, 
may be over-fitted to the original sample, especially when the number of predictor variables is large. We have 
reported on the usefulness of applying machine learning methods for many applications, including diagnosing 
glaucoma from optical coherence tomography  measurements56–59, predicting vision related quality of  life60, and 
VF  progression61–63, compared to ordinal linear or logistic regression. Nonetheless, in the current study, there 
was no improvement in the prediction accuracy of machine learning methods compared to the MLM. This may 
be because of the size of the training dataset was quite large (5540 examinations) and therefore overfitting was 
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less of a problem. Despite the significant association between predicted IOP and true IOP, only a moderate  mR2 
value was obtained (up to 0.15). Coefficient of determination value represents how much of the data is explained 
by the model. Correlation coefficient is identical to the square root of coefficient of determination value. The 
 mR2 value shows how much of the data can be explained by the fixed effect in the linear mixed model. Hence, 
the current results suggested that approximately 15% of IOP was explained by MLM and other machine learning 
models. In other words, our results suggested IOP can be only partially explained by systemic factors, and the 
remaining part may only be described locally (using measurements from the eye). As shown in the Bland–Altman 
plots (Fig. 2), the distribution of the difference between the predicted and actual IOP values were not horizontal, 
and correlated with the mean of these values. This is because the prediction accuracy was relatively poor and the 
predicted values were relatively constant regardless of the actual IOP value. Furthermore, although it has been 
suggested that the Random Forests method is more useful than other machine learning  methods64–66, this merit 
was not observed compared to other machine learning methods in the current study. These finding would also 
support that IOP can be only partially explained by systemic factors, and the predictability cannot be consider-
ably improved by merely applying machine leaning methods, such as the Random Forests.

A recent study revealed that DL could discriminate sex from fundus photography with very high  accuracy6. 
In contrast, we recently suggested that the discrimination of sex can be achieved, at least to some extent 

Table 1.  Subjects’ demographic data. IOP intraocular pressure, SD standard deviation, BMI body mass 
index, SBP systolic blood pressure, DBP diastolic blood pressure, TP total protein, A/G albumin/globulin, 
AST aspartate aminotransferase, ALT alanine aminotransferase, γGTP guanosine triphosphate, ALP alkaline 
phosphatase, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, HbA1c 
glycosylated hemoglobin A1c, WBC white blood cell, RBC red blood cell, BUN blood urea nitrogen, Na 
sodium, k potassium, Cl chlorine, Ca calcium.

Parameters

Training data Testing data

Mean ± SD Mean ± SD

IOP (mmHg) 12.8 ± 3.1 12.3 ± 2.9

Age (years) 62.9 ± 9.3 62.7 ± 12.2

Male/female 1027/918 92/54

Height (cm) 159.6 ± 9.0 162.5 ± 9.1

BMI 23.1 ± 3.1 23.4 ± 3.2

SBP (mmHg) 129.7 ± 17.3 126.4 ± 18.4

DBP (mmHg) 73.9 ± 11.4 74.8 ± 11.6

Smoking habitat (current/past/none) 1181/273/491 80/23/43

TP (g/dl) 7.4 ± 0.4 7.5 ± 0.4

Albumin (g/dl) 4.4 ± 0.2 2.6–5.2

A/G 1.5 ± 0.2 0.9–4.6

AST (IU/l) 25.4 ± 12.5 24.8 ± 8.4

ALT (IU/l) 23.8 ± 15.8 24.4 ± 12.3

γGTP (IU/l) 43.4 ± 62.4 40.8 ± 39.8

ALP (IU/l) 224.9 ± 68.9 217.1 ± 64.0

TC (mg/dl) 210.2 ± 31.7 216.5 ± 36.7

TG (mg/dl) 116.9 ± 71.2 137.9 ± 135.7

HDL-C (mg/dl) 63.0 ± 16.2 63.8 ± 17.4

LDL-C (mg/dl) 121.6 ± 29.3 124.5 ± 32.3

HbA1c (%) 5.5 ± 0.7 5.9 ± 0.7

WBC (× 102/μl) 5811.9 ± 1531.7 5445.8 ± 1562.3

RBC (× 104/μl) 460.7 ± 41.3 468.3 ± 50.3

Hb (g/dl) 14.3 ± 1.4 14.6 ± 1.6

Ht (%) 42.8 ± 3.6 43.3 ± 4.2

Plt (× 104/μl) 22.3 ± 3.5 23.0 ± 5.3

Fibrinogen (mg/dl) 290.5 ± 58.1 335.3 ± 67.0

BUN (mg/dl) 14.9 ± 3.8 15.1 ± 4.2

Cre (mg/dl) 0.7 ± 0.2 0.8 ± 0.2

Na (mEq/l) 141.9 ± 2.0 141.3 ± 2.0

K (mEq/l) 4.1 ± 0.3 4.2 ± 0.3

Cl (mEq/l) 103.2 ± 2.4 103.9 ± 2.3

Ca (mg/dl) 9.3 ± 0.3 9.4 ± 0.3

UA (mg/dl) 5.3 ± 1.3 5.4 ± 1.2

Amylase (IU/l) 82.0 ± 27.6 80.9 ± 29.2
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Table 2.  Results of univariate analyses between IOP and various systemic parameters. All analyses were 
performed using Pearson’s rank correlation test. The asterisk (*) indicates p < 0.05. p  value†: without adjustment 
for age, p  value‡: with adjustment for age. IOP intraocular pressure, BMI body mass index, BP blood pressure, 
BNP brain natriuretic peptide, TP total protein, A/G albumin/globulin, AST aspartate aminotransferase, ALT 
alanine aminotransferase, γGTP guanosine triphosphate, ALP alkaline phosphatase, HDL-C high-density 
lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, HBA1c glycosylated hemoglobin A1c, 
WBC white blood cell, RBC red blood cell, BUN blood urea nitrogen, Na sodium, K potassium, Cl chlorine, Ca 
calcium.

Correlation coefficient p  value† p  value‡

Age − 0.13 < 0.001* –

Height − 0.029 0.071 < 0.001*

Sex − 0.037 0.022* –

BMI 0.11 < 0.001* < 0.001*

DM 0.033 0.039* 0.0011*

Hyperlipidemia 0.027 0.089 0.13

SBP 0.15 < 0.001* < 0.001*

DBP 0.14 < 0.001* < 0.001*

HT 0.047 0.0034* < 0.001*

Smoking habitat 0.015 0.35 < 0.001*

TP 0.088 < 0.001* < 0.001*

A/G 0.048 0.0030* 0.13

AST 0.060 < 0.001* < 0.001*

ALT 0.10 < 0.001* < 0.001*

γGTP 0.091 < 0.001* < 0.001*

ALP 0.052 0.0013* < 0.001*

TC 0.049 0.0024* 0.064

TG 0.096 < 0.001* < 0.001*

HDL-C − 0.013 0.43 0.19

LDL-C 0.036 0.024* 0.27

HbA1c 0.096 < 0.001* < 0.001*

WBC 0.081 < 0.001* < 0.001*

RBC 0.14 < 0.001* < 0.001*

Hb 0.13 < 0.001* < 0.001*

Ht 0.13 < 0.001* < 0.001*

Plt 0.060 < 0.001* 0.066

Fibrinogen − 0.017 0.92 0.23

BUN − 0.068 < 0.001* 0.012*

Cre − 0.052 0.0011* 0.046*

Na 0.018 0.27 0.97

K − 0.020 0.22 0.61

Cl − 0.036 0.024* < 0.001*

Ca 0.074 < 0.001* < 0.001*

UA 0.033 0.037* < 0.001*

Amylase − 0.048 0.0029* 0.093

Table 3.  The absolute prediction error with each method. p value was calculated against MLM. SD standard 
deviation, MLM multivariate linear regression, LASSO least absolute shrinkage and selection operator 
regression, SVM support vector machine, RF random forest, DL deep learning.

Absolute prediction error
Mean ± SD (dB) p value

MLM 2.29 ± 1.5 –

LASSO 2.29 ± 1.5 0.80

SVM 2.24 ± 1.5 0.080

RF 2.30 ± 1.6 0.75

DL with color fundus photograph 2.70 ± 2.1 0.019
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(AUC = 77.9%), using a ‘visible’ machine learning method (LASSO) with clinically meaningful variables such as 
color intensities, tessellation, and also geometrical information of the optic disc and retinal vessels. As a result, 
it was implied that the DL model learned a principle to discriminate sex from color fundus photographs. On 
the other hand, the current study suggested that DL was not accurate to predict IOP from fundus photographs 
since there only a poor association  (mR2 = 0.0066) was observed between the IOP predicted from this approach 
and actual IOP. We attempted other DL methods, instead of ResNet18  (VGG1667 and Inception-v368), however, 
results were not improved (data not shown in “Result”). This may suggest little valuable information is present 
in color fundus photography regarding IOP. This study included a fairly large training dataset, however, it was 
much smaller compared to other representative datasets for DL, such as ImageNet (14,000,000 images)20 and 
CIFAR10 (60,000 images, https ://www.cs.toron to.edu/~kriz/cifar .html), although we have recently suggested the 
diagnosis of glaucoma, using color fundus photographs and DL, can be achieved with an even smaller sample 
size (N = 3132)7–9. Better results might be observed if DL was applied to a larger dataset. The current results sug-
gested that IOP can only be partially explained using systemic factors (15%; as suggested by the  mR2 value) or 
color fundus photography with DL (0.66%), which implies we need to continue to conduct IOP measurement 
using a tonometry. The merit of accurately predicting systemic factors using a color fundus photograph, such as 
shown  in69, cannot be overestimated, such as medical check up in developing countries without tonometry. This 

Table 4.  Result of MLM obtained with the training dataset. *Represents the p value < 0.05. MLM 
multivariate linear regression, IOP intraocular pressure, BMI body mass index, BP blood pressure, BNP brain 
natriuretic peptide, TP total protein, A/G albumin/globulin, AST aspartate aminotransferase, ALT alanine 
aminotransferase, γGTP guanosine triphosphate, ALP alkaline phosphatase, HDL-C high-density lipoprotein 
cholesterol, LDL-C low-density lipoprotein cholesterol, HBA1c glycosylated hemoglobin A1c, WBC white 
blood cell, RBC red blood cell, BUN blood urea nitrogen, Na sodium, k potassium, Cl chlorine, Ca calcium.

Coefficient Standard error p value

Age (years) − 0.044 0.0067 < 0.001*

Height (cm) − 0.030 0.0088 < 0.001*

Sex − 0.85 0.20  < 0.001*

BMI 0.039 0.019 0.037*

DM 0.0079 0.19 0.97

Hyperlipidemia − 0.080 0.10 0.43

SBP (mmHg) 0.026 0.0045 < 0.001*

DBP (mmHg) 0.0028 0.0067 0.67

HT − 0.20 0.11 0.084

Tobacco 0.24 0.074 0.0014*

TP (g/dl) 0.69 0.17 < 0.001*

A/G 1.36 0.30 < 0.001*

AST (IU/l) < 0.001 0.0072 0.89

ALT (IU/l) 0.0019 0.0055 0.74

γGTP(IU/l) 0.0026 0.0010 0.0089*

ALP (IU/l) < 0.001 < 0.001 0.96

TC (mg/dl) − 0.011 0.0067 0.099

TG (mg/dl) 0.0025 0.0014 0.078

HDL-C (mg/dl) 0.017 0.0076 0.029*

LDL-C (mg/dl) 0.0097 0.0066 0.14

HbA1c (%) 0.44 0.087 < 0.001*

WBC (× 102/μl) < 0.001 < 0.001 0.36

RBC (× 104/μl) 0.0012 0.0023 0.59

Hb (g/dl) 0.20 0.10 0.062

Ht (%) 0.0086 0.047 0.85

Plt (× 104/μl) 0.010 0.010 0.31

Fibrinogen (mg/dl) < 0.001 < 0.001 0.93

BUN (mg/dl) − 0.017 0.015 0.24

Cre (mg/dl) − 0.33 0.36 0.36

Na (mEq/l) − 0.0022 0.032 0.94

K (mEq/l) − 0.21 0.15 0.18

Cl (mEq/l) − 0.072 0.027 0.79

Ca (mg/dl) − 0.25 0.18 0.17

UA (mg/dl) 0.088 0.048 0.069

Amylase (IU/l) 0.0024 0.0019 0.20

https://www.cs.toronto.edu/~kriz/cifar.html


7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3687  | https://doi.org/10.1038/s41598-020-80839-4

www.nature.com/scientificreports/

is in particular true with a smart-phone base fundus photography, since recent studies have suggested that the 
usefulness of a deep learning-assisted program to screen for retinal diseases using a  smartphone70,71.

The current study had several limitations, the first of which was the use of non-contact tonometry, which is 
generally believed to be less reliable than Goldmann applanation tonometry (the repeatability coefficient with 
non-contact tonometry has been reported as ± 3.2 mmHg, whereas that with Goldmann applanation tonometry 
was between ± 2.2 and 2.5 mmHg)72,73 although IOP is usually measured using the non-contact tonometry in a 
health examination outside eye clinics. Further, there was an absence of central corneal thickness measurements 
that are known to induce measurement errors during  tonometry74,75 In addition, the usefulness of applying DL to 

Figure 1.  The mean squared error, of the DL model, with the validation dataset at each epoch. The mean 
squared error saturated at < 100 epochs.

Figure 2.  The relation between the predicted IOP values with each prediction method and actual IOP value, 
shown as a Bland–Altman plot. (a) MLM, (b) LASSO, (c) SVM, (d) RF, (e) DL. Data was shown as a smoothed 
scatter plot. MLM multivariate linear regression, LASSO least absolute shrinkage and selection operator 
regression, SVM support vector machine, RF random forest, DL deep learning.
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color fundus photography in glaucomatous eyes should also be investigated in a future study. The current study 
consisted of a health examination cohort, and hence the vast majority cases had normal IOP values. A further 
study is needed to investigate whether the current approach is more useful in eyes with higher IOP values. In 
particular it should be further investigated that whether DL enables more accurate prediction of IOP using a 
larger dataset.

In conclusion, the current study, using a health examination cohort, suggested that IOP cannot be adequately 
predicted from clinical parameters or retinal photographs even using state-of-art ML techniques. Further inves-
tigation with DL using a larger amount of data would be needed.
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