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Altered structural balance 
of resting‑state networks in autism
Z. Moradimanesh1, R. Khosrowabadi1, M. Eshaghi Gordji1,2 & G. R. Jafari1,3*

What makes a network complex, in addition to its size, is the interconnected interactions between 
elements, disruption of which inevitably results in dysfunction. Likewise, the brain networks’ 
complexity arises from interactions beyond pair connections, as it is simplistic to assume that in 
complex networks state of a link is independently determined only according to its two constituting 
nodes. This is particularly of note in genetically complex brain impairments, such as the autism 
spectrum disorder (ASD), which has a surprising heterogeneity in manifestations with no clear‑
cut neuropathology. Accordingly, structural balance theory (SBT) affirms that in real‑world signed 
networks, a link is remarkably influenced by each of its two nodes’ interactions with the third node 
within a triadic interrelationship. Thus, it is plausible to ask whether ASD is associated with altered 
structural balance resulting from atypical triadic interactions. In other words, it is the abnormal 
interplay of positive and negative interactions that matters in ASD, besides and beyond hypo (hyper) 
pair connectivity. To address this question, we explore triadic interactions based on SBT in the 
weighted signed resting‑state functional magnetic resonance imaging networks of participants with 
ASD relative to healthy controls (CON). We demonstrate that balanced triads are overrepresented 
in the ASD and CON networks while unbalanced triads are underrepresented, providing first‑time 
empirical evidence for the strong notion of structural balance on the brain networks. We further 
analyze the frequency and energy distributions of different triads and suggest an alternative 
description for the reduced functional integration and segregation in the ASD brain networks. 
Moreover, results reveal that the scale of change in the whole‑brain networks’ energy is more narrow 
in the ASD networks during development. Last but not least, we observe that energy of the salience 
network and the default mode network are lower in ASD, which may be a reflection of the difficulty in 
dynamic switching and flexible behaviors. Altogether, these results provide insight into the atypical 
structural balance of the ASD brain (sub) networks. It also highlights the potential value of SBT as 
a new perspective in functional connectivity studies, especially in the case of neurodevelopmental 
disorders.

Human brain is an inherently complex network even at rest, comprising nearly 10 billion neurons connected by 
about 100 trillion  synapses1. Yet, the brain owes its beautiful complexity and the consequent cognitive capacities 
not solely to the size but also the interconnected interactions between its constituent elements. In the last two dec-
ades, graph theory has provided a valuable framework to study the structure of the complex brain  networks2. The 
C. elegance connectome was modeled as a binary graph, as one of the first contact points between neuroscience 
and modern network  science3. The tract-tracing data of cat and macaque monkey was examined in early  20004 
and later graph theory started to be well applied to the human neuroimaging  data5. Along with the progress in 
neuroimaging techniques, there has also been growing interest in investigating patterns of associations between 
time series extracted from the brain regions, i.e., functional connectivity. Altogether, graph-theoretic studies 
are an important foundation for computational modeling of the complex brain networks, and have revealed 
fundamental properties of their organization and function, in addition to their alterations in brain  disorders6,7. 
While all these advances and the potential of graph theory’s perspective is undisputed, a vital question have yet 
to be asked: Suppose in a signed brain network x, y and z regions are connected, what is the inevitable impact 
of xz and yz interactions on the sign and weight of the interaction between x and y? Is it realistic to study the 
xy interaction independent from the triadic interconnection (xyz) it lives in? Specially in case of heterogeneous 
brain disorders such as ASD, a complex neurodevelopmental disorder with substantial heterogeneity not only 
in multiple causes and courses but also in the  onset8–11. Recently, this concern has been well addressed by the 
long-standing structural balance theory (SBT) in variety of scenarios, and triadic interactions are accepted to play 
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key role in organization of real-world signed  networks12–16. Here, we apply concepts from SBT to the weighted 
signed rs-fMRI networks of individuals with ASD compared to healthy controls in order to answer the following 
questions: Considering recent verification of SBT by many real-world signed networks, do the brain networks 
display structural balance as well? Regarding controversies on strong and weak notions of SBT, which will be 
confirmed on the brain networks? Knowing the previously proposed hypo (hyper) functional connectivity in 
ASD, if we take into account the interplay between positive and negative links, which types of triadic interactions 
(in terms of both the frequency and energy distribution) are atypical in ASD? Is the consequent structural balance 
altered for the whole brain ASD network in course of development? What about the functional sub-networks? 
These questions in essence, are the cornerstone of this study.

Initially proposed by  Heider17 and mathematically formulated by Cartwright and  Harary18, SBT has been a 
promising approach in arguing why the structures of many real signed  social12–14,  political15,  ecological16 and 
 biological19 networks are the way they are. The distinguishing feature of SBT is that it highlights the role that 
balanced (unbalanced) triadic interactions play in forming the global structure of a network. This theory has 
led to better understanding of how a tendency to reduce overall stress directs and arranges the organization 
of signed networks. Specifically, SBT argues that a link between two nodes being positive (negative) is hugely 
affected by a third node’s presence within a triadic structure. Accordingly, four types of triads are defined in this 
context (Eq. 1, Fig. 6), namely, strongly balanced T3 : (+++) , weakly balanced T1 : (+−−) , strongly unbal-
anced T2 : (++−) , and weakly unbalanced T0 : (−−−) , details of which is provided in methods. Frequent 
building blocks of two to five vertices, known as the structural and functional motifs, have been identified and 
investigated in the brain networks through applying framework’s other than SBT as  well20,21. However, there are 
two main differences between triads as motifs from one hand and triads as has been defined in SBT from the other 
hand: (1) Sign of links are not of concern in motifs, yet they are at the heart of triads’ definition in the context 
of SBT, (2) Motifs are mostly directed structures while triads in SBT are not originally. Moreover, measures of 
segregation such as the clustering coefficient or transitivity are also based on the frequency of triads, yet again 
they measure properties of a network regardless of  signs22. This is while, it has been recently confirmed on the 
real-world networks that studying the interplay between positive and negative links within triadic interactions, 
instead of focusing exclusively on positive links, opens new doors to existing  challenges12,13.

Signed networks not only represent the structure but also embody additional information on the state of 
relationships between nodes, and has been long of interest to network scientists in different domains from social 
science to biology. In the last decade, many social scientists have reported that in analyzing large-scale social net-
works considering the content of interactions, positive (negative) links representing friendship (enmity), contains 
much promise. In this regard, the key role that triadic interactions play in forming the global structure of signed 
social networks have been strongly  confirmed23–25. Similarly in biological and biochemical signed networks the 
positive (negative) ties correspond to activating, correlating (inhibiting, anti-correlating)  interactions26. There 
has been various evidences of anti-correlated functional sub-networks in the intrinsic brain networks of both 
 human27 and  animal28 as well. These studies imply that negative associations are meaningful in the resting-state 
brain networks and not only the unwelcome result of preprocessing steps, such as the global signal  regression29. 
Although it has been shown that regressing the global signal introduces anti-correlations to the  network30, thus 
here we did not regressed the global signal to make sure existing negative links are in a way reflections of neural 
activities. To explore real-world signed networks, SBT as both a general theory as well as a practical framework 
for conducting experiments has been very reassuring. Since its proposal, there has been two main directions in 
the literature of SBT: (1) Theoretically extending its analytical  aspects31–35, (2) Empirically verifying it on real 
signed  networks13,16, or  both12,14. Moreover, a recent study has investigated the brain evidence for SBT from 
psychological  viewpoint36, this is while we investigate the network evidence for the theory through examining 
Blood Oxygen Level-Dependent (BOLD) signals. Furthermore, besides SBT which investigates the structural 
balance of complex networks through studying triadic interactions, there has been valuable research to explore 
higher-order interactions in the brain networks based on topological properties as  well37–39.

In this study, we explore the weighted signed rs-fMRI networks of individuals with ASD compared to healthy 
participants in the context of SBT. We conduct our analysis in three age ranges, namely, 1st childhood (6–9 years 
old), 2nd childhood (9–13 years old) and adolescence (13–18 years old). First, according to previous empirical 
studies, we expect the brain networks to display structural balance as well—hypothesis #1, meaning that balanced 
triads are overrepresented while unbalanced triads are underrepresented compare to chance. Although, due to 
controversies regarding the over (under) representation of T0 , it is nontrivial whether the strong or weak notion of 
balance would be confirmed. Next, we study the frequency of pair and triadic interactions in the brain networks. 
Considering previous results on hypo (hyper) functional connectivity in the ASD brain network, it seems that 
taking into account sign of links and exploring triadic interactions provides us with a more contextual insight into 
atypical functional connectivity in the ASD brain network—hypothesis #2. Moreover, we illustrate the energy 
distributions of triads and suppose that there are probably of note differences regarding energy distributions of triads 
between ASD and CON networks—hypothesis #3. However, it is not clear which types of triads are different in 
terms of energy and during which age ranges. Last but not least, we examine the overall energy of the whole-
brain network and 17 Yeo sub-networks and expect to observe alterations in the energy of the ASD brain (sub) 
networks, possibly suffering from lower or more limited energy scales in some of the key (sub) networks—hypothesis 
#4. Our study, while appreciating standard approaches in analyzing functional connectivity, proposes a new 
perspective in exploring rs-fMRI brain networks, which can be specially of interest in investigating complex 
brain disorders such as ASD.
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Results
Empirical evidence of SBT on the brain networks. First, we have investigated the notion of structural 
balance in the brain networks. According to the strong version of this notion, real-world networks evolve in 
a way that eventually unbalanced triads are underrepresented while balanced triads are overrepresented. The 
weak notion however, is less strict and argues that T0 triads, although unbalanced yet may be overrepresented 
as well. To this aim, we have applied a method proposed by Leskovec et al.12 which states that for a triad Ti if 
p(Ti) > p0(Ti) then Ti is overrepresented, and if p(Ti) < p0(Ti) then Ti is underrepresented. Here p0(Ti) is the 
fraction of triads of type Ti after shuffling, details of which are provided in methods. Furthermore, to investigate 
how big these over (under) representations are, we have applied the concept of surprise, i.e, s(Ti) , which on the 
order of tens would be significant, due to the distribution of s(Ti) being standard normal.

As our results show, on average in the brain networks of both CON (Table 1A) and ASD (Table 1B) groups 
and in all three age ranges both balanced triads are overrepresented relative to chance, that is for T3 and T1 we 
have p(Ti) > p0(Ti) . On the contrary, on average both unbalanced triads are underrepresented compared to the 
null model, that is, we have observed p(Ti) < p0(Ti) for both T2 and T0 triads. Additionally, all the surprises have 
been significant. It should be mentioned that these results are group-level, that is, averaged over all participants in 
each group. Results on the level of each participant is the same for T3 , T2 and T1 triads, meaning that for each and 
every participant in all groups we have overrepresentation regarding T3 and T1 while underrepresentation for T2 
triads. However, for T0 triads a small percentage of participant’s networks have more T0 triads relative to chance 
as follows: for ASD and CON groups during 1st childhood the percentage of networks with overrepresentation of 
T0 triads were 22.2% and 10% , respectively. During 2nd childhood this percentages were 3.8% in ASD group and 
5.7% in CON group. Finally, during adolescence in ASD group 3.4% and in CON group only 1.7% of networks 
had more T0 triads relative to chance.

Why considering triadic interactions in studying the brain networks? After verifying SBT on the 
brain networks, we have explored the value of examining ternary interactions (triads) in the brain network 
along with the pair interactions (links). In other words, why consider triadic interactions while analyzing brain 
networks? To study this question, we have first compared mean differences in the frequency of positive and 
negative links between ASD and CON groups in three age ranges. Then, we have conducted the same analysis 
for the mean frequency of different types of triads. As results show, although exploring links and triads are both 
valuable in revealing statistically significant differences between groups, acknowledging triads provides results 
with bigger effect sizes, that is, practical significance, details of which are as follows.

First, to compare the mean differences in the frequency of links between ASD and CON groups during 
development, we have conducted two two-way ANCOVAs, one with the frequency of positive and the other 
with negative links as a dependent variable (Table 2A). We have considered group and age as independent vari-
ables while controlling for FIQ, medication, mean frame-wise displacement as head motion parameter and site 
information. We are interested in the main effect of group and the interaction between group and age. While the 
former provides an overall difference between ASD and CON groups, the latter allows us to explore the differ-
ences during development. Then, we have conducted the same analysis for triads, that is, we have defined four 
two-way ANCOVAs one for each type of triads as has been defined in Eq. 1 (Table 2B). Another option was to 
conduct two MANCOVAs, one for links and the other for triads, however due to multicollinearity between the 
two types of links and the four types of triads we chose ANCOVA over MANCOVA. As results show (Table 2), 
the main effect of group is neither significant on the mean frequency of links nor triads. However, while the 
effect of interaction between group and age is only statistically significant for positive links (a medium effect), 

Table 1.  Number and probability of triads in the brain networks compared to the null model. On average, in 
both CON and ASD groups, both types of balanced triads, T3 and T1 , are overrepresented (positive s(Ti) ), while 
both types of unbalanced triads, T2 and T0 , are underrepresented (negative s(Ti)). |Ti| , total number of Ti ; p(Ti) , 
fraction of Ti in the brain network; p0(Ti) , fraction of Ti in the null model; s(Ti) , the amount of surprise, i.e., is 
the number of standard deviations by which the actual number of Ti differs from its expected number under 
the null model; CON, control; ASD, autism spectrum disorder.

1st Childhood 2nd Childhood Adolescence

|Ti| p(Ti) p0(Ti) s(Ti) |Ti| p(Ti) p0(Ti) s(Ti) |Ti| p(Ti) p0(Ti) s(Ti)

(A) Number of balanced and unbalanced triads in the brain networks of CON group

T3 : (+++) 525,438.06 0.628 0.527 188.41 1,214,646.87 0.471 0.389 271.72 1,622,249.62 0.446 0.375 286.13

T1 : (+−−) 104,304.64 0.124 0.094 96.51 537,459.93 0.208 0.164 194.93 796,741.18 0.219 0.172 236.52

T2 : (++−) 200,416.79 0.239 0.369 − 246.39 781,750.31 0.303 0.423 − 392.92 1,143,696.25 0.315 0.427 − 433.69

T0 : (−−−) 5493.50 0.006 0.008 − 17.12 44,986.90 0.017 0.022 − 49.43 68,595.85 0.018 0.024 − 66.21

(B) Number of balanced and unbalanced triads in the brain networks of ASD group

T3 : (+++) 498,880.87 0.651 0.563 158.12 1,417,970.87 0.479 0.406 261.37 1,491,940.00 0.483 0.405 282.66

T1 : (+−−) 76,009.00 0.099 0.080 62.01 571,349.62 0.193 0.157 173.51 588,859.37 0.190 0.154 176.36

T2 : (++−) 186,927.28 0.244 0.349 − 194.79 918,819.62 0.310 0.415 − 365.79 955,916.50 0.309 0.419 − 390.14

T0 : (−−−) 4086.83 0.005 0.006 − 11.84 51,197.86 0.017 0.021 − 47.66 49,637.08 0.016 0.020 − 49.16
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it is significant for all types of triads. More interestingly, it is only practically significant on the mean frequency 
of T2 triads (F(1, 251) = 95.17 p < 0.001, partialη2 = 0.46).

To further explore in which age levels the differences in mean frequency of links (Fig.  1A) 
and triads (Fig.  1B) have occurred between ASD and CON groups, we have conducted post-hoc 
tests using Mann-Whitney U test. As results depict, during 1st childhood the frequency of posi-
tive links from one hand (U(20, 18) = 102.00, z = −2.28, p = 0.02) , and T1 triads from the other 

Table 2.  Analysis of covariance for the frequency of links versus triads. (A) The effect of group is not 
significant on the mean frequency of links. The effect of interaction between group and age is only significant 
for the positive links, yet not practically significant. (B) For triads regarding the effect of interaction between 
group and age, not only all the differences are statistically significant but the effect size (partial η2 ) is 
interestingly considerable for T2. **p < 0.01 , * < 0.05 (Bonferroni corrected).

Source Dependent variable p val Partial η2

(A) ANCOVA regarding the frequency of links

Group
Positive links 0.18 0.008

Negative links 0.21 0.007

Group * Age
Positive links < 0.001* 0.13

Negative links 0.08 0.02

(B) ANCOVA regarding the frequency of triads

Group

T3 : (+++) 0.55 0.002

T1 : (+−−) 0.05 0.01

T2 : (++−) 0.56 0.001

T0 : (−−−) 0.69 0.001

Group * Age

T3 : (+++) < 0.001** 0.11

T1 : (+−−) < 0.001** 0.08

T2 : (++−) < 0.001** 0.46

T0 : (−−−) < 0.03* 0.03

Figure 1.  Mann-Whitney U test on the frequency of links and triads. (A) Difference between ASD and CON 
groups is only practically significant (η2 ≥ 0.14) for the mean frequency of positive links during 1st childhood. 
(B) Yet, considering triads provides us with practical differences not only during 1st childhood but also during 
2nd childhood and adolescence. η2 , the effect size; CON, control; ASD, autism spectrum disorder (Color 
Online).
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hand (U(20, 18) = 101.00, z = −2.31, p = 0.02) are both practically significant (η2 = 0.14) . Dur-
ing 2nd childhood, while there is a medium difference (η2 = 0.10) in the mean frequency of positive 
links (U(52, 52) = 1853.00, z = 3.25, p = 0.001) , there is a large difference (η2 = 0.39) in the mean fre-
quency of T2 triads (U(52, 52) = 2338.00, z = 6.41, p < 0.001) . Additionally, there is also a medium differ-
ence (η2 = 0.10) in the mean frequency of T3 triads between ASD and CON groups during 2nd childhood 
(U(52, 52) = 1868.00, z = 3.35, p = 0.001) . Similarly, for adolescents although there is a significant difference 
for both types of links (for positive links: U(58, 58) = 1181.50, z = −2.76, p = 0.006 and for negative links: 
U(58, 58) = 1010.00, z = −3.71, p < 0.001) , yet both of these differences are medium, η2 = 0.06 and η2 = 0.12 
for positive and negative links, respectively. However, surprisingly for T2 triads the difference is far more bigger 
than both types of links (U(58, 58) = 162.00, z = −8.39, p < 0.001, η2 = 0.60) . There is also a big difference 
(η2 = 0.23) in the mean frequency of T1 triads (U(58, 58) = 745.00, z = −5.17, p < 0.001) . Additionally, there is 
a medium difference (η2 = 0.09) in the mean frequency of T0 triads (U(58, 58) = 1102.00, z = −3.20, p = 0.001) , 
and a small difference (η2 = 0.04) in the mean frequency of T3 triads (U(58, 58) = 1270.00, z = −2.27, p = 0.02).

Energy distribution of triads. After studying the frequency of triads in the brain networks of ASD and 
CON groups, we have explored the energy distributions of different types of triads. To this aim, we have calcu-
lated the energy of triads, U(Ti) , as shown in Fig. 6, and then for each group in three age ranges outlined the cor-
responding distributions. As results indicate (Supplementary Fig. S1), for all types of triads the brain networks 
of ASD and CON groups have many triads with small energies and a few with considerable energies. Further-
more, results of comparisons between energy distributions of triads in ASD and CON groups show that during 
1st childhood the pattern of energy distributions differs between the two groups for T1 and T0 triads (Fig. 2A). 
That is, looking at the energy distributions of these two triads in ASD group (purple/dark triangles) compare to 
CON group (green/ light squares) it is clear that the energy distributions in ASD group lag behind distributions 
as they are in CON group ( KL = 0.03 , for both types). For other types of triads and during 2nd childhood and 
adolescence we have not observed such a lag (Supplementary Fig. S1).

To better clarify this lag, for each Ti we have investigated node participation which for any given node speci-
fies: (1) In how many Ti this node has participated? and (2) How big are the energies of those Ti s? In Fig. 2B and 
Supplementary Fig. S2, we have addressed the former question with size of a given node and the latter with its 
color, which is a color-map from blue to red that respectively corresponds to the minimum and maximum levels 
of triads’ energy. For example, a big blue node is present in many Tis which are small in terms of energy. On the 
other hand, a small red node although lives in just a few Ti s but in those that are important in terms of energy 

Figure 2.  Energy distributions and node participation in T1 and T0 triads during 1st childhood. (A) The energy 
distributions of ASD group (purple/dark triangles) lag behind CON group (green/light squares) for T1 (A.1) 
and T0 (A.2) triads during 1st childhood. (B) For both triads we have observed a threshold above which node 
participation is zero for the brain network of ASD group, yet nonzero for CON group (B.1.3 for T1 and B.2.3 
for T0 ). A detailed version of B.1.3 and B.2.3 with regions of interest’s labels is provided in the Supplementary 
Fig. S2. BrainNet Viewer 1.6340 (https ://www.nitrc .org/proje cts/bnv) has been used for visualization of the 
brain networks. |Ti| , total number of Ti ; U(Ti) , the energy of Ti ; KL, the Kullback–Leiber divergence; CON, 
control; ASD, autism spectrum disorder (Color Online).

https://www.nitrc.org/projects/bnv/
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levels. As can be seen, moving from the minimum to maximum level of energy (Fig. 2B.1,B.2; left to right), while 
node participation decreases sharply to zero in ASD group, the speed of this decrease is slower in CON group. 
In other words, we have observed a threshold in the energy distributions of both T1 and T0 triads above which 
node participation is zero for ASD group yet nonzero for CON group. To be specific, in ASD group no regions 
of interest participate in creating T0 triads that have energies higher than 0.04, while in CON group many nodes 
are participating so that the resulting network has T0 triads with energies higher than 0.04. This pattern holds for 
the case of T1 triads. That is, while in ASD group node participation is zero for T1 triads with | Energy | ≥ 0.32 , 
the network of CON group during 1st childhood enjoys the presence of T1 triads with | Energy | ≥ 0.32 (Sup-
plementary Fig. S2).

Structural balance of the whole brain network and 17 Yeo sub‑networks. Next, we have analyzed 
energy levels of the brain networks in the context of SBT. In this regard, first we have calculated the energy levels 
of each participant’s network using Eq. 2. For each individual, we have computed 18 different energies, one for 
the whole brain network and the rest 17 each corresponding to 17 Yeo sub-networks. Then, we have explored the 
effect of group and its interaction with age on these energy levels controlling for FIQ, medication, mean frame-
wise displacement as head motion parameter and site information. We have performed this by conducting 18 
ANCOVAs each regarding one of the energy levels as mentioned above, results of which are as follows:

• The effect of group on the whole brain energy is statistically significant (F(1, 251) = 12.08, p < 0.001,

partialη2 = 0.05) . Similarly, the effect of interaction between group and age on the whole brain energy is 
significant as well (F(2, 251) = 4.57, p = 0.01, η2 = 0.04).

• The effect of group is significant on the energy levels of the SN (A) (F(1, 251) = 12.52, p < 0.001,

partialη2 = 0.05) and the DMN (B) (F(1, 251) = 6.73, p = 0.01, partialη2 = 0.03).

Moreover, to identify the groups to which these differences are related to we have conducted post-hoc tests 
using Mann-Whitney U test. Results for the energy levels of the whole brain networks are as follows (Fig. 3A):

Figure 3.  Energy of the brain (sub) networks during development. (A) For both groups, energy of the whole 
brain network increases monotonically with age, yet ANCOVA results show that the pattern of this increase is 
different between the two groups. (B,C) The effect of age on energy of the SN (A) and DMN (B) is significant, 
with ASD having less energies in both sub-networks. Results of Mann-Whitney U tests with corresponding 
effect sizes ( η2 ) are shown above each of the box plots. (D,E) Regions of interest related to the SN (A) and DMN 
(B), as has been defined in the Schaefer atlas. BrainNet Viewer 1.6340 (https ://www.nitrc .org/proje cts/bnv) has 
been used for visualization of the brain networks. SN, the salience/ventral attention network; DMN, the default 
mode network; Ins, the insula; PFC, the prefrontal cortex; Temp, the temporal cortex; FrOper, the frontal 
opercular; ParOper, the parietal opercular; FrMed, the frontal medial; IPL, the inferior parietal lobule; CON, 
control; ASD, autism spectrum disorder (Color Online).

https://www.nitrc.org/projects/bnv/


7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1966  | https://doi.org/10.1038/s41598-020-80330-0

www.nature.com/scientificreports/

• During 1st childhood, energy of the whole brain network is significantly greater for ASD than CON group 
(U(20, 18) = 261.00, z = 2.36, p = 0.01) and it is not only statistically but also practically significant 
(η2 = 0.15).

• For both the ASD and CON brain networks, there is a practically significant difference between energy levels dur-
ing 1st childhood from one hand, with 2nd childhood and adolescence from the other hand. Results of comparison 
between 1st childhood and 2nd childhood for ASD group is U(18, 52) = 854.00, z = 5.18, p < 0.001, η2 = 0.38 , 
and for CON group it is,  U(20, 52) = 1018.00, z = 6.26, p < 0.001, η2 = 0.55 .  Additionally, 
between 1st childhood and adolescence results are as follows for ASD and CON groups, respectively: 
U(18, 58) = 938.00, z = 5.08, p < 0.001, η2 = 0.34 and U(20, 58) = 1152.00, z = 6.54, p < 0.001, η2 = 0.55.

• More interestingly, there is a significant difference (η2 = 0.04) between 2nd childhood and adolescence 
in CON group (U(52, 58) = 1876.00, z = 2.20, p = 0.02) , yet for ASD group there is no such a change in 
energy level of the whole brain network from 2nd childhood to adolescence, that is, energy of the whole brain 
network remains statistically unchanged after 1st childhood.

For the Yeo sub-networks, during 1st childhood a Mann-Whitney U test have indicated that energy of the SN (A) 
is greater for CON group than ASD group (U(20, 18) = 104.00, z = −2.22, p = 0.02, η2 = 0.13) . Later during 
adolescence, there is also a significant difference on the energy level of the SN (A) between ASD and CON groups 
(U(58, 58) = 1280.00, z = −2.22, p = 0.02, η2 = 0.04 ; Fig. 3B). Additionally, there is a practically significant 
difference (η2 = 0.14) on the energy level of the DMN (B) between ASD and CON groups during 2nd childhood 
(U(52, 52) = 758.00, z = −3.86, p < 0.001 ; Fig. 3C).

The brain‑behavior relationship: correlation of energy levels with behavioral scores. Ulti-
mately, to investigate whether energy of the whole brain network and Yeo sub-networks are associated with the 
clinical symptoms of ASD we have measured the correlation between the two (Fig. 4). On the x axis, we have 
scores from modules defined in three well-known instruments for diagnosing and assessing ASD, that is, the 
autism diagnostic interview (ADI), the autism diagnostic observation schedule (ADOS) and the autism diagnos-
tic observation schedule-generic (ADOS-G). From these tests, score from some of the modules were available 
and among them those modules have been chosen that had less missing values. On the y axis, we have energy 
levels of the brain (sub) networks.

Figure 4.  Pearson’s correlation coefficients between network measures and behavioral scores. (A–C) During 1st 
childhood, ADOS-G severity and total scores show negative associations with the whole brain energy. As like, 
energy of the SN (A) is negatively associated with ADOS stereotype behaviors. (D,E). During 2nd childhood, 
energy of the whole brain network positively correlates with ADOS-G social scores and negatively with ADI 
restricted behaviors. (F) For adolescents energy of the whole brain network is positively correlated with ADI 
restricted behaviors. SN, the salience/ventral attention network; ADI, the autism diagnostic interview; ADOS, 
the autism diagnostic observation schedule; ADOS-G, the autism diagnostic observation schedule-generic.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1966  | https://doi.org/10.1038/s41598-020-80330-0

www.nature.com/scientificreports/

As results of two sided Pearson’s correlation between behavioral scores and energy levels indicate, dur-
ing 1st childhood there was a significant negative association between energy of the whole brain network 
and ADOS-G severity (r(18) = −0.49, p = 0.03) (Fig. 4A), this holds for the ADOS-G total scores as well 
(r(18) = −0.59, p = 0.009) (Fig. 4B). Moreover, during 1st childhood energy of the SN (A) was negatively cor-
related with ADOS stereotype behaviors (r(13) = −0.66, p = 0.01) (Fig. 4C). Furthermore, during 2nd child-
hood and adolescence there were significant correlations between energy of the whole brain network and the 
following behavioral modules:

• There was a positive correlation with ADOS-G social scores (r(51) = 0.30, p = 0.03) during 2nd child-
hood (Fig. 4D), yet for adolescence the correlation with ADOS communication was significantly negative 
(r(32) = −0.32, p = 0.04) . It is worth mentioning that the ADOS communication scores for adolescents 
were from both module-3 and -4. Moreover, the correlations of each module separately with the whole brain 
energy did not reach significance, possibly due to missing data. Thus, results regarding this correlation are 
reported in Supplementary Fig. S3.

• There was a negative correlation during 2nd childhood with ADI restricted and repetitive behaviors 
(r(49) = −0.30, p = 0.03) (Fig. 4E), which was a significantly positive association during adolescence 
(r(34) = 0.30, p = 0.04) (Fig. 4F).

Discussion
The current study has analyzed the weighted signed brain networks of ASD and CON groups in the context of 
structural balance theory (SBT) during development. Although analyzing pair interactions between brain regions 
has revealed fundamental network properties in the last decades, yet in exploring a complex system such as the 
brain questioning the unavoidable impact of the interactions each of the two regions has with a third region 
within triadic interrelationships seems plausible. In other words, the crucial role that weighted signed triadic 
interactions play in the organization of real-world complex networks which have been widely accepted, is worth 
considering. Accordingly, the current study has demonstrated the following results:

Evidence for the strong formulation of Heider’s balance theory in the brain networks (Table 1). Our findings have 
provided first-time empirical evidence for Heider’s balance theory on the ASD and healthy brain networks during 
development. To be specific, we have found that on average for both ASD and CON groups, from 1st childhood all 
the way to adolescence, balanced triads are heavily overrepresented in the brain networks while unbalanced triads 
are underrepresented—hypothesis #1. Our result on the group-level interestingly supports the strong notion 
of structural balance theory, which states that both unbalanced triads, T2 and T0 , are underrepresented in real 
networks. This is while in social networks, the weak formulation of structural balance has been reported, which 
states that only unbalanced triads of type T2 are underrepresented in real signed  networks12,13. While unbalanced 
triads of type T0 are in some cases (such as the Epinions and Wikipedia) overrepresented and in some although 
underrepresented yet to a lesser degree than the other three types (such as the Slashdot)12. These results are 
consistent with the fact that on the level of each participant, we have found that there is a small percentage of 
individuals within each group in the networks of which T0 triads are overrepresented. However, these percent-
ages are small. Thus, the overall underrepresentation of T0 triads seems to be the case in the brain networks.

Lower frequency of T1 during 1st childhood, higher T2 during 2nd childhood and lower T1 and T2 during ado-
lescence in ASD (Fig. 1). Regarding practical differences ( η2 ≥ 0.14 ) in the mean frequency of different types of 
triads during development, we have observed the following results: (1) During 1st childhood, the mean frequency 
of T1 triads is significantly greater in CON group. (2) During 2nd childhood, the mean frequency of T2 triads 
is significantly greater in ASD group. (3) During adolescence, the mean frequency of both T1 and T2 triads are 
greater in CON group. As results depict, the frequency of T3 triads in which all three links are positive, and T0 
triads that are consisted of three negative links, are not of much practical concern when studying differences 
between the brain network of ASD compared to healthy controls. This can pave the way for a candidate explana-
tion that for the ASD network compared to the CON network regarding links/triads frequency, it is the interplay 
of negative and positive links that gives rise to the practical differences between ASD and healthy individuals—
hypothesis #2, and not solely the hypo (hyper) connectivity of one type of links independent from the other 
type and detached from the setting they belong to. Furthermore, the frequency of triads mentioned above in 
ASD group being lower during 1st childhood (mean age 8) and adolescence (mean age 16), yet higher during 
2nd childhood (mean age 11) reflects the hypo (hyper) functional connectivity in the backbone of networks 
which is pretty much in line with previous studies besides many different controversies in this  regard41–43. These 
changes in the pairwise functional connectivity are as well consistent with studies that have suggested critical 
developmental shift during the time of puberty, which is typically between 9 and 13  years42,44.

Lower participation of brain regions in T1 and T0 triads with high energies in ASD during 1st childhood (Fig. 2). 
As results indicate, the energy distributions of T1 and T0 triads in ASD group lag behind CON group during 1st 
childhood. That is, we have observed a threshold in the energy distributions of T1 and T0 triads above which node 
participation is zero for ASD group, yet nonzero for CON group. In other words, the ASD network lacks high 
energy T1 and T0 triads compared to healthy individuals during 1st childhood. This can be interpreted according 
to the role of T1 and T0 triads in the organization of networks from the perspective of SBT, which is to provide 
connected modularity. Specifically, when a network has T1 or T0 triads on its stable state, we expect it to have 
different groups of nodes (the so-called modules) with negative links connecting them to each other. This may 
go quite consistently with the theory of functional segregation and integration in the brain  networks2. According 
to this theory, functional segregation corresponds to the presence of specialized modules or clusters within the 
brain network. In comparison, functional integration in the brain is the potential to combine specific information 
from local distributed brain regions. The Absence of high energy T1 and T0 triads in the ASD network (compared 
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to healthy individuals) may provide us with an alternative explanation for the reduced functional integration and 
segregation in ASD—hypothesis #3. This finding is well consistent with previous studies that have proposed the 
reduced integration and segregation of information within the large-scale brain networks in  ASD43.

Furthermore, as illustrated in Supplementary Fig. S2, different regions from various Yeo sub-networks are 
present in high energy T1 and T0 triads in the CON network yet absent in the ASD network, among which 
regions from three sub-networks are dominant: the DMN, the SN, and the central executive network (CEN). 
Most involved regions in high energy T1 and T0 triads from the SN are the insula, the frontal opercular (FrOper) 
and the parietal opercular (ParOper), from the DMN the prefrontal cortex (PFC), the precuneus and posterior 
cingulate cortex (PCUN/PCC) as well as the inferior parietal lobule (IPL), and from the CEN mostly regions from 
the intraparietal sulcus (IPS). Interaction between these three sub-networks, known as a triple network model of 
the brain, has been recently proposed to underlie a wide range of disorders, including  ASD45. Zero participation 
of important regions of the DMN, the SN and the CEN in high energy T1 and T0 triads in the ASD network compered 
to the CON network, provides evidence for the triple network model from a perspective of SBT. That is to say, high 
energy T1 and T0 triads provide a needed structure for a consistent and reliable three-way interaction between 
these three sub-networks which seems to be missing in ASD group.

Narrow scale of change in energy of the whole brain network in ASD during development (Fig. 3A). Our results 
have revealed that from 1st childhood to adolescence, there is an overall increase in energy of the whole-brain 
networks in both ASD and CON groups. We can thus hypothesize that increase of the whole-brain energy with 
age provides networks with the necessary structure to accommodate more dynamism needed for higher cognitive 
abilities, which are also increasing with age. Yet as results have revealed, the pattern of this increase from 1st child-
hood to 2nd childhood and from there to adolescence is significantly different between ASD and CON groups. 
That is, while networks in CON group start from being more balance during 1st childhood and gradually gain 
more energy during development, networks in ASD group start with higher mean energy during 1st childhood 
and then seem to be frozen after 2nd childhood. In other words, in ASD group the increasing change in energy 
of the whole-brain network is missed from 2nd childhood to adolescence, while it is significant in CON group.

It is worth mentioning that the whole-brain ASD network during 1st childhood having significantly higher 
energy than the CON network is due to the ASD network having practically less T1 triads while the frequency 
of unbalanced triads is nearly the same in both networks (Fig. 1B). As both groups have nearly equal number 
of unbalanced triads, the higher energy of the ASD network during 1st childhood cannot be assigned to more 
dynamism, but to the less functional integration and segregation. This is because, as discussed above, T1 triads 
provide needed structure for the integration between local segregated modules in networks. The severity and 
total ASD symptoms, as measured with ADOS-G, seem to confirm these results as well. That is, less energy dur-
ing 1st childhood is associated with the severity of ASD. Altogether, our results have shown that changes in the 
energy of the whole-brain ASD networks during development are limited to a narrower band compared to CON 
group—hypothesis #4.1. Moreover, during 2nd childhood and adolescence, although the total energy levels are 
not different between the ASD and CON networks, the underlying triadic interactions that give birth to these 
final energies are different (as has been discussed previously). Finally, during 2nd childhood the whole brain 
energy, as measured in the context of SBT, is positively associated with ADOS-G social scores and negatively with 
restricted and repetitive behaviors. While during adolescence, the whole-brain energy is positively correlated 
with restricted and repetitive behaviors as measured using ADI.

Less energy of the SN and the DMN in ASD and its association with stereotype or repetitive behaviors (Fig. 3B,C). 
We have observed that generally during development, the SN (A) and the DMN (B) are more balanced, have less 
energy, in the ASD than CON networks. In other words, in these two sub-networks in ASD group unbalanced 
triads are in minority compared to balanced triads. This is while unbalanced triads are known to be sources of 
dynamism through injecting energy into networks. That is to say, unbalanced triads are structures that excite a 
network towards change, unlike balanced triads that drive a network back to its stable states, that is, the minimum 
level of energy. Thus, unbalanced triads although underrepresented compared to chance, are playing a crucial 
role in healthy networks. As Heider himself stated, in a healthy community there may be a tendency to leave 
the balanced comfortable equilibrium to seek new  horizons17. In other words, unbalanced triads are necessary 
if a community is to leave its comfort zone towards new experiments, that is, growth. As our results indicate, 
the mean energy of the SN (A) is nearly practically greater in the CON network compared to the ASD network 
during 1st childhood. The SN (A) in the Schaefer  atlas46 includes eight regions from the insula (Fig. 3D), namely, 
insula left 1 (−38, 2,−4) , insula left 2 (−40,−14,−2) , insula left 3 (−32, 18, 8) , insula left 4 (−36, 4, 10) , insula 
right 1 (40, 6,−16) , insula right 2 (40, 8,−2) , insula right 3 (40,−10,−4) and insula right 4 (40,−2, 6) . Classi-
cally, the insula has been considered a limbic region, yet recent network neuroscience studies have suggested its 
vital role in detecting novel salient stimuli across multiple modalities. The SN itself is known to be involved in 
attentional processes and dynamic switching between task-positive (CEN) and task-negative (DMN)  processes47. 
Moreover, the ability to detect and attend from one event to the other flexibly has been associated with the SN’s 
well functioning. It is noteworthy that our finding shows a negative association between energy of the SN (A) 
and stereotype behaviors during 1st childhood. To be specific, greater energy of the SN (A) is associated with 
reduced stereotype behaviors during 1st childhood. Altogether, it seems that the SN (A) having less energy in the 
ASD network is reflecting the difficulty in dynamic switching, which is manifested in form of increased repetitive 
and restricted behaviors—hypothesis #4.2.

Furthermore, our results have unveiled that energy of the DMN (B) is practically greater in CON group than 
in ASD group during 2nd childhood. The DMN (B) in the Schaefer  atlas46 heavily relies on the regions from 
the prefrontal cortex (PFC) on both hemispheres, such as the ventral PFC, the dorsal PFC as well as the lateral 
PFC (Fig. 3E). The role of the PFC on both social impairment and restricted behaviors in ASD has been sug-
gested, specifically the proper level of dopamine in the PFC seems to be necessary for jumping out of repetitive 
 behaviors48. For example, when an antagonist of dopamine was injected into the PFC of rats, it induced ipsiversive 
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 circling49. From a network point of view, it is known that systems with more energy are more probable to explore 
different possible states, while for networks with less energy the chance to be trapped in one of the local minima 
is higher. Less energy of the DMN (B), which includes several regions from the PFC, seems to be a candidate expla-
nation for a deficiency to move from one local minimum to another in the ASD network, which may be expressing 
itself as increased repetitive behaviors—hypothesis #4.3. The general pattern of association between energy and 
restricted behaviors, the more the energy of the DMN (B) the less repetitive behaviors, nearly holds for the DMN 
(B) during 2nd childhood as well. Although it did not reach significance (p = 0.10, r = −0.23) due to missing 
values, thus further investigations can be helpful in this regard.

All things considered, the current study proposes SBT as a promising context to understand alterations 
found in the brain networks of individuals with ASD compared to healthy controls. A limitation of this study is 
that the data analyzed here are cross-sectional due to the small sample size of open longitudinal fMRI dataset. 
Thus, further investigations based on longitudinal data can sure be insightful. According to the results obtained 
here, studying triadic interactions and the consequent structural balance of the weighted signed brain networks, 
and the role that their disruption may play on the complex neurodevelopmental disorders seems to be of value. 
Furthermore, in addition to SBT for studying higher-order interactions in the brain networks methods such as 
the topological data analysis can be insightful.

Methods
Participants. T1-weighted MRI and resting-state fMRI along with the corresponding demographic data of 
311 individuals, 152 with ASD, and 159 healthy volunteers (CON), aggregated from multiple sites in the publicly 
available Autism Brain Imaging Data Exchange (ABIDE I Preprocessed repository)50, were processed and ana-
lyzed in this study (Fig. 5A). Inclusion criteria for sites were to have (1) Similar repetition time ( TR = 2ms ), in 
order to limit the multi-site variability and (2) Instructed participants to relax with their eyes open while a cross 
was projected on a screen. The reason for this choice was that, as has been reported  previously51, the reliability 
of resting-state analysis is higher when subjects are instructed to rest with their eyes open compared to the eyes 
closed, due to the possibility of falling sleep when eyes closed. These two criteria resulted in five sites, namely, 
New York University Langone Medical Center (NYU), San Diego State University (SDSU), University of Michi-
gan (both samples: UM-1, UM-2), University of Utah School of Medicine (USM) and Yale Child Study Center 
(Yale). Furthermore, it is worth mentioning that in the NYU dataset 14% of subjects were eyes closed, which 
have been excluded prior to preprocessing.

Inclusion as a participant in ASD group required receiving ASD diagnosis based on the autism diagnostic 
observation schedule-generic (ADOS-G) and an expert clinical opinion upon DSM-IV criteria. Individuals in 
CON group must have no history of psychiatric disorders in themselves or their first-degree relatives. Participants 
in both groups should have no prior or concurrent diagnosis of neurological disorders (e.g., epilepsy, meningitis, 
encephalitis, head trauma, or seizures). Being fully verbal and IQ > 70, as has been measured via WASI and/
or WASI-IV, were also required for all. Moreover, to met the assumptions of ANCOVA we have discarded 53 
participants due to being outliers (Fig. 5D), details of which are provided in statistical analysis. Altogether, the 
final number of participants has been 258 individuals, 128 with ASD and 130 healthy controls. We have further 
divided these individuals based on age, that is, 6–13 years old as children and 13–18 years old as adolescents. 
Additionally, as middle childhood is a crucial period during development, we have considered the opening years 
of middle childhood and the closing years separately. We have referred to the former as 1st childhood (6–9 years 
old) and the latter as 2nd childhood (9–13 years old), that are age, gender, handedness, IQ and head motion 
matched (Table 3).

Approval for human experiments. For each of the included sites following Institutional Review Boards 
(IRB) and ethics committees have approved the experiments, and data acquisition procedures were in accord-
ance to their guidelines and regulations: (1) IRB Operations at NYU, (2) San Diego State University’s Human 
Research Protection Program (3) IRB of the University of Michigan Medical School (4) The University of Utah’s 
IRB (5) Yale University’s IRB. Furthermore, all experiments were in accordance with HIPAA guidelines and 1000 
Functional Connectomics Project / INDI protocols, that is, all data were fully anonymized with no protected 
health information and legal guardians of all participants have signed informed consent.

Data preprocessing. We have used the preprocessed version of ABIDE I neuro-imaging data that is pro-
vided by the Preprocessed Connectomes Project (PCP) and is public at https ://prepr ocess ed-conne ctome s-proje 
ct.org/abide /. Among the four available preprocessing pipelines in ABIDE I preprocessed, we have used data 
from Configurable Pipeline for the Analysis of Connectomes (CPAC). The following preprocessing steps were 
performed: (1) Basic processing that includes: Realignment, slice timing correction, registration (Boundary-
based rigid body (BBR) for functional to anatomical and ANTs for anatomical to standard template), intensity 
normalization (4D Global mean = 1000). (2) Nuisance signal removal to clean confounding variations resulting 
from head motion, physiological processes (such as heart beat and respiration) and scanner drifts that have 
included regressing: 24 head motion parameters (six standard parameters R= [ X Y Z pitch yaw roll], along with 
their squares R2 and temporal derivatives R′ ), tissue signals using component-based noise correction method 
 (CompCor52), linear and quadratic scanner’s low frequency drifts. (3) As it has been  reported53, even after regress-
ing head motion parameters resting-state functional connectivity may still be affected by motion thus scans with 
frame-wise displacement > 0.5 mm and global BOLD signal changes > 3 SD (the conservative option in the 
default preprocessing steps of Conn  toolbox52) were flagged and scrubbed. Participants with at least 150 valid 
scans ( ∼ 5 min or more) have been included. Moreover, results of the Mann-Whitney U test have confirmed that 
the difference between ASD and CON groups was not statistically significant regarding head motion as has been 

https://preprocessed-connectomes-project.org/abide/
https://preprocessed-connectomes-project.org/abide/
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Table 3.  Demographic data. p values are according to paired t-test for full/verbal/perform IQ, Mann-Whitney 
U test for age, mean FD and Chi-square test for gender and handedness. **p < 0.01 , * p < 0.05 . Mean ± 
std, ADOS-G, the autism diagnostic observation schedule-generic; ADI-R, the autism diagnostic interview-
revised; FD, frame-wise displacement; RRB, restricted and repetitive behaviors; CON, control; ASD, autism 
spectrum disorder.

1st Childhood, (6–9) years 2nd Childhood, (9–13) years Adolescence, (13–18) years

Group size CON (n = 20) ASD (n = 18) p val CON (n = 52) ASD (n = 52) p val CON (n = 58) ASD (n = 58) p val

Age 8.21± 0.68 8.08± 0.74 0.63 11.14± 1.06 11.02± 1.14 0.61 16.04± 1.45 15.93± 1.56 0.80

Gender, male 15 18 0.13 All male All male 1 All male All male 1

Hand, right 19 15 0.21 47 42 0.16 54 50 0.25

Full IQ 115.90± 13.08 112.30± 20.53 0.50 111.04± 14.20 103.86± 18.85 0.03
∗

108.89± 11.87 102.82± 15.88 0.02
∗

Verbal IQ 114.14± 14.83 107.50± 17.23 0.19 113.67± 12.50 105.44± 20.63 0.01
∗

111.34± 13.31 99.69± 20.21 < 0.001
∗∗

Perform IQ 112.95± 13.70 114.05± 23.98 0.85 105.98± 16.38 102.50± 19.78 0.33 105.10± 12.85 105.69± 15.96 0.82

Mean FD 0.14± 0.05 0.19± 0.06 0.06 0.19± 0.09 0.20± 0.09 0.70 0.14± 0.05 0.17± 0.08 0.10

ADOS-G 
Total − 11.95± 4.67 − − 12.11± 5.49 − − 12.87± 4.98 −

ADOS-G 
Social − 8.95± 3.64 − − 8.92± 4.27 − − 10.10± 4.21 −

ADOS-G RRB − 3.45± 1.50 − − 3.25± 1.76 − − 3.00± 1.77 −

ADI-R Verbal − 16.75± 5.10 − − 15.77± 4.00 − − 16.35± 3.55 −

ADI-R Social − 19.00± 6.06 − − 19.39± 5.27 − − 19.82± 5.28 −

ADI-R RRB − 5.75± 3.10 − − 6.36± 2.81 − − 6.32± 2.33 −

Figure 5.  Graphical abstract (A) After preprocessing, 311 individuals (159 and 152 in CON and ASD 
groups, respectively) have been included. (B) Brain construction was based on Schaefer-400 atlas as nodes 
and significant Pearson’s correlations as edges. (C,E) Procedures as has been defined in the context of SBT. D 
Statistical analysis for comparing group means. For head motion and site information covariates, frame-wise 
displacement and site codes have been used, respectively. As a results of applying ANCOVA’s assumption 53 
individuals were discarded. After excluding these individuals, network’s edges have been redefined based on the 
remaining 258 participants. Step C has been reapplied on the final networks. BrainNet Viewer 1.6340 (nitrc .org/
proje cts/bnv) has been used for visualization of the brain networks. n, number of individuals; |Ti| , total number 
of Ti ; p(Ti) , fraction of Ti ; p0(Ti) , fraction of Ti in the null model; s(Ti) , the amount of surprise; SBT, structural 
balance theory; NYU, New York University; SDSU, San Diego State University; UM, University of Michigan; 
USM, University of Utah School of Medicine; YALE, Yale Child Study Center; CON, Control; ASD, autism 
spectrum disorder.

https://www.nitrc.org/projects/bnv/
https://www.nitrc.org/projects/bnv/
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quantified by mean frame-wise displacement (Table 3). (4) We have not regressed the global signal out, that is, 
the global mean signal was not included with nuisance variable regression. Moreover, spatial smoothing using 
a Gaussian kernel of 6 mm FWHM has been conducted. We have visually inspected the de-noised data using 
Conn QA  plots52. Band-pass filtering (Slow-4: 0.027–0.073 HZ) was applied after preprocessing and during the 
de-noising step because it has been suggested that resting-state brain networks derived in this frequency exhibit 
grater  reliability54. (5) Finally, to harmonized data across the five sites MatLab implementation of the ComBat 
 method55 have been applied through following steps: (1) For each i = 1 to 258 subjects we have created the trili 
(79,800× 1) matrix with the lower triangle elements of its (400× 400) functional connectivity matrix. Then, we 
have designed the dat input matrix by concatenating tril matrices column-wise, resulting in a (79,800× 258) 
matrix with columns regarding subjects and rows corresponding to their functional connectivities. (2) We have 
coded different sites from 1 to 5 corresponding to NYU, SDSU, UM, USM and YALE, respectively. Then, we have 
set the batch input to be a (258× 1) matrix, whose element (i, 1) corresponds to subject’s i site code. (3) For the 
mod input, which aims to preserve the original biological variations within data while harmonizing the effect 
of site, we have designed a (258× 2) matrix with first and second columns being age and group (0 for ASD, 1 
for CON), respectively. (4) We have conducted a series of Kruskal–Wallis tests (FDR corrected p values at 5% 
significance) to investigate site effect on functional connectivities between all pair regions of interest before and 
after applying ComBat harmonization. As results have shown before the harmonization 1.37% of all functional 
connectivities were significantly different across the five sites, which have decreased to zero after harmonization.

Construction of the brain networks from resting‑state fMRI data. In this study, we have defined 
the whole brain networks’ nodes based on 400 regions of interest as introduced by the 2-mm Schaefer-400  atlas46. 
Moreover, for the analysis of brain sub-networks, 17 Yeo parcellation was applied as defined in the Schaefer-400 
atlas as well. Specifically, on this atlas the DMN (B) and the SN (A) have 32 and 34 regions of interest, respec-
tively. For links of the whole brain network, we have assessed functional connectivity using Pearson’s correlation 
between all pairs of 400 regions of interest for each participant across the full length of the resting-state Blood 
Oxygen Level-Dependent (BOLD) time series, creating 311 weighted correlation matrices r(400× 400) . The 
same calculations have been carried for the 17 Yeo functional sub-networks. Next, as Fisher’s z-transformation 
stabilizes the variance for better use in statistical testings, we have converted Pearson’s r to the normally distrib-
uted z variables. Then, we have performed two-tailed one sample t-tests on Fisher’s Z-transformed correlation 
coefficients (z), to check whether correlation coefficients are spurious or significantly different from  zero1. Spe-
cifically, for each edge (i, j) we have performed a one-sample t-test based on the distribution of z values between i 
and j across the group. Then, for every (i, j) we have set it to zero if it did not pass the 5% significance. Of course, a 
multiple comparison correction was necessary to account for multiple comparisons, thus Bonferroni corrected p 
values were used. We applied no further manual threshold on networks to avoid its inevitable effects on network 
parameters. This procedure has been conducted on MatLab and Statistics Toolbox Release 2017b and the brain 
networks have been visualized using BrainNet Viewer version 1.6340 (Fig. 5B).

Structural balance theory. Our approach to studying the brain networks is structural balance theory 
(SBT) that provides a framework to go beyond the assumption that pair interactions are independent from each 
other in signed networks, through analyzing triadic  interactions18,32. Similar to the graph-theoretical framework, 
SBT has also been developed to investigate the organizational properties of complex  networks31. However, unlike 
graph theory, which has been formulated initially to model dyadic relations between information units, SBT goes 
beyond pairwise interactions and study triadic interactions. Specifically, SBT proposes that a network evolves 
in a direction that leads to the minimum level of tension and frustration between triadic  interrelationships56,57. 
When applying graph theoretical analysis on the brain networks, one defines a graph G(V, E) with a set of nodes 
V = {vn; n = 1, 2, . . . ,N} and estimates a measure of association between each pair regions of interest as a set 

Figure 6.  Four types of triads as has been defined in SBT. The number of negative links is even for balanced 
triads, and odd for unbalanced triads. Furthermore, being strong or weak refers to how much frustration a 
presence of a triad imposes on a network, with T2 triads injecting more frustration than T0 triads, and T3 being 
more stable than T1  triads14. w, weights of links; U(Ti) , energy of Ti.
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of weighted links E = {wxy | wxy > 0 if vx is correlated with vy , and wxy < 0 if vx is anti-correlated with vy} . Yet, 
in the context of SBT as network’s primary building blocks one defines sets of triads as  follows14(Fig. 6):

This way, information about the organization of network that cannot be detected on the level of pair connec-
tions would get a chance to be revealed. A well-known analogy for this definition is that positive (negative) links 
are considered friendship (enmity) relations, respectively. Then, balanced triads are those that fulfill following 
axioms: (1) A friend of my friend is my friend, that is, strongly balanced triad, T3 (2) An enemy of my enemy is 
my friend, a friend of my enemy is my enemy and an enemy of my friend is my enemy, that is, weakly balanced 
triads, T1 , otherwise we have unbalanced triads, T2 and T0 . A network satisfies the structural balance property 
in two ways: (1) Either all its triads are balanced (known as heaven), or (2) It is divided into sub-networks such 
that within each sub-network positive links are present, while there are negative links between sub-networks 
(known as bipolar). In this study, we have taken the correlations (anti-correlations) between each two regions 
of interest in the brain network as positive (negative) relations, respectively.

It can be seen from Eq. 1 that, for a balanced interaction the product of its edges is a positive number, whereas 
for an unbalanced interaction this product is negative. As has been previously  proposed58, if one sums the nega-
tive of these products and divides it by the total number of ternary interactions, a quantity U(N) or energy of a 
network would be obtained. Energy represents the extent to which a network is structurally balanced. Explicitly,

in which N is the number of nodes and � is the total number of triads in the network. Applying this measure 
on a fully balanced network results in a lowest U(N), that is, −1 , while a fully unbalanced network obtains the 
highest possible U(N), that is, +1 . In this study, for any given network we have:

• Counted the number (frequency) of Ti ( |Ti| ), then calculated the energy of Ti , i.e., U(Ti) = wxywyzwzx , where 
x, y and z are Ti ’s nodes and wxy ,wyz and wzx are link’s weights. Afterwards, we have estimated the distribution 
of U(Ti) during 1nd childhood, 2nd childhood and adolescence for both ASD and CON groups. Finally, we 
have computed total energy of the network, U(N) (Fig. 5C).

• As has been previously  proposed12, we have created a null model, which is a network with the exact fraction 
of positive (negative) signs which are randomly assigned to existing links. The purpose of this null model is 
to compare the empirical frequencies of Ti , as in the real brain networks, with the corresponding frequencies 
if signs of links were generated randomly from the same distribution of positive (negative) signs. In other 
words, the null model represents a condition where no underlying structure (organization) directs the place-
ment of signs, rather it is random. Thus, after generating this shuffled version of a given network we have 
computed p0(Ti) , fraction of triad Ti in the null model, and compared it to p(Ti) , fraction of triad Ti in the 
real brain network. If p(Ti) > p0(Ti) then Ti is overrepresented, and if p(Ti) < p0(Ti) then Ti is underrepre-
sented. Furthermore, we have calculated the value of surprise, s(Ti) = (Ti − E[Ti])/

√

�p0(Ti)(1− p0(Ti)) , 
in which E[Ti] = p0(Ti)� is the expected number of triads Ti and � is the total number of triads in the 
network (Fig. 5E).

Statistical analysis. Throughout this study, to determine the group mean differences we have conducted 
two-way Analysis of Covariance (ANCOVA) with group and age as independent variables while controlling 
for FIQ, medication, mean frame-wise displacement as head motion parameter and site information. In total, 
we had 24 dependent variables, namely, the frequency of positive and negative links (Table 2A), the frequency 
of each types of triads (Table 2B), energy of the whole-brain network (Fig. 3A), energy of each of the 17 Yeo 
sub-networks among which results of ANCOVA were significant for SN (A) and DMN (B) (Fig.  3B,C). For 
each of these 24 models, first we have checked the assumptions of ANCOVA regarding the dependent variable 
of that model as follows: (1) We have explored if the dependent variable have outliers across different groups 
of independent variables using box plots, which in total have resulted in discarding 53 out of 311 participants. 
(2) Results of the Kolmogorov–Smirnov tests have indicated that except for the frequency of T2 triads in ASD 
group during 2nd childhood and adolescence, as well as the frequency of T0 triads in ASD group during adoles-
cence, which are only moderately skewed ( −1 ≤ skewness ≤ +1) , all other dependent variables in this study are 
normally distributed. (3) Homogeneity of variances was investigated through Levene’s Test of Equality of Error 
Variances. (4) The linear relation between the dependent variable and covariates was studied through scatter 
matrices. Additionally, when results of ANCOVA were significant we have applied the Mann-Whitney U test as 
the post-hoc test to determine the specific groups that are different (as shown using the asterisks above the box 
plots in Fig. 1 for the frequency of links and triads as dependent variable, and Fig. 3A–C, for energy of the whole 
brain and sub-networks as dependent variables). In case of ANCOVA, effect sizes are reported as has been read-
ily estimated by IBM SPSS Statistics version 26, that is, partialη2 = SSeffect/SSeffect + SSerror . For the interpreta-
tion, Cohen’s guideline was applied, i.e., η2 at least 0.01:  small, 0.06:  medium and 0.14:  large  effects59). Likewise, 
for the post-hoc tests we have calculated η2 = Z2/n− 1 , using the Z statistics from the Mann-Whitney U test. 

(1)

Ti = {�xyz | vx , vy and vz are (anti) associated}, where i =











3: strongly balanced, if wxy ,wyz ,wzx > 0
2: strongly unbalanced, if wxy ,wyz > 0 and wzx < 0
1: weakly balanced, if wxy ,wyz < 0 and wzx > 0
0: weakly unbalanced, if wxy ,wyz ,wzx < 0

(2)U(N) = −
1

�

∑

x<y<z

wxywyzwzx
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Finally, the Kullback–Leiber Divergence between distributions P and Q in Fig. 2 has been calculated through 
K(P||Q)+K(Q||P) =

∑

i log2(pi/qi)pi +
∑

i log2(qi/pi)qi.

Data availability
The datasets analysed during the current study are available from the corresponding author upon request.
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