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Tethering‑induced destabilization 
and ATP‑binding for tandem RRM 
domains of ALS‑causing TDP‑43 
and hnRNPA1
Mei Dang, Yifan Li & Jianxing Song*

TDP‑43 and hnRNPA1 contain tandemly‑tethered RNA‑recognition‑motif (RRM) domains, which 
not only functionally bind an array of nucleic acids, but also participate in aggregation/fibrillation, 
a pathological hallmark of various human diseases including amyotrophic lateral sclerosis (ALS), 
frontotemporal dementia (FTD), alzheimer’s disease (AD) and Multisystem proteinopathy (MSP). 
Here, by DSF, NMR and MD simulations we systematically characterized stability, ATP‑binding 
and conformational dynamics of TDP‑43 and hnRNPA1 RRM domains in both tethered and isolated 
forms. The results reveal three key findings: (1) upon tethering TDP‑43 RRM domains become 
dramatically coupled and destabilized with Tm reduced to only 49 °C. (2) ATP specifically binds TDP‑
43 and hnRNPA1 RRM domains, in which ATP occupies the similar pockets within the conserved 
nucleic‑acid‑binding surfaces, with the affinity slightly higher to the tethered than isolated forms. 
(3) MD simulations indicate that the tethered RRM domains of TDP‑43 and hnRNPA1 have higher 
conformational dynamics than the isolated forms. Two RRM domains become coupled as shown 
by NMR characterization and analysis of inter‑domain correlation motions. The study explains the 
long‑standing puzzle that the tethered TDP‑43 RRM1–RRM2 is particularly prone to aggregation/
fibrillation, and underscores the general role of ATP in inhibiting aggregation/fibrillation of RRM‑
containing proteins. The results also rationalize the observation that the risk of aggregation‑causing 
diseases increases with aging.

Aggregation/fibrillation of TDP-43 in the cytoplasm of neurons is a pathological hallmark of ~ 97% amyotrophic 
lateral sclerosis (ALS) and ~ 45% frontotemporal dementia-TDP (FTLD-TDP), that lack any efficacious medicine 
so  far1–3. TDP-43 is a well-known member of heterogeneous nuclear ribonucleoproteins (hnRNP) containing the 
folded RNA-recognition motif (RRM), which constitutes one of the most abundant domains in  eukaryotes3–5. 
Interestingly, ~ 70 human RRM-containing proteins including FUS, TDP-43 and hnRNPA1 additionally have the 
intrinsically disordered prion-like domains of low-complexity sequences with amino acid compositions similar to 
those of the prion domains in yeast responsible for driving the formation of infectious  conformers2–4. Remarkably, 
these proteins not only functionally mediate direct interactions with various nucleic acids to control both RNA 
processing and gene expression, but their aggregation/fibrillation is pathologically characteristic of an increas-
ing spectrum of human diseases including ALS, frontotemporal dementia (FTD), Alzheimer’s disease (AD), 
chronic traumatic encephalopathy, muscle regeneration/degeneration and multisystem proteinopathy (MSP)1–10.

414-Residue TDP-43 contains two folded RRM domains (Fig. 1A), which are not only essential for recogniz-
ing UG-rich sequences near RNA splice  sites11, but also extensively demonstrated to participate in disease-causing 
aggregation/fibrillation in additional to its C-terminal prion-like  domain11–19. Remarkably, small molecules 
targeting the RRM domains of TDP-43 have been recently identified to reduce locomotor defects in drosophila 
model of  ALS19. We also found that ATP, the universal energy currency, specifically binds the RRM domains of 
FUS and TDP-43 to inhibit their amyloid  fibrillation20–22. Therefore to understand the factors and mechanisms 
governing their aggregation/fibrillation is not only of fundamental interest, but represents an essential step for 
further development of therapeutic strategies/molecules to treat these diseases.

Structurally, two TDP-43 RRM domains adopt the same overall fold shared by all RRM domains, which 
consists of a four-stranded β-sheet and two perpendicular α-helices (Fig. 1B). Recently, we showed that aggre-
gation/fibrillation of the single FUS RRM domain not only depends on thermodynamic stability, but also on 

OPEN

Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 
Singapore 119260, Singapore. *email: dbssjx@nus.edu.sg

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-80524-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1034  | https://doi.org/10.1038/s41598-020-80524-6

www.nature.com/scientificreports/

conformational  dynamics23. Briefly, the FUS RRM domain undergoes fibrillation not only due to its relatively low 
stability with melting temperature (Tm) of 55 °C, lower than that of the human γS-crystallin with Tm of 71 °C24, 
but also resulting from its high conformational dynamics, that allow the dynamic opening of the structure to 
expose its central hydrophobic regions for aggregation/fibrillation23. Consequently, although ATP induces no 
enhancement of the thermal stability of the FUS RRM domain, it is sufficient to kinetically inhibit the amyloid 
fibrillation through weak but specific binding with a Kd of 3.8 ± 0.5 mM to a pocket within the conserved 
nucleic-acid-binding surfaces, which thus leads to blocking the dynamic opening of the  structure19.

It has been a long-standing puzzle that the tethered RRM domains of TDP-43 were particularly prone to 
 aggregation11 while the isolated RRM1 and RRM2 domains appeared to be stable and soluble as evidenced by 
their NMR structures determination at high protein concentrations by RIKEN Structural Genomics/Proteom-
ics Initiative (PDB ID of 2CQG and 1WF0). We also observed that in the buffer with pH and salt concentration 
close to in vivo conditions (10 mM sodium phosphate at pH 6.8 with 150 mM NaCl and 10 mM DTT), the 
tethered TDP-43 RRM1–RRM2 could form amyloid fibrils within several days while the isolated RRM1 and 
RRM2 failed even after a  month22. In particular, we found that under exactly the same conditions, the tethered 
RRM1–RRM2 of TDP-43 has only one transition with Tm of only 49 °C, lower than Tm of the isolated RRM1 

Figure 1.  Dissection-induced perturbation of TDP-43 RRM domains. (A) 414-residue TDP-43 contains: 
N-terminal domain (NTD) over residues 1–80; two tandemly-tethered RNA recognition motifs (RRM1 and 
RRM2) over residues 105–261, and C-terminal prion-like domain over residues 274–414. (B) NMR structure 
(PDB ID of 4BS2) of the TDP-43 RRM1 (light blue) and RRM2 (pink) in which the residues are displayed in 
sphere for those with HSQC peaks disappeared (yellow), significantly shifted in RRM1 (blue) or in RRM2 (light 
pink) upon dissection. The image was prepared by PyMol2.4 (https ://pymol .org). (C) Superimposition of 1H-
15 N NMR HSQC spectra of the 15 N-labeled tethered RRM1–RRM2 domains (blue), the isolated RRM1 (cyan) 
and RRM2 (pink) proteins at 50 μM in 10 mM sodium phosphate buffer (pH 6.8) containing 150 mM NaCl and 
10 mM DTT. (D) Residue-specific chemical shift difference (CSD) of the RRM1 and RRM2 domains between 
the tethered and isolated forms. Significantly shifted residues are labeled and displayed as spheres in (B), which 
are defined as those with the CSD values > 0.25 (average value + one standard deviation) (pink line).

https://pymol.org
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(57 °C). On the other hand, the binding affinity of ATP has been characterized to be higher to the tethered RRM1 
than the isolated  RRM121,22.

So far, it remains completely unexplored for the relationship of thermodynamic stability, conformational 
dynamics and ATP-binding of RRM domains between the tethered and isolated forms. In the present study, with 
experimental methods including DSF and NMR as well as molecular dynamics (MD) simulations, we aimed 
to address this problem by characterizing the thermal stability, ATP-binding and conformational dynamics of 
TDP-43 and hnRNPA1 RRM domains in both tethered and isolated forms. The most unexpected finding is that 
upon tethering, TDP-43 RRM1 and RRM2 become highly coupled to behaving as one denaturing unit with the 
stability significantly reduced. By contrast, no significant destabilization was observed upon tethering of two 
RRM domains of hnRNPA1. Our study further showed that the tethering-induced effects mainly result from 
the inter-domain interactions as detected by NMR characterization and analysis of inter-domain correlation 
motions calculated from MD simulations. Moreover, we found that ATP can also specifically bind the hnRNPA1 
RRM2 but not RRM1 domain with the affinity and complex structure highly similar to those for FUS and TDP-43 
RRM domains. Intriguingly, the previous and present results together revealed that ATP bind the RRM domains 
of both TDP-43 and hnRNPA1 with the affinity slightly higher for the tethered than for the isolated ones. Our 
study provides the first mechanistic insight into the tethering-induced effects on the tandem RRM domains, 
and highlights the general role of ATP in inhibiting aggregation/fibrillation of RRM-containing proteins, which 
extensively causes various human diseases by “loss of functions” or/and “gain of function”.

Results
Dissection‑induced perturbation of TDP‑43 RRM1 and RRM2 domains. Due to the presence of 
dynamics and aggregation at high concentrations, the structure of the tethered TDP-43 RRM1–RRM2 could not 
be determined in the free state by NMR or X-ray  crystallography11,25. As such, here we used the NMR structure 
(PDB ID of 4BS2) in complex with  RNA11, whose Cα and Cβ chemical shifts indicative of secondary structures 
were shown to be very similar to those in the free  state25. As shown in Fig. 1A, B, TDP-43 contains two RRM1 
and RRM2 domains respectively over residues 105–180 and 193–261 connected by an unstructured linker over 
residues 181–192. Comparison of NMR structures determined in the tethered and isolated forms (2CQG for 
RRM1 and 1WF0 for RRM2) revealed that RRM1 has Cα atom RMSD value of 1.63 Å but RRM2 only 0.82 Å, 
indicating that the overall structures of both RRM1 and RRM2 domains of TDP-43 are well-folded and adopt the 
same RRM fold in both forms. However, it is worthwhile to point out that the relative orientation of two RRM 
domains in the tethered form may result from the binding to RNA although it was shown that the motion of two 
RRM domains was not completely independent based on the backbone relaxation  measurement11.

Here we cloned and expressed the tethered RRM1–RRM2 of TDP-43 (102–269), as well as its isolated RRM1 
(102–191) and RRM2 (191–269). Indeed as extensively observed, the tethered RRM1–RRM2 protein was prone to 
aggregation even at concentrations of ~ 100 μM but the isolated RRM1 and RRM2 proteins showed no significant 
aggregation at concentrations of ~ 1 mM. Nevertheless, the tethered RRM1–RRM2 protein has a well-dispersed 
HSQC spectrum typical of a well-folded protein at 50 μM in 10 mM sodium phosphate buffer containing 10 mM 
DTT and 150 mM NaCl (pH 6.8) (Fig. 1C). Two isolated RRM1 and RRM2 proteins also have well-dispersed 
HSQC spectra at the same protein concentration in the same buffer. However, upon superimposing three HSQC 
spectra, some significant changes were identified (Fig. 1C and S1): (1) HSQC peaks of residues K181-S183, D185, 
E186 and L188 over the linker, which were undetectable in the tethered form became detectable in the isolated 
form; (2) upon dissection some HSQC peaks were largely shifted and the residues with significant chemical shift 
difference (CSD) are mainly located within the RRM2 domain (Fig. 1B, D). This observation strongly suggests 
that in the tethered form, two RRM domains of TDP-43 have dynamic inter-domain interactions. Consequently 
although the dissection resulted in no disruption of the overall RRM fold for both RRM1 and RRM2, it did lead 
to the changes of local conformations, or/and dynamics or/and chemical environments of a set of RRM residues, 
thus leading to significant shifts of their HSQC peaks.

Interestingly, we have further acquired HSQC spectrum of the mixture of the isolated RRM1 and RRM2 at 
an equal molar ratio (1:1), which is very different from that the tethered RRM1–RRM2 (Fig. S2A) but almost 
completely superimposable to the overlay of HSQC spectra of the isolated RRM1 and RRM2 (Fig. S2B). This 
observation strongly suggests that the interaction of the TDP-43 RRM1 and RRM2 is very dynamic and needs 
the covalent connection of two RRM domains to enhance their interaction, likely by increasing the effective 
concentrations.

Thermal stability and ATP‑binding of the isolated TDP‑43 RRM2 domain. Due to the critical 
role of TDP-43 RRM domains in amyloid fibrillation associated with various neurodegenerative diseases, pre-
viously their thermodynamic stability has been extensively characterized by a variety of biophysical methods 
which monitor distinctive probes associated with the secondary and tertiary structures. Nevertheless, despite 
exhaustive studies, it remains challenging for understanding the relationship between structure, stability and 
fibrillation. For example, previous far-UV CD studies in the low salt buffer indicated that TDP-43 RRM domains 
showed no complete denaturation of secondary structures even at 90 °C, implying that TDP-43 RRM domains 
might directly assemble into soluble β-rich oligomers from partially-unfolded  intermediates14.

As the high-salt buffer with 150 mM NaCl we used triggered unacceptable noise for far-UV CD spectros-
copy, we therefore conducted the thermal denaturation monitored by the intrinsic Trp UV fluorescence for the 
tethered TDP-43 RRM1–RRM2, isolated RRM1 and RRM2 domain, as well as their mixture at 1:1 (Fig. S3). 
Due to the lack of Trp residue in RRM2, no Trp fluorescence could be detected. As judged from the results, it 
appeared that consistent with previous  studies14,23, the thermal denaturation is irreversible because the spectra 
of the samples cooled down to 25 °C after treatment at 95 °C are different from those initial spectra at 25 °C. The 
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melting temperature (Tm) was estimated to be 55 °C for TDP-43 RRM1. Noticeably, the tethered RRM1–RRM2 
sample has a Tm of 45 °C while the mixed RRM1 and RRM2 sample shows a Tm of 55 °C. As RRM2 has no Trp 
intrinsic fluorescence, this observation suggests that only upon covalent connection to RRM2, RRM1 is signifi-
cantly destabilized with a Tm decrease of 10 °C.

Previously we have characterized the thermal stability and ATP binding of the tethered RRM1–RRM221 and 
isolated  RRM122 of TDP-43 by differential scanning fluorimetry (DSF) which reports the increase of binding of 
the fluorescent dye due to the exposure of hydrophobic patches in the partially-unfolded intermediates which 
might directly assemble into β-rich oligomers. Interestingly the tethered RRM1–RRM2 has only one thermal 
unfolding transition with Tm of 49 °C, which increased to 54 °C with addition of ATP. The isolated RRM1 also 
has only one thermal unfolding transition but with Tm of 57 °C, which increased to 60 °C with addition of ATP. 
To understand this unexpected observation, here we measured the thermal stability of the isolated RRM2 under 
the same conditions. Interestingly, the isolated RRM2 has also only one thermal unfolding transition with Tm of 
59 °C, which is not affected by the addition of ATP even up to 15 mM (Fig. 2A). This result suggests that upon 
tethering, the RRM1 and RRM2 domains of TDP-43 became significantly coupled to acting as one unfolding 
unit as well as thermodynamically destabilized. Strikingly, the results by intrinsic Trp fluorescence and DSF are 
in general consistent although they monitor fundamentally different probes.

Figure 2.  Thermal stability and ATP binding of the isolated TDP-43 RRM2. (A) DSF melting curves of thermal 
unfolding of the isolated RRM2 domain in the presence of ATP at different concentrations. (B) 1H-15 N NMR 
HSQC spectra of the 15 N-labeled RRM2 domain at 50 μM (blue) in 10 mM sodium phosphate buffer (pH 6.8) 
containing 150 mM NaCl and 10 mM DTT in the absence (blue), and in the presence of ATP at 10 (pink) and 
20 (cyan) mM. Traces of two representative HSQC peaks, which have significant shifts but are not severely 
overlapped with other peaks. For clarity, only peaks at five ATP concentrations are shown: in the free state 
(blue); in the presence of ATP at 6 mM (pink); 10 mM (cyan); 14 mM (black); and 20 mM (red). (C) Residue-
specific chemical shift difference (CSD) of the isolated RRM2 in the presence of ATP at 10 mM (blue) and 
20 mM (pink). Significantly shifted residues are labeled, which are defined as those with the CSD values at 
20 mM ATP > 0.1 (average value + one standard deviation) (cyan line). Fitting of the residue-specific dissociation 
constant (Kd): experimental (dots) and fitted (lines) values for the chemical shift differences induced by addition 
of ATP at 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0 and 20.0 mM.
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On the other hand, in the tethered form, the Kd value of RRM1 binding to ATP is 2.6 ± 0.3 mM21 while the Kd 
of the isolated RRM1 is 3.9 ± 0.8 mM22. Although in the tethered form, RRM2 also has an ATP-binding pocket but 
with much lower affinity than RRM1, with Kd of 13.9 ± 0.9 mM. Here our NMR titrations showed that isolated 
RRM2 is also able to bind ATP to induce large shifts of a set of HSQC peaks (Fig. 2B) with the overall pattern of 
the perturbed residues highly similar to that of in the tethered form but with slightly larger Kd (16.7 ± 0.9 mM) 
(Fig. 2C). It is worthwhile to note that ATP binds to both RRM1 and RRM2 domains of TDP-43 with the slightly 
higher affinity in the tethered form than those in the isolated form.

Dissection‑induced perturbation of hnRNPA1 RRM1 and RRM2 domains. To understand 
whether the destabilization observed on the tethered TDP-43 RRM1 and RRM2 domains is unique to TDP-
43 or also applicable to other RRM-containing proteins. Here we decided to further characterize the tethered 
and isolated tandem RRM domains of 320-residue hnRNPA1, which contains two RRM domains over residues 
15–90, 106–179 respectively (Fig. 3A). Previously, the NMR structures of the tethered RRM1–RRM226 as well as 
isolated RRM1 and RRM2 domains have been determined by  NMR27. The NMR results indicate that very differ-
ent from what was observed in the crystal structure, the relative orientation of two RRM domains in the free state 
in fact already resembles to that in complex with nucleic  acids26. The RRM1 domain has Cα atom RMSD value of 
only 0.68 Å while the RRM2 domain has RMSD of 0.62 Å between the tethered and isolated forms, implying the 
RRM1 and RRM2 domains adopt the same fold regardless of being tethered or isolated. Interestingly, the linker 
for the hnRNPA1 RRM1 and RRM2 domains is not completely unstructured as that of TDP-43 but has a short 
helix over residues 91–96 (Fig. 3B).

Here we cloned and expressed the tethered hnRNPA1 RRM1–RRM2 (5–184), as well as its isolated RRM1 
(5–95) and RRM2 (94–184). Different from what was observed on the TDP-43 RRM domains, the tethered 
RRM1–RRM2 is highly soluble and has a well-dispersed HSQC spectrum typical of a well-folded protein at 
50 μM (Fig. 3C), while two isolated RRM1 and RRM2 proteins are also highly soluble and have well-dispersed 
HSQC spectra at the same protein concentration in the same buffer conditions. Upon superimposing three 
HSQC spectra, some significant shifts of HSQC peaks were observed (Fig. 3C,D). Detailed analysis revealed 
(Fig. S4): (1) CSD values of HSQC peaks upon dissection of hnRNPA1 RRM1–RRM2 (with the largest < 0.3) 
are much less than those (with the largest close to 1.2 ppm) upon dissection of TDP-43 RRM1–RRM2 (Fig. 1D). 
(2) residues with large shifts are located on RRM1, linker and RRM2 (Fig. 3B). This observation suggests that in 
the tethered form, two RRM domains of hnRNPA1 also have some dynamic inter-domain interactions to some 
degree. On the other hand, we have also acquired HSQC spectrum of the mixture of the hnRNPA1 isolated RRM1 
and RRM2 at 1:1, which is also different from that the tethered RRM1–RRM2 (Fig. S5A) but almost completely 
superimposable to the overlay of HSQC spectra of the isolated RRM1 and RRM2 (Fig. S5B). This observation 
indicates that similar to what was observed on TDP-43 RRM1 and RRM2 domains (Fig. S2), the interaction 
of the hnRNPA1 RRM1 and RRM2 is also very dynamic and the covalent connection of both RRM domains is 
needed to increase their effective concentrations.

Thermal stability and ATP‑binding of the tethered and isolated hnRNPA1 RRM domains. We 
also carried out the thermal denaturation monitored by the intrinsic Trp UV fluorescence for the tethered 
hnRNPA1 RRM1–RRM2, isolated RRM1 and RRM2 domain, as well as their mixture at 1:1 (Fig. S6). Due to 
the lack of Trp residue in RRM2, no Trp fluorescence could be detected. Tm was estimated to be 58 °C for RRM, 
while the tethered RRM1–RRM2 as well as the mixed RRM1 and RRM2 samples also show similar Tm values of 
~ 58 °C. This observation suggests that different from what was observed on TDP-43 RRM domains (Fig. S3), the 
covalent connection of hnRNPA1 RRM2 to RRM1 has no significantly destabilization of RRM1.

We further characterized the thermal stability and ATP binding of the tethered and isolated RRM domains 
of hnRNPA1. The tethered RRM1–RRM2 has only one thermal unfolding transition with Tm of 55 °C, which 
increased to 58 °C with addition of ATP (Fig. 4A). Intriguingly, the isolated RRM1 without ATP has two thermal 
unfolding transitions with Tm of 51 and 57 °C respectively. With addition of ATP up to 15 mM, the transition at 
51 °C disappeared and only the transition at 57 °C retained. This implies that ATP has a capacity in shifting the 
equilibrium of different conformations, as we recently observed that ATP could enhance the stability without 
detectable binding by NMR on the ALS-causing C71G mutant of profilin-1 most likely by dynamically interacting 
with the exposed hydrophobic patches or/and even mediating the hydration shell of  proteins28. One the other 
hand, the isolated RRM2 has one thermal unfolding transition with Tm of 60 °C, which increased to 63 °C with 
the addition of ATP. The results together suggest that the tethering of hnRNPA1 RRM1 and RRM2 domain led 
to no significant destabilization.

We further characterized the binding of ATP to the tethered and isolated RRM domains. As shown in Fig. 4B, 
ATP induced large shifts of many HSQC peaks of the tethered RRM1–RRM2, and detailed analysis revealed that 
the residues with significant shifts are located on the RRM2 domain except for Arg88, Val90 and Ser91 within 
RRM1 (Fig. 5A). This was further confirmed by the ATP titrations on the isolated RRM1 and RRM2 domains 
(Fig. 4B). ATP even with concentrations up to 20 mM only triggered large shifts of two residues Val90 and Ser91 
of RRM1 but induced significant shifts of a large set of peaks of the isolated RRM2 domain. Furthermore, the 
overall patterns of shifted residues of RRM2 are very similar in both tethered and isolated forms (Fig. 5A, B).

With the same method we previously used to characterize the ATP-binding to the FUS and TDP-43 RRM 
 domains20–22,29, we determined Kd value of the ATP binding to hnRNPA1 RRM2 to be 4.9 and 7.7 mM respec-
tively for the tethered and isolated forms (Fig. 5A, B). The values are very similar to those for FUS RRM, TDP-43 
RRM1 as well as for a non-canonical helix-only RNA-binding  domain30 of hnRNP Q (Kd of 3.1 mM). Interest-
ingly, as observed on TDP-43 RRM domains, the ATP binding affinity to the RRM domains of hnRNPA1 is also 
higher for the tethered form than for the isolated form.
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Visualization of the ATP‑RRM2 complex of hnRNPA1. Because of the extremely low binding affinity 
with Kd of ~ mM, it is impossible to determine the three-dimensional structure of the ATP-RRM2 complexes 
by the classic methods of NMR spectroscopy or X-ray crystallography. So here to visualize the complex struc-
ture, we utilized the NMR-binding derived constraints to guide the molecular docking with the well-established 
HADDOCK  program31, as we extensively conducted before on the non-classic ATP-protein  complexes20–22,30.

Figure 5C presents the lowest-energy docking structure of the ATP-RRM2 complex of hnRNPA1. Overall, 
this structure is very similar to those of the ATP-RRM1 and ATP-RRM2 complexes of TDP-43 in which ATP 

Figure 3.  Dissection-induced perturbation of hnRNPA1 RRM domains. (A) 320-residue hnRNPA1 contains: 
two RNA recognition motifs (RRM1 and RRM2) over residues 1–179, and C-terminal prion-like domain 
over residues 180–320. (B) NMR structure (PDB ID of 2LYV) of the hnRNPA1 RRM1 (light blue) and RRM2 
(pink) in which the residues are displayed in spheres for those with HSQC peaks significantly shifted in RRM1 
(blue) or in RRM2 (light pink) upon dissection. The image was prepared by PyMol2.4 (https ://pymol .org). 
(C) Superimposition of 1H-15 N NMR HSQC spectra of the 15 N-labeled tethered RRM1–RRM2 domains 
(blue), the isolated RRM1 (cyan) and RRM2 (pink) domains at 50 μM in 10 mM sodium phosphate buffer (pH 
6.8) containing 150 mM NaCl and 10 mM DTT. (D) Residue-specific chemical shift difference (CSD) of the 
RRM1 and RRM2 domains between the tethered and isolated forms. Significantly shifted residues are labeled 
and displayed as spheres, which are defined as those with the CSD values > 0.09 (average value + one standard 
deviation) (pink line).

https://pymol.org
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occupies a pocket within the conserved surfaces of RRM domains for binding various nucleic acids (Fig. 5D). 
A close examination reveals that in the ATP-RRM2 complex of hnRNPA1, the aromatic purine ring of ATP has 
close contacts with the positively-charged surface constituted by the side chains of both RRM2 Arg178 and Lys179 
likely to establish π-cation interactions on the one hand, as well as with Phe108 and Phe148 likely by establishing 
π-π interactions on the other hand (Fig. 5E). Furthermore, the NH of the purine ring of ATP forms a hydrogen 
bond with the backbone oxygen of Leu181, while the α- and β-phosphate oxyanions of ATP form other two 
hydrogen bonds respectively with the backbone nitrogen atoms of Gly114 and Gly147 (Fig. 5F).

So far, we have studied the binding complexes of ATP to FUS and TDP-43 RRM domains, as well as non-
classic AcD domains which are all capable of binding nucleic acids. ATP appears to always occupy the pockets 
within their interfaces utilized for binding nucleic acids. Although ATP has no complete binding pocket on the 
RRM1 domain of hnRNPA1, the three residues with large shifts of HSQC peaks induced by adding ATP are also 
located within the conserved surfaces for RRM domains to bind nucleic acids (Fig. 5G).

Dynamic behaviours of the TDP‑43 tethered and isolated RRM domains. To understand the 
dynamic basis underlying the coupling of the tethered RRM1–RRM2 of TDP-43, we conducted molecular 
dynamics (MD) simulations for the tethered as well as isolated RRM1 and RRM2 of TDP-43 with three parallel 
50-ns simulations for each constructs. Molecular dynamics simulation is a powerful tool which can not only 
provide insights into the conformational dynamics that underlies protein functions, but also detect long-range 
inter-domain correlation  motions32–34 as we previously showed on other  proteins35–38.

I of Fig. 6A presents the root-mean-square deviations (RMSD) of the Cα atoms averaged over three trajec-
tories for the tethered RRM1–RRM2 (black), as well as isolated RRM1 (blue) and RRM2 (pink). The tethered 
RRM1–RRM2 of TDP-43 has larger RMSD value (4.32 ± 0.39 Å) than those of the isolated RRM1 (3.12 ± 0.35 Å) 

Figure 4.  Thermal stability and ATP binding of the hnRNPA1 RRM domains. (A) DSF melting curves of 
thermal unfolding of the tethered RRM1–RRM2, as well as isolated RRM1 and RRM2 domains in the presence 
of ATP at different concentrations. (B) 1H-15 N NMR HSQC spectra of the 15 N-labeled tethered RRM1–RRM2, 
as well as isolated RRM1 and RRM2 domains at 50 μM (blue) in 10 mM sodium phosphate buffer (pH 6.8) 
containing 150 mM NaCl and 10 mM DTT in the absence (blue), and in the presence of ATP at 10 (pink) and 
20 (cyan) mM.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1034  | https://doi.org/10.1038/s41598-020-80524-6

www.nature.com/scientificreports/

and RRM2 (2.72 ± 0.32 Å). Furthermore, we calculated RMSD values by overlaying only RRM1 (104–179) and 
RRM2 (191–261) in both tethered and isolated forms with the exclusion of the unstructured N- and C-termini. 
RRM1 (104–179) in the tethered form still has larger RMSD value (4.39 ± 0.41 Å) than RRM1 (104–179) in the 
isolated form (2.51 ± 0.23 Å) (II of Fig. 6A). Similarly, RRM2 (191–261) in the tethered form also has larger 
RMSD value (3.48 ± 0.37 Å) than RRM2 (104–179) in isolated form (1.74 ± 0.14 Å) (III of Fig. 6A).

Figure 6B presents the structure snapshots in the first MD simulations for the tethered RRM1–RRM2 as well 
as isolated RRM1 and RRM2, clearly indicating that the structures of the tethered RRM1–RRM2 are more fluctu-
ating than those of the isolated RRM1 or RRM2, completely consistent with the RMSD results. Similar dynamic 
behaviours are also reflected by the root-mean-square fluctuations (RMSF) of the Cα atoms averaged over three 
trajectories (Fig. 7). As shown in Fig. 7A, while the residue-specific fluctuations of RRM1 are very similar in both 
tethered and isolated forms, those of RRM2 in the tethered form are higher than those in the isolated forms. As 
a consequence, the majority of the residues with significant differences of RMSF between tethered and isolated 

Figure 5.  ATP binding of the tethered RRM1–RRM2, as well as isolated RRM2 of hnRNPA1. (A) Residue-
specific chemical shift difference (CSD) of the tethered hnRNPA1 RRM1–RRM2 in the presence of ATP at 
10 mM (blue) and 20 mM (pink). Significantly shifted residues are labeled, which are defined as those with 
the CSD values at 20 mM ATP > 0.1 (average value + one standard deviation) (cyan line). (B) Residue-specific 
chemical shift difference (CSD) of the isolated RRM2 in the presence of ATP at 10 mM (blue) and 20 mM 
(pink). Significantly shifted residues are labeled, which are defined as those with the CSD values at 20 mM 
ATP > 0.125 (average value + one standard deviation) (cyan line). The shifted residues identical to those in the 
tethered form are labeled in pink while the additionally shifted residues are in black. (C) The lowest energy 
docking model of the ATP-RRM2 complex. The structure of hnRNPA1 RRM2 is displayed in ribbon, while 
ATP is in sticks. The nine residues with significant CSD values are displayed in spheres and labeled. (D) 
Superimposition of three complexes of ATP: with hnRNPA1 RRM2 (pink), TDP-43 RRM1 (yellow) and TDP-43 
RRM2 (cyan). (E) The ATP-RRM2 complex of hnRNPA1 with the RRM2 structure displayed in the electrostatic 
potential surface and ATP in sticks. (F) The ATP-RRM complex of hnRNPA1 showing three hydrogen bonds 
(in blue dotted lines) between ATP and RRM2 atoms. (G) Superimposition of the hnRNPA1 RRM1 and ATP-
RRM2 complex with the three significantly shifted RRM1 residue (Arg88, Val90 and Ser91) displayed in spheres. 
The image was prepared by PyMol2.4 (https ://pymol .org).

https://pymol.org
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Figure 6.  Overall dynamic behaviors of the TDP-43 RRM domains. (A) Average root-mean-square deviations 
(RMSD) of the Cα atoms over three independent 50-ns MD simulations for the tethered RRM1–RRM2 (black), 
as well as isolated RRM1 (blue) and RRM2 (pink) (I). For the RRM1 in the tethered form (black) and isolated 
form (blue) with the unstructured N- and C-termini excluded for calculation (II); as well as for the RRM2 in the 
tethered form (black) and isolated form (pink) with the unstructured N- and C-termini excluded for calculation 
(III). (B) Structure snapshots in the first MD simulation with one structure for each 5 ns. The image was 
prepared by PyMol2.4 (https ://pymol .org).

Figure 7.  Residue-specific dynamic behaviors of the TDP-43 RRM domains. (A) Averaged root-mean-square 
fluctuations (RMSF) of the Cα atoms computed over three independent MD simulations for the tethered 
RRM1–RRM2 (black), as well as isolated RRM1 (blue) and RRM2 (pink). (B) The difference of the average 
RMSF between the tethered RRM1–RRM2, and isolated RRM1/RRM2. The residues are labeled for those with 
significant difference of RMSF (> 1.0; average + one STD). (C) Structure of the TDP-43 RRM1–RRM2 with the 
residues displayed in spheres which show significant difference of RMSF between the tethered and isolated 
forms. The image was prepared by PyMol2.4 (https ://pymol .org). (D) Mutual information matrix calculated 
from three parallel MD simulation data of the tethered TDP-43 RRM1–RRM2 by MutInf, with residues having 
significant inter-domain correlation motions highlighted by yellow boxes. The RRM1 sequence is indicated by 
blue box and RRM2 sequence in pink box.

https://pymol.org
https://pymol.org
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forms are located in RRM2 (Fig. 7B,C), which is only in general consistent with the dissection-induced effects 
as detected by NMR (Fig. 1D). Nevertheless, the involved residues detected by NMR HSQC and MD could not 
be exactly the same as two methods report different probes and time scales.

MutInf represents an entropy-based approach to analyze ensembles of protein con-formers, such as those 
from molecular dynamics simulations by using internal coordinates and focusing on dihedral angles. In particu-
lar, this approach is particularly applicable for those in which conformational changes are  subtle33. Briefly, this 
approach utilizes second-order terms from the configurational entropy expansion, called the mutual information, 
to identify pairs of residues with correlated conformations, or correlated motions. Figure 7D shows the normal-
ized correlation motion matrix of the tethered RRM1–RRM2 of TDP-43. Interestingly, the correlation motions 
exist not only within RRM1 or RRM2 domain, but also between two domains. In particular, the RRM1 residues 
around Gly142 and Met162 have extensive correlation motions with many RRM2 residues. Furthermore, the 
strength of the inter-domain correlation motions has no significant difference from that of the intra-domain 
motions, suggesting that the tethered RRM1–RRM2 indeed behaves as a coupled dynamic unit. This rationalizes 
the DSF results that the tethered RRM1–RRM2 of TDP-43 only has one thermal unfolding transition although 
the isolated RRM1 and RRM2 have their own transitions with very different Tm values.

Dynamic behaviours of the hnRNPA1 tethered and isolated RRM domains. We also con-
ducted 50-ns molecular dynamics (MD) simulations for the tethered as well as isolated RRM1 and RRM2 of 
hnRNPA1 with three parallel simulations for each constructs. I of Fig. 8A presents the root-mean-square devia-
tions (RMSD) of the Cα atoms averaged over the three trajectories for the tethered RRM1–RRM2 (black), as 
well as isolated RRM1 (blue) and RRM2 (pink). Interestingly, the tethered RRM1–RRM2 of hnRNPA1 also has 
larger RMSD value (4.87 ± 1.05 Å) than those of RRM1 (3.39 ± 0.48 Å) and RRM2 (3.66 ± 0.49 Å). Furthermore, 
although the unstructured N- and C-termini were not included for calculation, the RRM1 (9–91) in the tethered 
form still has larger RMSD value (4.69 ± 1.23 Å) than RRM1 (9–91) in the isolated form (1.97 ± 0.21 Å) (II of 
Fig. 8A). Similarly, RRM2 (105–180) in the tethered form also has larger RMSD value (4.25 ± 0.92 Å) than RRM2 
(105–180) in the isolated form (1.77 ± 0.19 Å) (III of Fig. 8A).

Figure 8B presents the structure snapshots in the first MD simulations for the tethered RRM1–RRM2 as well 
as isolated RRM1 and RRM2 of hnRNPA1, showing that the structures of the tethered RRM1–RRM2 are indeed 
more fluctuating than those of the isolated RRM1 and RRM2, completely consistent with the RMSD results. 
Noticeably, different from those observed for the TDP-43 RRM domains (Fig. 7), the residue-specific RMSF 
values of both RRM1 and RRM2 of hnRNPA1 in the tethered forms are larger than those of isolated RRM1 and 
RRM2 (Fig. 9A). Consequently, the residues with significant differences of RMSF between the tethered and 

Figure 8.  Overall dynamic behaviors of the hnRNPA1 RRM domains. (A) Average root-mean-square 
deviations (RMSD) of the Cα atoms over three independent 50-ns MD simulations for the tethered RRM1–
RRM2 (black), as well as isolated RRM1 (blue) and RRM2 (pink) (I). for the RRM1 in the tethered form (black) 
and isolated form (blue) with the unstructured N- and C-termini excluded for calculation (II); as well as for the 
RRM2 in the tethered form (black) and isolated form (pink) with the unstructured N- and C-termini excluded 
for calculation (III). (B) Structure snapshots in the first MD simulation with one structure for each 5 ns. The 
image was prepared by PyMol2.4 (https ://pymol .org).

https://pymol.org
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isolated forms are located on both RRM1 and RRM2 (Fig. 9B,C), which is also in general consistent with the 
dissection-induced perturbation as detected by NMR (Fig. 3D).

Figure 9D presents the normalized correlation motion matrix of the tethered RRM1–RRM2 of hnRNPA1. 
Although the correlation motions still exist between two domains, the inter-domain correlation motions are 
mainly between the RRM1 residues Arg31-Ser32 and RRM2 residues. The strength of the correlation motions 
for the hnRNPA1 RRM1–RRM2 is weaker than that observed for the TDP-43 RRM1–RRM2 (Fig. 7D). This sug-
gests that the coupling of hnRNPA1 RRM1 and RRM2 domains might be weaker than that for TDP-43 RRM1 
and RRM2 domains.

Discussion
Protein aggregation/fibrillation has been now established to be the universal hallmark of an increasing spectrum 
of human diseases beyond neurodegenerative diseases, which also include cardiac dysfunction, eye cataract, 
degeneration of muscle and bone, as well as aging down to E. coli24,39–50. Out of various factors that modulate 
aggregation/fibrillation of the folded proteins, two key determinants are thermodynamic stability and confor-
mational dynamics. Nevertheless, despite exhaustive studies, the relationship between thermodynamic stability 
and conformational dynamics still remains largely elusive. In human genome, many RRM-containing proteins 
such as TDP-43 and hnRNPA1 have two tethered RRM domains, which have been demonstrated to play a key 
role in the disease-causing aggregation/fibrillation. Although the previous observations imply that the tethered 
TDP-43 RRM domains are particularly prone to aggregation/fibrillation, so far there has been no systematic study 
to understand the underlying mechanisms, which, however, are of both fundamental and therapeutic interest.

In the present study, by both experimental and computational approaches we conducted a systematic study 
to characterize the thermal stability and ATP-binding by DSF and NMR, followed by MD simulations to assess 
the conformational dynamics of two RRM domains of TDP-43 and hnRNPA1 in both tethered and isolated 
forms. Very unexpectedly, the results showed that the isolated TDP-43 RRM1 and RRM2 domains have Tm of 
57 and 59 °C respectively, while the tethered form has only one denaturation transition with Tm significantly 
reduced to only 49 °C. This set of results indicates that the tethering induced the significant coupling of two RRM 
domains of TDP-43, as well as dramatic destabilization. Intriguingly, no significant destabilization was observed 
for the tethering of two RRM domains of hnRNPA1. The results thus underscore the extreme complexity of the 
tethering-induced effects even for the tandem RRM domains of the different members within the same hnRNP 
protein family. In a general context, the dramatic destabilization for the tethered TDP-43 RRM domains is also 
very unusual because previously the tethering was demonstrated to have either no significant effect or even to 
stabilize the tethered domains. Only recently it was found that the tethering may also destabilize the protein 
 domains51–54, as exemplified by the ubiquitination-induced destabilization of the modified proteins, which was 
proposed to function to facilitate their  degradation54. Interestingly, the tethering-induced destabilization has been 
proposed to evolve from the trade-offs for  functions53. In this regard, it is of great interest in the future to define 
the functional role of the unique destabilization for tandem TDP-43 RRM domains. Nevertheless, this unexpected 
destabilization certainly contributes to the unusually high tendency of TDP-43 in aggregation/fibrillation, which 
has been well established to lead to a variety of human diseases by “loss of function” or/and “gain of function”.

Figure 9.  Residue-specific dynamic behaviors of the hnRNPA1 RRM domains. (A) Averaged root-mean-
square fluctuations (RMSF) of the Cα atoms computed over three independent MD simulations for the tethered 
RRM1–RRM2 (black), as well as isolated RRM1 (blue) and RRM2 (pink). (B) The difference of the average 
RMSF between the tethered RRM1–RRM2, and isolated RRM1/RRM2. The residues are labeled for those with 
significant difference of RMSF (> 2.0; average + one STD). (C) Structure of the hnRNPA1 RRM1–RRM2 with 
the residues displayed in spheres which show significant difference of RMSF between the tethered and isolated 
states. The image was prepared by PyMol2.4 (https ://pymol .org). (D) Mutual information matrix calculated 
from three parallel MD simulation data of the tethered hnRNPA1 RRM1–RRM2 by MutInf, with residues 
having significant inter-domain correlation motions highlighted by yellow box. The RRM1 sequence is indicated 
by blue box and RRM2 sequence in pink box.

https://pymol.org
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The tethering-induced effects for TDP-43 and hnRNPA1 RRM domains appear to result mainly from their 
inter-domain connection. Residue-specific NMR data showed that the dissection-induced perturbation for TDP-
43 RRM domains is much more profound than that for hnRNPA1 RRM domains, while MD simulations further 
revealed that the inter-domain correlation motions of TDP-43 RRM domains are more extensive than those for 
hnRNPA1 RRM domains. Therefore, experimental and simulation results together rationalize the observation 
that the tethered TDP-43 RRM domains could become highly coupled with only one denaturation transition 
with Tm much lower than those of their isolated ones. On the other hand, even only based on our previous 
 studies35–38,55, the conformational dynamics appear to operate through a global network and the perturbation by 
a mutation or binding without altering the average structure will trigger extensive reorganization of the whole 
network. Therefore, it still remains an extreme challenge in the future to integrate the results of thermodynamic 
stability and conformational dynamics to understand why the inter-domain connection significantly destabilize 
the two RRM domains of TDP-43 but lead to even a slight stabilizing effect on the RRM1 domain of hnRNPA1.

Mysteriously, all cells maintain very high ATP concentrations of 2–12 mM, much higher than those required 
for its previously-known  functions56–58, although the majority of ATP needs to be produced by very complex 
supramolecular machineries embedded in  membranes56. Only recently, it was decoded that ATP with concentra-
tions > 5 mM acts to hydrotropically dissolve liquid–liquid phase separation (LLPS), aggregation/fibrillation57, 
which appears to operate at a proteome-wide  scale58. We further found that by weak but specific binding with Kd 
of ~ mM, ATP is also able to biphasically modulate LLPS of intrinsically disordered  domains59,60. Remarkably, 
ATP can inhibit amyloid fibrillation not only for the tethered TDP-43 RRM1–RRM2 by enhancing its thermal 
 stability21, but also for the single FUS RRM domain by blocking the dynamic opening of the RRM fold without 
alternation of its thermal  stability20. Here, again we found that ATP can specifically bind the hnRNPA1 RRM2 
domain in both tethered and isolated contexts with the affinity and complex structure very similar to those of 
the FUS and TDP-43 RRM domains. Moreover ATP can even enhance the thermal stability of the hnRNPA1 
RRM1–RRM2 domains. Interestingly, our previous and current results together suggest that the affinities of the 
ATP binding to the tethered forms of both TDP-43 and hnRNPA1 RRM domains are slightly higher than those to 
the isolated forms. This may be mainly due to the higher conformational dynamics of the tethered RRM domains 
than those of the isolated forms as uncovered by MD simulations, which thus provides ATP the higher dynamic 
accessibility to the binding pockets in the tethered RRM domains.

Previous studies implied that TDP-43 RRM domains might start to assemble into amyloid structures without 
needing the complete  denaturation14. We also showed that the relatively high conformational dynamics of FUS 
RRM domain appear to be sufficient to allow the opening of the RRM fold, thus leading to aggregation/fibrilla-
tion. Furthermore, the ATP binding to FUS RRM even without enhancing its stability is sufficient to kinetically 
block the conformational opening. Therefore, the results here that ATP can bind the conserved pockets of TDP-43 
and hnRNPA1 RRM domains again highlight that ATP may play a general role in preventing the pathological 
aggregation/fibrillation of the RRM-containing proteins containing more than one RRM domain.

In summary, in the present study we showed that upon tethering, two TDP-43 RRM domains become highly 
coupled but dramatically destabilized with the Tm reduction of ~ 8 °C. On the other hand, no significant destabi-
lization occurs for the tethering of two hnRNPA1 RRM domains. Mechanistically, the tethering-induced effects 
appear to mainly result from the inter-domain connection between two RRM domains as reflected by NMR 
and MD simulation results. Moreover, we showed that ATP can specifically bind TDP-43 and hnRNPA1 RRM 
domains with the affinity to the tethered forms slightly higher than to the isolated forms. Results together thus 
suggest that ATP, the universal energy currency, may also play a general role in preventing aggregation/fibrillation 
of RRM-containing proteins, which has been extensively identified to cause an increasing spectrum of human 
diseases beyond neurodegenerative diseases. Therefore, our results imply a potential mechanism to rationalize 
the observation that upon being aged, the risk of protein aggregation-causing diseases increases most likely also 
because ATP concentrations gradually reduce in all cells during  aging53,54.

Methods
Cloning, expression and purification of the tethered and isolated RRM domains of TDP‑43 and 
hnRNPA1. Previously the expression vectors of TDP-43 RRM1–RRM2 (102–269), RRM1 (102–191) and 
RRM2 (191–269) have been constructed and their expression and purification were  established21,22,61. On the 
other hand, the expression vector of the tethered RRM1–RRM2 (5–184) of hnRNPA1 were purchased from a 
local company (Bio Basic Asia Pacific Pte Ltd), which was subsequently dissected into the isolated RRM1 (5–95) 
and RRM2 (94–184) by PCR with designed primers.

The six recombinant proteins were expressed in E. coli BL21 cells with IPTG induction at 20 °C overnight. 
They were found all in the supernatant, and therefore were purified by a  Ni2+-affinity column (Novagen) under 
native conditions. Subsequently the on-gel cleavage by thrombin was conducted and the eluted fractions con-
taining the RRM proteins were further purified by a heparin column to remove nucleic acids followed by FPLC 
purification with either a Superdex-75 or a Superdex-200 column.

Here we followed our previous protocol to generate isotope-labeled proteins for NMR  studies20–24,61. Briefly, 
the bacteria were grown in M9 medium with addition of (15NH4)2SO4 for 15 N-labeling. The protein concentra-
tions were determined by the UV spectroscopic method in the presence of 8 M urea, under which the molar 
extinct coefficient at 280 nm of a protein can be calculated by adding up the contribution of Trp, Tyr, and Cys 
 residues59,62.

ATP was purchased from Sigma-Aldrich with the same catalog numbers as previously reported.  MgCl2 was 
added into ATP for stabilization by forming the ATP-Mg  complex20–22,57. The fluorescent dye SYPRO Orange 
(S5692-50UL) was purchased from Sigma-Aldrich. The protein samples, as well as ATP, were all prepared in 
10 mM sodium phosphate buffer containing 10 mM DTT and 150 mM NaCl with a final pH adjusted to 6.8.
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Determination of thermal stability by fluorescence spectroscopy and DSF. To monitor the 
thermal denaturation by intrinsic Trp fluorescence for the tethered RRM1–RRM2, isolated RRM1 and RRM2 
domains as well as their mixture at 1:1 of both TDP-43 and hnRNPA1 at 10 μM in 10 mM sodium phosphate 
buffer containing 10 mM DTT and 150 mM NaCl (pH 6.8), their emission spectra of UV fluorescence were 
acquired on a Jasco J-1500 spectropolarimeter from 25 to 95 °C at a 5-degree interval with the excitation wave-
length at 280 as previously described and the fluorescence intensity was reported in arbitrary  unit23.

Furthermore, as we previously  showed20–24, ATP triggered very high non-specific noise in CD spectroscopy 
and quenched the intrinsic fluorescence of exposed Trp residues, here again we used differential scanning fluor-
imetry (DSF) as we previously reported to determine the thermodynamic stability of RRM1–RRM2, RRM1 and 
RRM2 domains of TDP-43 and hnRNPA1 at 10 μM in 10 mM sodium phosphate buffer containing 10 mM DTT 
and 150 mM NaCl (pH 6.8) with addition of ATP at different concentrations.

DSF experiments were performed using the CFX384 Touch Real-Time PCR Detection System from BIO-RAD, 
following the SYBR green melting protocol to obtain Tm  value21–24. Briefly, in a single well of a 384-well PCR 
plate, a 10 µl reaction solution was placed, which contains the RRM12, or RRM1 or RRM2 domain at 10 µM, 
ATP at different concentrations, and 10× SYPRO Orange in 10 mM sodium phosphate buffer containing 150 mM 
NaCl (pH 6.8). The program in Real-Time PCR instrument was set to be SYBR green and run temperature scan 
from 30 to 90 °C with the increment of 1 °C per minute. Upon completion, the obtained thermal unfolding curves 
were displayed as the first derivatives (dF/dT) by the RT-PCR software Bio-Rad CFX Manager 3.0.

NMR characterizations of the ATP binding. All NMR experiments were acquired at 25  °C on an 
800 MHz Bruker Avance spectrometer equipped with pulse field gradient units and a shielded cryoprobe as 
we described  previously20–24. For NMR HSQC titration studies of the interactions of RRM1–RRM2, RRM1 and 
RRM2 with ATP, two dimensional 1H-15 N NMR HSQC spectra were collected on the 15 N-labelled samples at a 
protein concentration of 50 µM in 10 mM sodium phosphate buffer containing 10 mM DTT and 150 mM NaCl 
(pH 6.8) at 25 °C in the absence and in the presence of ATP at concentrations of 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 
12.0, 14.0, 16.0, 18.0, and 20.0 mM.

Calculation of CSD and data fitting to obtain Kd. Sequential assignments of the tethered and isolated 
RRM1 and RRM2 domains of TDP-43 and hnRNPA1 were achieved based on the previously deposited chemical 
shifts: the tethered TDP-43 RRM1–RRM2 domain (BMRB ID of 19290 and 27613), the isolated RRM1 (BMRB 
ID of 18765) and RRM2 (BMRB ID of 19922), as well as the tethered hnRNPA1 RRM1–RRM2 domain (BMRB 
ID of 18728).

Due to the fast exchange with bulk water, or/and μs-ms dynamics, or/and overlap for some, particularly loop 
residues, the 168-residue TDP-43 RRM1–RRM2 containing 6 Pro residues had 142 peaks detected and assigned. 
The 90-residue TDP-43 RRM1 containing 3 Pro residues had 82 peaks detected and assigned, while the 79-resi-
due TDP-43 RRM2 containing 3 Pro residues had 72 peaks detected and assigned. The 184-residue hnRNPA1 
RRM1–RRM2 containing 6 Pro residues had 155 peaks detected and assigned. The 96-residue hnRNPA1 RRM1 
containing 5 Pro residues had 86 peaks detected and assigned, while the 90-residue hnRNPA1 RRM2 containing 
1 Pro residues had 76 peaks detected and assigned.

To calculate chemical shift difference (CSD), the HSQC spectra were superimposed for the 15 N-labeled 
RRM1–RRM2, RRM1 and RRM2 domains collected in the absence and in the presence of ATP at different con-
centrations. Subsequently, the shifted HSQC peaks could be identified and further assigned to the corresponding 
RRM residues based on the sequential assignments. The chemical shift difference (CSD) was calculated by an 
integrated index calculated by the following formula:

In order to obtain residue-specific dissociation constant (Kd), we fitted the shift traces of the residues with 
significant shifts of HSQC peaks (CSD > average + STD), by using the one binding site  model20–23,29 with the 
following formula:

Here, [P] and [L] are molar concentrations of RRM domains and ligands (ATP) respectively.

Molecular docking. The structure model of the ATP-RRM2 complex of hnRNPA1 was constructed by use 
of HADDOCK  software20–22,31, which makes use of CSD data to derive the docking with various degrees of 
flexibility. Briefly, five residues of hnRNPA1 RRM2 with significant CSD values were set to be active residues 
and HADDOCK docking procedure for the complexes was performed at three stages: (1) randomization and 
rigid body docking; (2) semi-flexible simulated annealing; (3) flexible explicit solvent refinement. The ATP-
RRM2 structure with the lowest energy score were selected for the detailed analysis and displayed by Pymol (The 
PyMOL Molecular Graphics System, Version 0.99rc6 Schrödinger, LLC).

Molecular dynamics (MD) simulations. For MD simulations, the NMR structures of RRM1–RRM2 of 
TDP-43 (PDB ID of 4BS2) and hnRNPA1 (PDB ID of 2LYV) were selected as the tethered models while their iso-
lated RRM1 and RRM2 models were obtained by dissecting the two structures into the isolated RRM domains.

The simulation setting was previously  reported36–38. Briefly, the simulation cell is a periodic cubic box with 
a minimum distance of 10 Å between the protein and the box walls to ensure the protein would not directly 

CSD =

(

(

�1H
)2

+
(

�15N
)2
/4

)1/2

.

CSDobs = CSDmax

{

([P]+ [L]+ Kd)−[([P]+[L
]

+Kd)2−4
[

P][L]]
1/2

}

/2[P]



14

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1034  | https://doi.org/10.1038/s41598-020-80524-6

www.nature.com/scientificreports/

interact with its own periodic image given the cutoff. The water molecules, described using the TIP3P model, 
were filled in the periodic cubic box for the all atom simulation. To neutralize the system, some  Na+ and  Cl− ions 
were randomly placed far away from the surface of the protein.

Three independent 50-ns MD simulations were performed for each of six constructs: namely the tethered 
RRM1–RRM2, isolated RRM1 and RRM2 of TDP-43 as well as of hnRNPA1 by the program  GROMACS63 with 
the AMBER-03 all-atom force  field64. The long-range electrostatic interactions were treated using the fast particle-
mesh Ewald summation method, with the real space cutoff of 9 Å and a cutoff of 14 Å was used for the calculation 
of van der Waals interactions. The temperature during simulation was kept constant at 300 K by Berendsen’s 
coupling. The pressure was held at 1 bar. The isothermal compressibility was 4.5 × 10−5 bar−1. The time step was 
set as 2 fs. Prior to MD simulations, all the initial structures were relaxed by 1000 steps of energy minimization 
using steepest descent algorithm, followed by 100 ps equilibration with a harmonic restraint potential applied 
to all the heavy atoms of the proteins.

Analysis of correlation motions. To identify the coupling of RRM1 and RRM2 domains of both TDP-
43 and hnRNPA1, we calculated their correlation matrices of three independent simulations of the tethered 
RRM1–RRM2 by  MutInf34. MutInf represents an entropy-based method to analyze ensembles of protein con-
formers, including those from MD simulations by using internal coordinates and focusing on dihedral angles. 
This method is particularly applicable for subtle conformational changes by utilizing second-order terms of the 
configurational entropy expansion called mutual information to pinpoint the pairs of residues with correlated 
conformations, or correlated motions, in an equilibrium ensemble. Here, the normalized matrix values were 
used and the threshold value was set up to 0.3 for determining the pairs of highly correlated residues.

Received: 2 August 2020; Accepted: 21 December 2020

References
 1. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 

130–133 (2006).
 2. Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: Disrupted RNA and protein homeo-

stasis. Neuron 79, 416–438 (2013).
 3. Harrison, A. F. & Shorter, J. RNA-binding proteins With Prion-Like domains in health and disease. Biochem J. 474, 1417–1438 

(2017).
 4. Geuens, T., Bouhy, D. & Timmerman, V. The hnRNP family: Insights into their role in health and disease. Hum. Genet. 135, 851–867 

(2016).
 5. Cléry, A. M., Blatter, M. & Allain, F. H. RNA recognition motifs: Boring?. Not. Quite Curr. Opin. Struct. Biol. 18, 290–298 (2008).
 6. Josephs, K. A. et al. TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol. 127, 

811–824 (2014).
 7. Nelson, P. T. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): Consensus working group report. Brain 142, 

1503–1527 (2019).
 8. Vogler, T. O. et al. TDP-43 and RNA form amyloid-like Myo-granules in regenerating muscle. Nature 563, 508–513 (2018).
 9. Palomo, V. et al. TDP-43: A key therapeutic target beyond amyotrophic lateral sclerosis. ACS Chem. Neurosci. 10, 1183–1196 

(2019).
 10. Lim, L. et al. ALS-causing mutations significantly perturb the self-assembly and interaction with nucleic acid of the intrinsically 

disordered prion-like domain of TDP-43. PLoS Biol. 14, e1002338 (2016).
 11. Lukavsky, P. J. et al. Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat. Struct. Mol. Biol. 20, 

1443–1449 (2013).
 12. Garnier, C. et al. Zinc binding to RNA recognition motif of TDP-43 induces the formation of amyloid-like aggregates. Sci. Rep. 7, 

6812 (2017).
 13. Rabdano, S. O. et al. Onset of disorder and protein aggregation due to oxidation-induced intermolecular disulfide bonds: Case 

study of RRM2 domain from TDP-43. Sci Rep. 7, 11161 (2017).
 14. Zacco, E. et al. The RNA-recognition motifs of TAR DNA-binding protein 43 may play a role in the aberrant self-assembly of the 

protein. Front. Mol. Neurosci. 11, 372 (2018).
 15. Tavella, D., Zitzewitz, J. A. & Massi, F. Characterization of TDP-43 RRM2 partially folded states and their significance to ALS 

Pathogenesis. Biophys. J. 115, 1673–1680 (2018).
 16. Guenther, E. L. et al. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. 

Nat. Struct. Mol. Biol. 25, 311–319 (2018).
 17. Agrawal, S. et al. RNA recognition motifs of disease-linked RNA-binding proteins contribute to amyloid formation. Sci. Rep. 9, 

6171 (2019).
 18. Prakash, A. et al. Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding 

protein 43 (TDP-43). J. Biomol. Struct. Dyn. 37, 178–194 (2019).
 19. François-Moutal, L. et al. Small molecule targeting TDP-43’s RNA recognition motifs reduces locomotor defects in a Drosophila 

Model of amyotrophic lateral sclerosis (ALS). ACS Chem. Biol. 14, 2006–2013 (2019).
 20. Kang, J., Lim, L. & Song, J. ATP binds and inhibits the neurodegeneration-associated fibrillization of the FUS RRM domain. Com-

mun. Biol. 2, 223 (2019).
 21. Dang, M. et al. ATP is a cryptic binder of TDP-43 RRM domains to enhance stability and inhibit ALS/AD-associated fibrillation. 

Biochem. Biophys. Res. Commun. 522, 247–253 (2020).
 22. Dang, M. & Song, J. ALS-causing D169G mutation disrupts the ATP-binding capacity of TDP-43 RRM1 domain. Biochem. Biophys. 

Res. Commun. 24, 459–464 (2020).
 23. Lu, Y., Lim, L. & Song, J. RRM domain of ALS/FTD-causing FUS characteristic of irreversible unfolding spontaneously self-

assembles into amyloid fibrils. Sci. Rep. 7, 1043 (2017).
 24. He, Y., Kang, J. & Song, J. ATP antagonizes the crowding-induced destabilization of the human eye-lens protein γS-crystallin. 

Biochem. Biophys. Res. Commun. 526, 1112–1117 (2020).



15

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1034  | https://doi.org/10.1038/s41598-020-80524-6

www.nature.com/scientificreports/

 25. Scott, D. D., Francois-Moutal, L., Kumirov, V. K. & Khanna, M. 1H, 15N and 13C backbone assignment of apo TDP-43 RNA recogni-
tion motifs. Biomol. NMR Assign. 13, 163–167 (2019).

 26. Barraud, P. & Allain, F. H. Solution structure of the two RNA recognition motifs of hnRNP A1 using segmental isotope labeling: 
How the relative orientation between RRMs influences the nucleic acid binding topology. J. Biomol. NMR 55, 119–138 (2013).

 27. Beusch, I. et al. Tandem hnRNP A1 RNA recognition motifs act in concert to repress the splicing of survival motor neuron exon 
7. Elife 6, e25736 (2017).

 28. Kang, J., Lim, L. & Song, J. ATP induces protein folding, inhibits aggregation and antagonizes destabilization by effectively mediat-
ing water-protein-ion interactions, the heart of protein folding and aggregation. BioRxiv https ://doi.org/10.1101/2020.06.21.16375 
8 (2020).

 29. Williamson, M. P. Prog Nucl Magn Reson Spectrosc. 73, 1 (2013).
 30. He, Y. et al. ATP binds nucleic-acid-binding domains beyond RRM fold. Biochem. Biophys. Res. Commun. 522, 826–831 (2020).
 31. de Vries, S. J. et al. HADDOCK versus HADDOCK: New Features and performance of HADDOCK20 on the CAPRI targets. 

Proteins 69, 726–733 (2007).
 32. Karplus, M. & McCammon, J. A. Dynamics of proteins: Elements and function. Annu. Rev. Biochem. 52, 263–300 (1983).
 33. Dodson, G. G., Lane, D. P. & Verma, C. S. Molecular simulations of protein dynamics: New windows on mechanisms in biology. 

EMBO Rep. 9, 144–150 (2008).
 34. McClendon, C. L. et al. Quantifying correlations between allosteric sites in thermodynamic ensembles. J. Chem. Theory Comput. 

5, 2486–2502 (2009).
 35. Lim, L. et al. Structurally- and dynamically-driven allostery of the chymotrypsin-like proteases of SARS, dengue and zika viruses. 

Prog. Biophys. Mol. Biol. 143, 52–66 (2019).
 36. Shi, J. et al. Dynamically-driven Inactivation of the catalytic machinery of the SARS 3C-like protease by the N214A mutation on 

the extra domain. PLoS Comput. Biol. 7, e1001084 (2011).
 37. Lua, S. et al. Structural, stability, dynamic and binding properties of the ALS-causing T46I mutant of the hVAPB MSP domain as 

revealed by NMR and MD simulations. PLoS ONE 6, e27072 (2011).
 38. Lim, L. et al. Dynamically-driven enhancement of the catalytic machinery of the SARS 3C-like protease by the S284–T285-I286/A 

mutations on the extra domain. PLoS ONE 9, e101941 (2014).
 39. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).
 40. Eisele, Y. S. et al. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug. Discov. 14, 759–780 

(2015).
 41. Willis, M. S. & Patterson, C. Proteotoxicity and cardiac dysfunction—Alzheimer’s disease of the heart?. N. Engl. J. Med. 368, 

455–464 (2013).
 42. Meyer, T. & Voigt, N. In search for novel functions of adenosine 5′-triphosphate (ATP) in the heart. Cardiovasc. Res. 113, e59–e60 

(2017).
 43. Greiner, J. V. & Glonek, T. Hydrotropic function of ATP in the crystalline lens. Exp. Eye Res. 190, 107862 (2020).
 44. He, Y., Kang, J. & Song, J. Cataract-causing G18V eliminates the antagonization by ATP against the crowding-induced destabiliza-

tion of human gS-crystallin. Biochem Biophys. Res. Commun. https ://doi.org/10.1016/j.bbrc.2020.07.070 (2020).
 45. Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 

495, 467–473 (2013).
 46. Hartl, F. U. Cellular homeostasis and aging. Annu. Rev. Biochem. 85, 1–4 (2016).
 47. Walther, D. M. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161, 919–932 (2013).
 48. Ben-Zvi, A., Miller, E. A. & Morimoto, R. I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans 

aging. Proc. Natl. Acad. Sci. USA 106, 14914–14919 (2009).
 49. David, D. C. et al. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol. 8, e1000450 (2010).
 50. Lindner, A. B. et al. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc. Natl. 

Acad. Sci. USA 105, 3076–3081 (2008).
 51. Levy, Y. Protein assembly and building blocks: Beyond the limits of the LEGO brick metaphor. Biochemistry 56, 5040–5048 (2017).
 52. Vishwanath, S. et al. Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced 

by the presence of other domains. PLoS Comput. Biol. 14, e1006008 (2018).
 53. Bigman, L. S. & Levy, Y. Proteins: Molecules defined by their trade-offs. Curr. Opin. Struct. Biol. 60, 50–56 (2020).
 54. Morimoto, D. et al. Ubiquitylation directly induces fold destabilization of proteins. Sci. Rep. 6, 39453 (2016).
 55. Lim, L. et al. Curcumin allosterically inhibits the dengue NS2B-NS3 protease by disrupting its active conformation. ACS Omega. 

5, 25677–25686 (2020).
 56. Lehninger’s Principles of Biochemistry, 5th Edition. W.H. Freeman and Company, New York, pp. 502-503 (2005)
 57. Patel, A. et al. ATP as a biological hydrotrope. Science 356, 753–756 (2017).
 58. Sridharan, S. et al. Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP. Nat. Commun. 

10, 1155 (2019).
 59. Kang, J., Lim, L. & Song, J. ATP enhances at low concentrations but dissolves at high concentrations liquid-liquid phase separation 

(LLPS) of ALS/FTD-causing FUS. Biochem. Biophys. Res. Commun. 504, 545–551 (2018).
 60. Kang, L. et al. A unified mechanism for LLPS of ALS/FTLD-causing FUS as well as its modulation by ATP and oligonucleic acids. 

PLoS Biol. 17, e3000327 (2019).
 61. Wei, Y. et al. Inter-domain Interactions of TDP-43 as Decoded by NMR. Biochem Biophys Res Commun. 473, 614–619 (2016).
 62. Pace, C. N. et al. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423 (1995).
 63. Hess, B. et al. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory 

Comput. 4, 435–447 (2008).
 64. Duan, Y. et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum 

mechanical calculations. J. Comput. Chem. 24, 1999–2012 (2003).

Acknowledgements
This work was supported by Ministry of Education (MOE), Singapore Tier 1 Grant R-154-000-B45-114 and 
R-154-000-B92-114 to Jianxing Song.

Author contributions
J.S. and M.D. conceived and designed the experiments. M.D. Y.L. and J.S. performed the research, analyzed the 
data. M.D, and J.S. wrote the manuscript.

Competing interests 
The authors declare no competing interests.

https://doi.org/10.1101/2020.06.21.163758
https://doi.org/10.1101/2020.06.21.163758
https://doi.org/10.1016/j.bbrc.2020.07.070


16

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1034  | https://doi.org/10.1038/s41598-020-80524-6

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https ://doi.
org/10.1038/s4159 8-020-80524 -6.

Correspondence and requests for materials should be addressed to J.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-020-80524-6
https://doi.org/10.1038/s41598-020-80524-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Tethering-induced destabilization and ATP-binding for tandem RRM domains of ALS-causing TDP-43 and hnRNPA1
	Results
	Dissection-induced perturbation of TDP-43 RRM1 and RRM2 domains. 
	Thermal stability and ATP-binding of the isolated TDP-43 RRM2 domain. 
	Dissection-induced perturbation of hnRNPA1 RRM1 and RRM2 domains. 
	Thermal stability and ATP-binding of the tethered and isolated hnRNPA1 RRM domains. 
	Visualization of the ATP-RRM2 complex of hnRNPA1. 
	Dynamic behaviours of the TDP-43 tethered and isolated RRM domains. 
	Dynamic behaviours of the hnRNPA1 tethered and isolated RRM domains. 

	Discussion
	Methods
	Cloning, expression and purification of the tethered and isolated RRM domains of TDP-43 and hnRNPA1. 
	Determination of thermal stability by fluorescence spectroscopy and DSF. 
	NMR characterizations of the ATP binding. 
	Calculation of CSD and data fitting to obtain Kd. 
	Molecular docking. 
	Molecular dynamics (MD) simulations. 
	Analysis of correlation motions. 

	References
	Acknowledgements


