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Identification 
of LINC00665‑miR‑let‑7b‑CCNA2 
competing endogenous RNA 
network associated with prognosis 
of lung adenocarcinoma
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Peiwu Li1, Donglin Cao2* & Yufeng Liu1,3*

Prognosis of patients with lung cancer remains extremely poor; thus, we sought to unearth novel 
competing endogenous RNA (ceRNA) networks associated with the prognosis of lung adenocarcinoma 
(LUAD). Aberrant mRNAs were identified from the intersection of three Gene Expression Omnibus 
(GEO) datasets. A protein–protein interaction (PPI) network was constructed, and miRNAs and 
long noncoding RNAs (lncRNAs) upstream of mRNAs were predicted. In the present study, 402 
upregulated and 638 downregulated genes in lung cancer tissues were identified. Functional analysis 
showed significant enrichment of cancer pathways. In these top hub genes, 10 upregulated and 7 
downregulated genes had substantial prognostic values in LUAD. Thirty‑seven miRNAs were predicted 
to target 17 key genes, and only five miRNAs exhibited prognostic correlation.Through stepwise 
reverse prediction and validation from miRNA to lncRNA, four key lncRNAs were identified using 
expression and survival analysis. Ultimately, the co‑expression analysis identified LINC00665‑miR‑
let‑7b‑CCNA2 as the key ceRNA network associated with the prognosis of LUAD. We successfully 
constructed a novel ceRNA network wherein each component was significantly associated with the 
prognosis of LUAD. Hence, we propose that this network may provide key biomarkers or potential 
therapeutic targets for LUAD prognosis.

Abbreviations
ceRNA  Competing endogenous RNA
lncRNAs  Long noncoding RNAs
GEO  Gene Expression Omnibus
PPI  Protein–protein interaction
LUAD  Lung adenocarcinoma

Lung cancer remains the leading cause of cancer-related death worldwide, accounting for 19.4% of overall cancer 
 mortality1. Notably, most lung cancer patients have a poor  prognosis2. Primary lung cancer is generally divided 
into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for about 80% of 
all primary lung cancers, of which adenocarcinoma, squamous cell carcinoma, and large cell carcinoma are the 
main histological  subset3. Despite improvements and advancements in early diagnostic and treatment methods, 
the 5-year survival rate for primary lung cancer is still as low as 11–16%4,5. With a deeper understanding of the 
molecular biological mechanisms of lung cancer, targeted therapy has made great progress.

Whole-genome analysis of gene expression shows that exons account for less than 3% of the human 
genome, and an increase in the number of noncoding RNA (ncRNA) genes in introns reportedly regulates 
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gene  expression6. ncRNAs include three types: long ncRNAs (lncRNAs), mid-size ncRNAs, and short ncRNAs. 
Among short ncRNAs, miRNAs target gene regulation and can affect lung cancer  treatment7. Salmena et al. 
proposed the competing endogenous RNA (ceRNA) hypothesis whereby mRNAs, miRNAs, and lncRNAs could 
cross-talk, forming a regulatory  network8. Through miRNA response elements, lncRNAs could be sequestering 
RNA-binding proteins and microRNAs leading to changes in the miRNA-regulated mRNA levels. Increasing 
evidence indicates that this ceRNA network plays a pivotal role in a variety of human cancers, such as breast 
 cancer9, gastric  cancer10, liver  cancer11, and pancreatic  cancer12.

Generally, lncRNAs consist of more than 200 nucleotides with limited or no protein-coding capacity. To date, 
more than 3000 lncRNAs have been identified. Abnormal expression of various lncRNAs is related to carcino-
genesis. In particular, it can lead to the occurrence, development, and metastasis of multiple cancers, such as 
breast cancer, hepatocellular carcinoma, and cardiac  adenocarcinoma13–15. In physiological conditions, lncRNAs 
participate in multiple biological processes, including splicing, transcription, epigenetic gene expression, and 
chromatin  modification16.

Research has shown that the expression of HOTAIR, MALAT1, HOTTIP, ANRIL, and ZXF2 were upregulated 
in lung cancer tissues, which is related to increased tumor lymph node metastasis rate, advanced lymph node 
metastasis, and decreased overall  survival17–21. Considering their function in the development of lung cancer, 
they could become promising biomarkers for the diagnosis or prognosis of lung  cancer22. However, the current 
understanding of the key lncRNA–miRNA–mRNA ceRNA networks that are significantly related to the prognosis 
of lung cancer remains unclear.

In our work, we screened mRNAs that were differentially expressed (DE-mRNAs) in lung cancer tissues 
compared to healthy tissues by mining three Gene Expression Omnibus (GEO) datasets (GSE18842, GSE19188, 
and GSE33532). The common aberrantly expressed mRNAs were listed, and their functional enrichment analy-
sis was carried out. Subsequently, we conducted protein–protein interaction (PPI) analysis using the STRING 
database and identified several up- and downregulated hub genes. Then, miRTarBase was used to predict the 
upstream miRNAs. Taking miRNA expression and prognostic values into consideration, candidate miRNAs 
were further selected to predict the potential upstream lncRNAs. Furthermore, the prognostic value of these 
potential lncRNAs was assessed, and the co-expression analysis between mRNAs, miRNAs, and lncRNAs was 
evaluated using the ceRNA hypothesis. Finally, we successfully established a novel ceRNA regulatory network, 
which was significantly associated with the prognosis of patients with LUAD. Our research sheds light on the 
onset of LUAD and identifies potential diagnostic biomarkers or therapeutic targets.

Results
Identification of significant differentially expressed genes (DEGs) in LUAD. Searching for gene 
expression microarrays with regard to LUAD from the GEO database, three datasets (GSE18842, GSE19188, and 
GSE33532) were selected, and information of three GEO data sets were shown in Table 1. Next, DEGs analysis 
was performed using GEO2R (|log2FC|> 1 and adj. p-value < 0.05), and significant DEGs in each dataset were 
identified (Fig. 1A–C). In the GSE18842 dataset, a total of 815 upregulated and 1034 downregulated mRNAs 
were screened. For the GSE19188 dataset, there were 557 upregulated and 911 downregulated genes in lung can-
cer tissues compared to those in normal control samples. Finally, in the GSE33532 dataset, 866 upregulated and 
1263 downregulated genes were identified. After the upregulated or downregulated mRNAs from each dataset 
were intersected, we identified a total of 402 upregulated and 638 downregulated DE-mRNAs shared among 
the three datasets and selected them for subsequent analyses (Fig. 1D, E). The detailed DE-mRNAs are listed in 
Supplementary Excel 1–3.

Functional analysis of the DE‑mRNAs. To predict the biological functions of the identified DE-mRNAs, 
we performed Gene Ontology (GO) enrichment and Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
pathway analysis. Predicting the biological function of identified DE-mRNAs, we performed GO term enrich-
ment and KEGG pathway analysis. Analysis of biological processes was mainly performed in the GO annota-
tion. For upregulated DE-mRNAs, our results indicated that these genes were notably enriched in processes 
associated with cell division, DNA replication, and cytoskeletal movements (Fig. 2A).Additionally, cell cycle and 
malignancy-related pathways, such as the p53 signaling pathway and amino acid metabolism, were observed in 
the KEGG pathway analysis (Fig. 2B). Notably, positive regulation of angiogenesis was observed, and the bio-
logical process analysis also indicated several cancer-related GO terms, such as cell adhesion and extracellular 
region/space (Fig. 2C). Furthermore, the KEGG pathway analysis also found that some downregulated genes 
were significantly enriched in well-known cancer-associated pathways, including cell adhesion molecules, TNF, 
PPAR, and chemokine signaling pathways (Fig. 2D). Altogether, these results indicated that both up- and down-
regulated DE-mRNAs were closely related to lung cancer.

Table 1.  The gene expression datasets characteristics.

Dataset Platform Number of samples Number of tumor/adjacent Region

GSE18842 Affymetrix Human Genome U133 Plus 2.0 Array 91 46/45 Spain

GSE19188 Affymetrix Human Genome U133 Plus 2.0 Array 156 91/65 Netherlands

GSE33532 Affymetrix Human Genome U133 Plus 2.0 Array 100 80/20 Germany
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Construction of the PPI network and identification of hub genes. STRING-based database analy-
sis, Supplementary Figure  1a, c show significantly different PPI networks related to up- and downregulated 
DEGs, respectively. Based on the degree of each node, we identified 20 hub genes among these significant dif-
ferences. For better visualization, we used the Cytoscape software to reconstruct the top 20 interacting genes of 
up- (Supplementary Figure 1B) and downregulated (Supplementary Figure 1D) hub genes. The top 20 hub genes 
that were upregulated and the top 20 hub genes that were downregulated were selected for subsequent analyses.

Validation of gene expression of hub genes and survival analysis. Aiming to determine the 
expression of key genes in lung cancer, we used gene expression profiling analysis (GEPIA) and the Kaplan–
Meier plotter database to analyze the expression and prognostic value of the top 10 up- and downregulated 
hub genes, respectively. Combining expression patterns and survival analysis, we found that 10 upregulated 
hub genes (CDK1, CCNB1, CCNA2, TOP2A, AURKA, MAD2L1, CDC20, CCNB2, AURKB, and KIF11) were 
not only significantly upregulated in lung cancer but also significantly correlated with poor prognosis of lung 
cancer patients (p < 0.05; Fig. 3A–K). Conversely, seven of the downregulated hub genes (TLR4, PECAM1, SELP, 
CXCL12, VWF, KDR, and CD34) showed both low expression and good prognosis in lung cancer patients 
(p < 0.05; Fig. 4A–H). These 17 key genes, which met the criteria of converse expression pattern and survival 
prognosis, were selected for the next analyses.

Prediction and validation of key miRNAs upstream of critical genes. In order to identify key 
miRNAs that regulate the pivotal hub genes, we predicted their upstream miRNAs by using the miRTarBase 
database, which is the experimentally validated miRNA-target interaction. Finally, we identified 37 miRNAs 
that may regulate the expression of key pivot genes, as shown in Fig. 5A. We downloaded the miRNA expres-
sion profile and survival information of lung adenocarcinoma patients from TCGA project. Then, we selected 

Figure 1.  Identification of differentially expressed mRNAs between lung adenocarcinoma (LUAD) and normal 
samples in three Gene Expression Omnibus (GEO) datasets. (A–C) Volcano plots of DE-mRNAs in GSE18842, 
GSE19188, and GSE33532. Horizontal axis represents the − log10 (adjusted p-value) and vertical axis represents 
the  log2 (fold change) of gene expression. Green dots and red dots represent significantly downregulated and 
upregulated genes, respectively. Black dots represent genes with no significant difference. (D, E) The intersection 
of upregulated and downregulated genes in three datasets, respectively. DEG; DE-mRNA: Differentially 
expressed mRNA.
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36 out of 37 miRNAs obtained from TCGA project to construct a risk signature using multivariate Cox regres-
sion analysis. The risk score of each patient was based on a linear combination of miRNA expression level (X) 
multiplied by the regression coefficient (α) from the multivariate Cox regression analysis. The formula is as 
follows: risk score = X1α1 + X2α2 + X3α3 + ⋯ + Xnαn. Twelve miRNAs comprise the risk signature. The results 
showed that high-risk patients had a shorter survival time than patients with lung adenocarcinoma, while the 
risk signature was not a good prediction model for prognosis of lung adenocarcinoma patients (Supplementary 
Figure 2a, b). According to the negative regulatory relationship between miRNA and its target genes, we further 
evaluated the prognostic value of miRNA for overall survival in patients with LUAD using the Kaplan–Meier 
plotter database. Survival analysis showed that high expression of two downregulated miRNAs, miR-548b and 
miR-let-7b, functioned as better prognostic biomarkers in patients with LUAD (Fig. 5B, C). By contrast, three 
upregulated miRNAs, miR-17, miR-137, and miR-23a, displayed negative prognostic function in these patients 
(Fig. 5D–F). These miRNAs were identified as key regulators and were analyzed further.

Prediction and validation of upstream key lncRNAs. lncRNAs can regulate gene expression by 
influencing the transcription, mRNA turnover, and translation by sequestering RNA binding proteins and 
 microRNAs23. We further used the online database, miRNet, to predict the lncRNAs that may bind to 5 key 
miRNAs (miR-548b, miR-let-7b, miR-17, miR-137, and miR-23a). A total of 198 lncRNAs were discovered in 
the database for the two upregulated miRNAs, while 426 lncRNAs were found to be able to potentially regulate 
the three downregulated miRNAs (Supplementary Excel 4, 5). The ceRNA hypothesis assumes that lncRNA 
can attenuate miRNA activity through chelation, thereby upregulating the expression of miRNA-target genes. 
Therefore, the eligible lncRNA should negatively correlate with miRNA while positively correlating with target 
mRNA. Therefore, the predicted expression level and prognostic value of lncRNA were verified using GEPIA 
and Kaplan–Meier plotter databases, respectively. Only LINC00665 was notably upregulated in LUAD sam-

Figure 2.  Functional and protein–protein interaction (PPI) networks analysis for the intersected differentially 
expressed mRNAs. (A, C) Enriched GO pathways of the significantly upregulated and downregulated genes, 
respectively. (B, D) Enriched KEGG pathways of the significantly upregulated and downregulated genes, 
respectively. BP biological process; CC cellular component; MF molecular function; GO Gene Ontology; KEGG 
Kyoto Encyclopaedia of Genes and Genome.
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ples when compared to healthy controls (Fig. 6A). Subsequent survival analysis showed that patients with high 
expression of LINC00665 had poor prognosis (Fig. 6B). By contrast, three lncRNAs (LINC01140, NEAT1, and 
PCAT19) were significantly downregulated compared to those of healthy controls and displayed a good progno-
sis (Fig. 6C–F). Therefore, we defined these four as key lncRNAs in the ceRNA network.

Construction of the lncRNA–miRNA–mRNA regulatory network in LUAD. Based on the previ-
ous prediction and validation, a vital lncRNA–miRNA–mRNA ceRNA network in patients with LUAD was 
established. Following the ceRNA hypothesis mentioned above, miRNA expression was inversely correlated 
with mRNA and lncRNA, whereas lncRNA expression was positively correlated with mRNA. Thus, we further 
assessed the correlation of interactions between all these RNA pairs in the network by using the starBase data-
base. As shown in Fig. 7A–D, only the LINC00665-miR-let-7b-5p-CCNA2 regulatory network could fit within 
the ceRNA mechanism. Finally, we constructed a new three sub-networks of mRNA-miRNA-lncRNA, which 
significantly correlated with the prognosis of LUAD (Fig. 7E). This sub-network can also be used to identify 
promising diagnostic biomarkers or to develop therapeutic targets for LUAD.

Discussion
Lung cancer is known for its poor prognosis and high mortality; its metastatic mechanism is complex and 
remains  unclear24,25. Poor prognosis for patients with lung cancer prompts us to formulate effective treatment 
measures and find more effective prognostic  indicators26. Therefore, revealing molecular switches that control the 
malignant transformation of lung cancer is of considerable significance, which may also reveal new prognostic 
indicators. Recent research suggests that ncRNAs, including miRNAs and lncRNAs, play pivotal roles in the 
occurrence or development of  cancer27,28. There is increasing evidence of a close, complex relationship between 

Figure 3.  Screening the key upregulated genes in LUAD. (A) Identification of the key genes with high 
expression and poor prognosis values among significantly upregulated hub genes. (B–K) Representative 
expression and prognostic value of hub genes validated with Gene Expression Profiling Interactive Analysis 
(GEPIA) and Kaplan–Meier plotter databases, respectively.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4434  | https://doi.org/10.1038/s41598-020-80662-x

www.nature.com/scientificreports/

miRNAs and lncRNAs in  cancer29,30. Based on the ceRNA hypothesis first proposed by Salmena et al.8, active 
research on ceRNAs in human cancer has been implemented, which has shown that they participate in various 
pathological processes, including  tumorigenesis31,32. Liu et al. reported that lncRNA-XIST as ceRNA negatively 
regulates the expression of miR-34a and drives thyroid cancer proliferation and growth via the MET-PI3K-
AKT signaling  pathway33. lncRNA XLOC-006390 also has the function of ceRNA and negatively regulates the 

Figure 4.  Screening the key downregulated genes in LUAD. (A) Identification of key genes with low expression 
and good prognosis values in significantly downregulated hub genes. (B–H) Representative expression and 
prognostic value of hub genes validated with GEPIA and Kaplan–Meier plotter databases, respectively.

Figure 5.  Construction of miRNA-gene network using Cytoscape software. (A) The rectangle in the network 
represents miRNA. The ellipse in the network represents hub genes. (B–F) Representative prognostic value of 
key miRNAs validated using Kaplan–Meier plotter databases.
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expression of miR-331-3p and miR-338-3p, thereby promoting tumorigenesis and metastasis of cervical  cancer34. 
Moreover, Gao et al. determined that lncRNA ZEB2-AS1 promotes pancreatic cancer cell growth and invasion 
by regulating miR-20435.

Regarding lung cancer, Schmidt et al. identified the lncRNA, MALAT1, as a prognostic marker for metasta-
sis and patient survival in  NSCLC36. In addition, Jen and colleagues revealed a new mechanism whereby Oct4 
transcriptionally activates lncRNAs, NEAT1 and MALAT1, via promoter and enhancer-binding, respectively, to 
promote tumor cell proliferation and metastasis, leading to lung tumorigenesis and poor  prognosis37. Functional 
validation shows that the largest differentially expressed lncRNA in lung cancer, LCAL1 (lung cancer-associated 
lncRNA 1), contributes to tumor cell  proliferation38. Furthermore, siRNA-mediated downregulation of lncRNA 
and MVIH (microvascular invasion of HCC) can inhibit cell growth by regulating the expression of MMP-2 
and MMP-9 proteins in  NSCLC39.

In our research, we identified two important subsets, including 402 upregulated genes and 638 downregulated 
genes from three GEO datasets, GSE18842, GSE19188, and  GSE3353240. GO analysis of these significant DEGs 
demonstrated that they were significantly enriched in GO terms associated with cancer biological behavior, 
including cell  division41,42, cell  adhesion43, and positive regulation of  angiogenesis44,45. KEGG pathway enrich-
ment analysis shows that multiple pathways are enriched, mainly p53 signaling pathways and other important 
regulatory pathways in  cancer46 and cell cycle-related  pathways47. More importantly, we found that the deregu-
lation of amino acid metabolism, such as that of pyrimidine, purine, and glutathione, plays vital roles in the 
reprogramming of cellular metabolism and is essential for  tumorigenesis48,49. Therefore, these important DEGs 
may be involved in regulating the occurrence and metastasis of lung cancer.

We hypothesized that these screened DE-mRNAs might interact with each other. Thus, two PPI networks 
were constructed separately using the STRING database, which displayed complex associations among these 
DE-mRNAs, especially in the upregulated group. Subsequently, we selected the top 20 upregulated and down-
regulated hub genes for further expression validation and survival analyses. Convincingly, nearly all hub genes 
were well-validated in the GEPIA database and proved to be significantly associated with prognosis, implying 
that they may function as key genes in lung cancer.

Interestingly, some of the hub genes have been widely reported to be involved in cancer. For instance, over-
expression of CCNB1 and CDK1 induces tumor growth and metastasis in human breast  cancer50. CCNA2 
modulates CDK6 and MET-mediated cell cycle pathway, and epithelial-mesenchymal transition progression is 
blocked by miR-381-3p in bladder  cancer51.

In order to systematically explore potential ceRNAs that regulate the above-mentioned central genes, we first 
predicted their upstream miRNA based on an experimentally verified miRNA-target interaction database miR-
TarBase. According to the ceRNA hypothesis and combined with expression and survival analysis, 17 candidate 
miRNAs were identified as key miRNA, of which two (miR-548b and miR-let-7b) had a good prognosis, and 
three (miR-17, miR-137 and miR- 23a) had a poor prognosis.

Furthermore, lncRNAs regulate downstream genes by sequestering miRNA, according to the ceRNA mecha-
nism. Therefore, we further predicted the upstream lncRNAs for the key miRNAs. Similarly, after strict expression 

Figure 6.  Screening the key lncRNAs in LUAD. (A, B) Identification of the key long noncoding RNAs 
(lncRNAs) with high expression and poor prognosis values among the predicted candidate lncRNAs by 
combining expression and prognosis analyses using GEPIA and Kaplan–Meier-plotter databases, respectively. 
(C–F) Identification of key lncRNAs with low expression and better prognosis values among predicted 
candidate lncRNAs by combining expression and prognosis analyses using GEPIA and Kaplan–Meier-plotter 
databases, respectively.
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Figure 7.  Construction of the lncRNA–miRNA–mRNA regulatory network in LUAD. Correlations within 
mRNA, miRNA, and lncRNA using the starBase database (A–D). (E) Novel mRNA–miRNA–lncRNA 
competing endogenous RNA (ceRNA), triple-regulatory network associated with the prognosis of LUAD.
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validation and survival analysis, only four (LINC00665, LINC01140, NEAT1, and PCAT19) out of 624 lncRNAs 
were screened as key lncRNAs. Interestingly, some interactions found in this network were identified in previous 
studies. Z, C. et al. determined that LINC00665 expression is significantly upregulated in lung cancer tissues and 
exerts its oncogenic role by competing with miR-98, and subsequently activating downstream AKR1B10-ERK 
signaling  pathway52. Moreover, LINC00665 is important for NSCLC to develop drug resistance, and in cells 
with acquired gefitinib resistance, downregulation of the LINC00665 gene reverses gefitinib sensitivity in vitro 
and in vivo53.

In conclusion, the ceRNA regulatory network is becoming a research focus in the field of noncoding RNA. 
Employing stepwise reverse prediction from mRNA to lncRNA, we successfully constructed a potential mRNA-
miRNA-lncRNA regulatory network in LUAD. Each component of the ceRNA network is significantly related to 
the prognosis of patients with lung cancer. More importantly, LINC00665- miR-let-7b- CCNA2 was identified 
as a novel key ceRNA network for its possible oncogenic function in lung cancer.

Our findings may provide new insights into the pathogenesis of lung cancer. However, further experimental 
validation is required. In particular, future work should focus on clarifying the function of LINC00665- miR-
let-7b- CCNA2 axis in LUAD with in vitro and in vivo studies. Additional experiments and large-scale clinical 
trials are required in the future. We have successfully constructed a silencing plasmid for LINC00665 and plan 
to investigate the tumor biology effect of the intervention of LINC00665 on lung cancer cells. Parallel silencing 
of LINC00665 in animal tumor models was performed to investigate whether tumor growth could be inhibited. 
Further, we clarified the direct regulation effect of LINC00665 on miR-let-7b through luciferase reporting and 
ChIP experiments. Finally, we used a large number of clinical samples to verify that the LINC00665-miR-let-7b-
CCNA2 axis plays an important regulatory role in LUAD patients. We believe that identifying ceRNA networks 
associated with metastasis or staging of LUAD will be relevant for clinical research and is worthy of further 
investigation and development.

Methods
Datasets collection. We searched for the datasets of lung cancer tissues from the GEO database (http://
www.ncbi.nlm.nih.gov/geo/). The clinical characteristics of selected datasets were extracted for further analysis. 
Finally, three datasets (GSE18842, GSE19188, and GSE33532), were selected for subsequent analyses. To increase 
the reliability of the differential mRNA screening results, we added the TCGA datasets to the discovery set.

Differential expression analysis. Three matrix and associated platform annotation files of the aforemen-
tioned three GEO datasets were first downloaded from the GEO database. The software package “limma” was 
used in the R software to identify DEGs from three data sets, taking |log2FC|> 1 and an adjusted p-value < 0.05 
as the cut-off criterion for differential expression analysis. In addition, VENNY 2.1.0 (http://bioin fogp.cnb) was 
used to draw the Venn diagram. Common DEGs in the GSE18842, GSE19188, and GSE33532 data sets were 
redefined as significant DEGs, including significantly up- and downregulated DEGs.

Functional enrichment analysis. These DE-mRNAs were introduced for GO function annotation and 
the KEGG pathway enrichment analysis to explore the related functions. The website, DAVID, was used for 
enriched GO terms and KEGG pathways enrichment analysis. A p-value < 0.05 was considered statistically sig-
nificant. The R software ggplot2 software package was used to visualize the first 15 enriched GO terms and 
KEGG pathways.

Construction of PPI network. Protein–protein interactions were constructed separately for DE-mRNAs 
using the STRING (Search Tool for Retrieval of Interacting Genes/Proteins) database. PPIs with a combined 
confidence score > 0.4 were used to construct the PPI network. The images were displayed on a high-resolution 
monitor during the experiment and were downloaded from the webpage.

Prediction of miRNA. We used the miRTarbase database to predict upstream miRNAs of key genes, and 
the database was verified experimentally. We also used the Kaplan–Meier plotter database to further evaluate the 
prognostic value of these predicted miRNAs.

Prediction of lncRNA. The upstream potential lncRNAs were predicted using the miRNet database, 
which provides an integrated tool to comprehensively analyze the interaction between miRNA and its targeted 
lncRNA. Additionally, we evaluated the prognostic value of these predicted lncRNAs using the Kaplan–Meier 
plotter database.

Correlation analysis. Correlation analysis of mRNA/miRNA/lncRNA pairs in lung cancer was performed 
using the starBase database. Statistical significance was set at p-value < 0.05.

Data availability
The data used to support the findings of this study are available from the corresponding author upon reasonable 
request.
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