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Connectivity‑informed drainage 
network generation using deep 
convolution generative adversarial 
networks
Sung Eun Kim1,2,3, Yongwon Seo4, Junshik Hwang4, Hongkyu Yoon5 & Jonghyun Lee2,3*

Stochastic network modeling is often limited by high computational costs to generate a large number 
of networks enough for meaningful statistical evaluation. In this study, Deep Convolutional Generative 
Adversarial Networks (DCGANs) were applied to quickly reproduce drainage networks from the 
already generated network samples without repetitive long modeling of the stochastic network 
model, Gibb’s model. In particular, we developed a novel connectivity‑informed method that converts 
the drainage network images to the directional information of flow on each node of the drainage 
network, and then transforms it into multiple binary layers where the connectivity constraints 
between nodes in the drainage network are stored. DCGANs trained with three different types of 
training samples were compared; (1) original drainage network images, (2) their corresponding 
directional information only, and (3) the connectivity‑informed directional information. A comparison 
of generated images demonstrated that the novel connectivity‑informed method outperformed the 
other two methods by training DCGANs more effectively and better reproducing accurate drainage 
networks due to its compact representation of the network complexity and connectivity. This work 
highlights that DCGANs can be applicable for high contrast images common in earth and material 
sciences where the network, fractures, and other high contrast features are important.

Runoff assessment has long been an important topic of hydrology for the purpose of water resources manage-
ment, flood control, and ecological and environmental restoration. Runoff from a catchment primarily depends 
on two characteristics: the hydro-meteorological characteristics of rainfall and the watershed  characteristics1. 
Among the watershed characteristics, drainage network topology is one of the most important factors that 
directly affects the hydrologic response of a watershed given the spatial and temporal rainfall  distributions2. 
However, characterization of the drainage network topology is often hindered due to missing data and complex 
loops inside drainage  network3. Furthermore, data acquisition and hydrologic analysis of actual drainage net-
works require time-consuming processes.

To overcome these difficulties in analyzing real drainage networks, statistical description of network topology 
has been utilized to generate drainage networks that can be used to assess the effect of drainage network topology 
on  runoff3,4. Among many stochastic network generation  models5,6, Gibbs’ model has been successfully used to 
perform hydrologic analysis of urban draining  networks3. The Gibbs’ model is a stochastic network generation 
model based on Gibbs’  measure7,8 where the maximum entropy and a Markov random  field8 are used to define 
the complex network topology. For example, the Gibbs’ model has been used to classify urban drainage network 
in Chicago  areas3,4 and simulate alternative networks with similar hydrologic  response9,10. However, it takes a 
relatively long time to generate a number of large enough networks for meaningful statistical evaluation because 
the Gibbs’ model has to consider all possible flow directions at each node of the  network11. Hence, hydrologic 
analysis of networks generated with the Gibbs’ model becomes less practical when quickly generating many 
large and complex networks.

Recent advances in deep learning  methods12 can provide a promising approach to learning features, underly-
ing relationships (e.g., latent space) among data, classifying classes and labels, generating images and data, and 
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scientific machine  learning13. Among these techniques, generative adversarial networks (GANs) have a deep 
generative framework that can effectively learn a probability distribution of training sample data and generate 
realistic samples from the given distribution without explicitly modeling the probability density  function14,15. 
GANs have demonstrated remarkable results in image synthesis, image translation, data augmentation, and 
image/data/topology  reconstruction16–18.

Among various GANs implementations, two variants of GANs provide promising potential for generating 
the drainage network. The first is deep convolutional GANs (DCGANs). Radford et al.19 combines convolutional 
neural networks (CNNs) with GANs, i.e., DCGANs, to learn a hierarchical structure of image samples for better 
image representations. Mosser et al.20 applied DCGANs with micro-computed tomography (micro CT) images to 
reconstruct the three-dimensional porous media and demonstrated the performance of the proposed DCGANs 
comparing with conventional geostatistical methods. Recently, Kim et al.21 successfully applied DCGANs for 
generating the arbitrary large size of statistical realizations of two and three dimensional earth materials such 
as sphere packing and subsurface channels with various degree of connectivity and structural properties. These 
studies showed that once trained, DCGANs can quickly generate/reconstruct multiple plausible images with vari-
ous patterns that satisfy important statistical features of the training image samples with very low computational 
cost. However, it does not guarantee that DCGANs can always reproduce the physical information (network 
complexity and connectivity) inherent in the original drainage network sample. Moreover, the drainage network 
image has high-frequency features (i.e., a large contrast in the intensity of the neighboring pixel values in image 
data, such as points, lines, or graphs) which CNNs often struggle to extract without carefully designed neural 
network  architecture22.

The second is conditional GANs (CGANs). Mizra and  Osindero23 introduced the conditional version of GANs 
(CGANs), which can be constructed by adding external information (tags or labels) to both training images and 
the generated images. This study showed that it is possible to control the properties of output image by condition-
ing the GANs model on additional information. CGANs have been applied to various research for image synthesis 
with different conditional contexts such as categorical image generation, text-to-image synthesis, and semantic 
 manipulation24–26. As demonstrated in many image processing and analysis  examples16, DCGANs framework 
can be suitably combined with additional information like CGANs and generate samples with complex patterns 
and high-frequency features more reliably.

In this study, DCGANs were used as a deep learning framework to quickly generate many drainage networks 
with various patterns based on the drainage network samples already created by the stochastic network generation 
model, the Gibb’s model. Additionally, we proposed a novel connectivity-informed drainage network genera-
tion method to effectively train DCGANs with high frequency features and better reproduce accurate drainage 
networks. The key idea of the proposed method is to convert the drainage network images to the directional 
information (right, left, up, down) of flow from each node of the drainage network to the outlet, and then trans-
form the directional information into several binary layers where the contrast and connectivity of one node with 
neighboring nodes are stored effectively. In this way, the connectivity information of the network topology can 
be implicitly conditioned during the training of DCGANs. In the next section, GANs and DCGANs are briefly 
introduced, followed by the main concepts and advantages of the proposed connectivity-informed drainage 
network generation method are presented. The training and network generation results are then compared to 
demonstrate the performance of the proposed method in the “Results and discussion” section. Finally, a summary 
of the important results of this study and possible future developments are described in the “Conclusion” section.

Methodology
Here we briefly introduce Generative Adversarial Neural Networks (GANs) and Deep Convolutional GANs 
(DCGANs), followed by the connectivity-informed DCGANs developed in this study.

Generative adversarial neural networks (GANs). GANs introduced by Goodfellow et al.14 are one of 
deep neural networks with a new framework for estimating generative models via adversarial models. GANs 
train two models including a generative model G and a discriminative model D. The generative model captures 
the “true” data generation process for the training images, while the discriminative model determines whether 
samples are taken from either those generated by G or the training  samples20. To approximate a generator distri-
bution pg over “true” data x, the generator builds a mapping function G(z; θg ) in which a vector z is generated 
from a prior noise distribution pg (z) . θg represents parameters of G and z is typically a Gaussian random vec-
tor. The discriminator, D(x; θd) , yields a single scalar ( D : Rn → [0, 1] ) representing the probability of the data 
x originating from training samples rather than those from G(z; θg )14,15. Then, two models contest with each 
other in a game framework such that the G model learns “true” data generating process to deceive the D model 
while the D model distinguishes the true data from the G model-generated samples as in following optimization 
problems:

The models G and D are trained simultaneously. Parameters θd of the D model are adjusted to minimize J(D) 
for the D model to distinguish between the real and the G model generated (Eq. 2) while parameters θg of the G 
model are adjusted to minimize J(G) for the discriminator being correct (Eq. 2). This results in G model trained 
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to make the value of D(G(z)) close to 1 and D model trained to make the value of D(G(z)) to 0. Through this 
dual optimization procedure, GANs can approximate the generator asymptotically to the true data generating 
process confirmed by the discriminator as shown in Fig. 1.

Deep convolutional GANs (DCGANs). GANs are often unstable in training, resulting in the generator that 
produces nonsensical outputs and/or mode collapsing, i.e., a limited diversity in generated  samples15. Mode col-
lapse is an inherent problem in the training procedure of  GANs27. The most effective way to reduce the mode 
collapse problem is to use a better classifier for training all modes of data  distribution27,28. Convolutional neural 
networks (CNNs) are regarded as a better option for classification than fully-connected neural networks and 
able to identify useful representations and features of the inputs. CNNs can also contain more complex features 
into the neural network architecture. Therefore, the DCGANs have been developed to utilize the deep convo-
lutional neural networks in the GANs since the representation of the learned data distribution can be stored in 
convolutional layers efficiently, which is reused to generate samples. This convolutional nature in CNN enables 
GANs to generate many samples similar to the training sample with computational efficiency.

Architecture of DCGANs. It is widely recognized that the identification of the appropriate DCGANs architec-
ture for the optimal training would require extensive model exploration. Radford et al.19 identifies a family of 
deep convolution architectures that results in stable training across a range of samples, which allows us to train 
higher resolution and deeper generative models. In this work, we adopt main architectural features from Rad-
ford et al.19: (1) stride convolutions instead of any pooling layers, (2) batch normalization in both the generator 
and discriminator, (3) no hidden layers in fully connected net in both the generator and discriminator, (4) ReLU 
activation in the generator for all layers except for the output, which uses the Tanh activation funcation, and (5) 
LeakyReLU activation in the discriminator for all layers except for the output, which uses the sigmoid activation 
function.

The architecture of DCGANs used in this study is shown in Fig. 2. The D model is composed of two forward 
stride/two convolution layers with a kernel size of three, and the output was converted as a probability (False 
as 0 to True as 1) using the sigmoid activation function. In the G model, the latent vector z with a dimension 
of 100 was drawn from a Gaussian distribution. A fully connected neural network (FCN) was reshaped into a 
4-dimensional tensor that was used as the start of the convolution stack. Two backward upsampling convolu-
tion layers with a kernel size (3, 3) were used, and the output was converted by a forward stride convolution 
layer with kernel size (3, 3) into the same size image as the training image. Both D and G models were trained 
by the adaptive momentum estimation (Adam) optimization algorithm with a starting learning rate of 0.0002 
with a momentum ( β1 ) of 0.5, and a total of 100,000 epochs with a mini-batch of size 64. A dropout with the 
probability of 0.25 was applied to both the generator and discriminator. A small value of both learning rate and 
momentum was used for the stabilized training and the convergence of the model. A larger number of epochs 
has been applied to analyze the change of the loss value in the training of the generator and discriminator. The 
loss of GANs was estimated by the binary cross-entropy function. The parameter values used in this study are 
presented in Table 1.

Generation of training images. We applied the drainage network images with two different network 
complexities to evaluate how accurately DCGANs with and without the connectivity-constrained information 
capture and reproduce the complexity and connectivity in training samples. The drainage network training 
images with a specific network complexity were generated using the Gibbs’ model. To generate a dendritic net-
work with the Gibbs’ model, a Markov chain is defined with the spanning trees of S as the state space. Let a tree, 

Figure 1.  Schematic representation of DCGANs: the deep convolutional neural networks were utilized to 
develop the GANs.
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s belong to a set of trees, S and two trees s1 and s2 be adjacent. The transition probability from s1 to s2 is defined 
as  follows29:

where N(s1) is the set of trees adjacent to s1 , and β is a parameter that represents the extent to which the sinuosity 
of the network is reflected in the generation of the new spanning tree, s2.

Depending on the value of parameter β , the Gibbs’ model can generate the drainage network images with 
specific network complexity. For example, when β is equal to zero, the overall sinuosity of a network has no 

(3)Rs1s2 =







r−1 min
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1, exp (−β(H(s2)−H(s1)))
�
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Figure 2.  Architecture of DCGANs used in this study. The generator and discriminator are designed to have a 
symmetrical structure composed of fully connected neural nets and two convolution layers with a kernel size of 
(3, 3).

Table 1.  Parameter values of DCGANs used in this study.

Latent space (z dimension)

Parameters & Values

100

Convolution layer
Generator 128 / 64 filters with kernel size = 3

Discriminator 64 / 128 filters with kernel size = 3

Optimizer

Adam with mini-batch

Learning rate 0.0002

Momentum β1 = 0.5, β2 = 0.999

Batch size 64

Regularization
Generator Batch normalization with a momentum of 0.8

Discriminator Dropout with 25%, Batch normalization with a momentum of 0.8

Activation function
Generator ReLu, Tanh (output layer)

Discriminator LeakyReLu (alpha = 0.2), Sigmoid (output layer)

Loss function Binary cross-entropy
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relationship to the transition probability and the transition probabilities are the same in all possible directions, 
which produces a high sinuosity in the generated networks. In this study, we trained DCGANs with drainage 
network images generated using the Gibbs’ model with two different β values ( 103 and 10−4 ) to represent simple 
and complex drainage network topologies (Fig. 3). The case of β = 103 allows the network to generate in the three 
different directions (left, right, and downward), while the case of β = 10−4 generates the network in the four dif-
ferent directions (left, right, upward, and downward) resulting in more complex pathway to the drainage outlet.

Connectivity‑informed training images. The drainage network is a fully connected network with high-
frequency features consisting of points and lines (Fig. 3). CNNs are generally good at extracting the “texture” 
information from an imagery data, but they are often not good at estimating complex and sparse features such 
as points, lines, and graphs without careful architecture  designs22. Additional information combined with an 
effective neural network architecture that can suitably extract key image patterns should be implemented to 
improve the training efficiency of a CNN-based generation model. Hence, we use explicit transformations of the 
original data format achieving dimension reduction and enhancing the directional connectivity information to 
effectively learn complex high-frequency features of the drainage network images and reproduce the network 
complexity and connectivity. To assess the effectiveness of the proposed approach during the training, we will 
test two different approaches using one with only directional information matrix and the other with both direc-
tional and connectivity information.

Conversion of network image to directional information. In general, pair-wise information such as connectiv-
ity and direction among several locations can be modeled with many different ways such as computational 
 graphs30,31. Accordingly, graph neural networks (GNNs) and graph convolutional networks (GCNs) have been 
actively studied and implemented as fully connected NNs and CNNs of  graphs18,32,33. However, computational 
scalability and performance degradation with deeper NN architectures are still an active area of research for 
GNNs and  GCNs34. In this work, we propose a transformation technique that combines the spatial distribu-
tion of the drainage network, relation modeling in directed acyclic graphs while taking advantage of widely 
used CNN architecture. First, we propose to convert the directional information of the drainage network into 
“ D-matrix” that compactly represents the direction of flow to the outlet of the drainage network as shown in 
Fig. 4. The D-matrix extracts the directional information of the drainage network along each drainage segment 
where the index ‘1’ indicates the direction of flow to the right ‘ → ’ at the node, ‘2’ for the left flow ‘ ← ’ ,‘3’ for the 
downward flow ‘ ↓ ’, and ‘4’ for the upward flow ‘ ↑ ’. It is also straightforward to transform the D-matrix back to the 
network image inversely. Another advantage of using the D-matrix is the dimension reduction to ( 11× 11 ) from 
a size of the drainage network image ( 120× 120 ) since the D-matrix contains the directional information only 
along the drainage path. This can reduce the computational cost for training in DCGANs significantly. However, 
this D-matrix may not allow DCGANS to learn the crucial spatial structure in the fully connected drainage net-
works. Without accounting for the connectivity between adjacent nodes, each node in the D-matrix allows any 
directions regardless of the direction of the adjacent nodes, which may lead to a low prediction performance of 
DCGANs using only the D-matrix.

Connectivity‑informed directional information. Next, local direction information and associated network con-
nectivity are incorporated for connectivity-informed learning. In particular, constraints on the node direction 
ensuring the network connectivity were implicitly imposed by separating the D-matrix into two or three binary 
matrices (or channels) for each direction so that spatial patterns in each direction are better trained as shown in 
Fig. 5. Specifically, upward direction at each node is first stored in a binary channel matrix (Layer-1) to indicate 
whether there is upward direction at the node as 1 or not as 0. Then left and right directions are stored in the 
second and third binary channel matrices (Layer-2 and Layer-3), respectively in a similar way. If left and right 
directions coexist in both second and third matrices, it represents the downward direction. By doing so, con-
volutional filters in DCGANs will learn the patterns of left and right dominant flow directions and their spatial 

Figure 3.  Drainage Networks generated by Gibbs’ model with (a) β = 103 to generate simple network topology 
to the drainage outlet (down point) and (b) β = 10−4 to generate complex network topology to the drainage 
outlet.
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connectivity from each channel matrix and if those two directions coexist in the two matrices, downward gravity 
direction will be selected. As an example, in a less complex drainage network with dominantly three directional 
flows (indices = 1,2,3) without or with a very low probability of the upward directional flow (index = 4) as shown 
in Fig. 3a, the direction and connectivity information can be decomposed with its binary numbers into two new 
binary matrices with the right-flow dominant area occupied by the indices ‘1’ and ‘3’ (right and downward flow 
directions) as 1 in the first channel matrix and the left-flow dominant area occupied by the indices ‘2’ and ‘3’ (left 
and downward flow directions) as 1 in the second channel matrix (see Layer-2 and Layer-3 in Fig. 5). The two 
new binary matrices then perform an element-wise logical operation to determine the left (‘10’), right (‘01’) or 
downward (‘11’) direction. These two different but overlapping areas explain the key features of spatial network 
patterns which would work as a soft physics constraint to reproduce the fully connected drainage network bet-
ter. This is the most important aspect of the connectivity-informed drainage network method proposed in this 
study; the directional connectivity information is stored as the decomposed binary matrices so that the spatial 
connectivity information can be properly extracted through the deep convolutional networks. Note that for the 
simple drainage network topology, only two layers (Layer-2 and Layer-3 in Fig. 5) for the left, right and down-
ward directions will be needed. Complex drainage network with all four directional flows as shown in Fig. 3b 
will require one more layer (Layer-1) for the additional downward direction. More detailed network with 8 or 16 
directions can use the propose transformation suitably with increasing number of channel matrices.

Experimental cases. To demonstrate the performance of DCGANs with the proposed methods, three cases 
with different training samples were created in this study. In Case 1, the drainage network from the Gibbs’ model 
with a size of 120× 120 images was used for training DCGANs. The generator created the same size of the drain-
age network images which were fed into the discriminator as described previously in the “Methodology” section. 
In Case 2, the D-matrix data corresponding to the drainage network images used in Case 1 was used for training 
DCGANs. Note that DCGANs were trained to generate the D-matrix of a size of 11× 11 image. In Case 3, the 
connectivity-informed D-matrices were used as the training samples. D-matrices with 2 (or 3) binary layers of a 
size of 11× 11× 2 (or 3) channel images were generated in this case. The generated D-matrices in Cases 2 and 3 
were transformed back to the corresponding drainage network and then compared with the drainage networks 

Figure 4.  Drainage network images and the corresponding D-matrix for (a) β = 103 and (b) β = 10−4 . The 
drainage network images (size of 120× 120 pixels) were converted into the D-matrices (size of 11× 11 ) which 
have the directional information only at the node.
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generated in Case 1. Subcases 1 and 2 of each Case (e.g., Cases i-1 and i-2 where i=1,2,3) represent the drainage 
network samples from the Gibbs’ model with β = 103 (Case i-1) and β = 10−4 (Case i-2), respectively. Details 
of training samples used in each case are provided in Table 2.

Results and discussion
Training results. In this study, DCGANs were trained with three different types of training samples, i.e., 
120× 120 images (Case 1), 11× 11 D-matrix (Case 2), and 11× 11 with 2 or 3 layers of D-matrices (Case 3) as 
in Table 2. The shape (size) of the training sample affects the architecture and training of DCGANs. Depending 
on the size of the training sample, the size of the first reshaped tensor right after the Fully Connected Net in the 
Generator in the Fig. 1 or the number of layers and filters of CNNs should be adjusted in DCGANs. To compare 
the training results for the different training samples (Table 1) consistently, we set the size of the reshaped tensor 
to be scaled without changing other architectural parameters of DCGANs. For the comparison of the training 
results, the loss values of the generator G ( JG ; red line) and the discriminator ( JD ; blue line) with the accuracy of 
the D model (green line) are compared in Fig. 6. The accuracy of the D model represents the probability of the D 

Figure 5.  Conversion of the D-matrix into the connectivity-informed D-matrix. Constraints of the directional 
information on connectivity were achieved by separating the D-matrix into several layers of binary matrices for 
the directional information to provide physics-informed constraints between different directions.
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models for recognizing the real sample (i.e., training sample) and rejecting the generated sample correctly. The 
moving average over 1,000 epochs were calculated to smooth the oscillating patterns of the loss values.

After some initial epochs in all loss graphs of Fig. 6, it is shown that the loss function JD (blue line) decreases 
while JG (red line) increases in order to seek an equilibrium between the model G and D. In GANs, both G and 
D models were trained to minimize their loss functions in Eqs. 2 and 2 and due to their adversarial relationship, 
the G model learns indirectly only through the interaction with the D model for the training samples, leading to 
a typical convergence behavior as in Fig. 6. It is worth noting that in initial epochs of the training, the D model 
is not trained enough for distinguishing the real sample from the generated sample by the G model; JD is higher 
than JG , and the accuracy (green line) is approximately between 30% and 70%. After initial epochs of the imma-
ture training, JD tends to decrease and the accuracy increases, i.e., the D model gets smarter and the G model is 
trained gradually following the updated D model with a deceiving ratio. This fine-tuning process makes the G 
model more sophisticated and robust to reproduce plausible drainage networks. Overall, the D model minimizes 
the loss value more than the G model and successfully rejects generated samples with high confidence as the 
number of epochs increases.

In Case 1 with the drainage network images as the training sample, the initial number of epochs for the 
immature training is small and the D model does not get improved (i.e., the loss value does not decrease) with 
increasing the number of epochs. In particular, in Case 1-1 (dotted line in Fig. 6a), DCGANs’ training was 
stopped due to unstable training at   60,000 epochs due to the gradient vanishing problem. In Case 2 using the 
D-matrix (dashed line in Fig. 6) alone, the initial number of epochs corresponding to the immature training 
is less than Case 1, while the loss value of the D model slowly decreases with increasing the accuracy ( ∼ 70% 
and 80% for Cases 2-1 and 2-2, respectively) as epochs increase. Case 3 (solid line in Fig. 6) using the proposed 

Table 2.  Training samples used in each case: (Case 1) the drainage network images from Gibbs’ model, (Case 
2) their corresponding D-matrix, and (Case 3) connectivity-informed D-matrices.

Subcase Gibbs’ model Type of training samples Size

Case 1
1 β = 103

Drainage Image 120× 120
2 β = 10−4

Case 2
1 β = 103

D-matrix 11× 11
2 β = 10−4

Case 3
1 β = 103 D-matrix with 2 layers 11× 11× 2

2 β = 10−4 D-matrix with 3 layers 11× 11× 3

Figure 6.  The change of loss values of the generator (G model) and the discriminator (D model) and accuracy 
of the discriminator over epochs for (a) Subcase 1 (Case 1-1, Case 2-1, Case 3-1), (b) Subcase 2 (Case 1-2, 2-2, 
3-2). Note that Subcase 1 is with the less complex network and Subcase 2 with the more complex network (see 
Fig. 3).
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connectivity-informed D-matrices has relatively longer initial epochs of the immature training and the loss value 
of the D model decreases lower than other cases with higher accuracy ( ∼ 80% and 95% for Cases 3-1 and 3-2, 
respectively) as epochs increase. Those results indicate that with the proposed connectivity-informed approach, 
the G models can be better trained through the improved D models and longer immature training may result 
from the process of fine-tuning parameters to extract important network properties.

Drainage network generation. Network connectivity. Since the drainage networks are fully connected 
networks, it is important not only to generate the similar structure of the drainage network in a shape, but also to 
reproduce the connectivity of the drainage network. By fully connected network, we mean here that the network 
is acyclic and every node except outlet nodes have at least one downstream node. To evaluate the performance 
on reproducing the full connectivity of the drainage network in each case, the number of fully connected drain-
age networks among the generated 10,000 drainage network samples were measured in Table 3. A subset of 
generated drainage network samples are presented in Fig. 7.

For Subcase 1 (Case 1-1, 2-1, 3-1), Table 3 shows that the percentage of fully connected drainage networks 
in Case 1-1 becomes 57.0% at 50,000 epochs and that in Case 2-1 increases to 88.9%. A smaller size of the data 
set by dimension reduction in Case 2-1 helps the training faster with better performance given the DCGANs 
architecture. Interestingly, Case 2-1 trained with the D-matrix alone provides fewer number of fully connected 
networks (19.5%) than Case 1-1 (35.7%) in the early epochs of 10,000, indicating that the connectivity structure 
in the original set is slowly learned with the D-matrix. On the other hand, Case 3-1 trained with the proposed 
connectivity-informed D-matrices provides a large number of fully connected drainage networks (92.6%) even 
at the early epochs of 10,000, highlighting the effectiveness of our proposed approach. By providing spatial 
directional information into separate data channels during the training, the requirements of the fully connected 
network are implicitly enforced and better captured in the trained models.

Subcase 2 (Case 1-2, 2-2, 3-2) with more complex networks generated a much smaller number of fully con-
nected drainage networks than Subcase 1 with less complex networks. The drainage network ( β = 10−4 ) of 
Subcase 2 exhibits a more complicated connection pathway along the middle flow path than the less complex 
network ( β = 103 ) of Subcase 1 (Fig. 3), resulting in much less number of the fully connected drainage network 
in the generation process. As a result, Case 1-2 trained with the network images and Case 2-2 with D-matrices 
alone generated less than 1% of fully connected networks in all training epochs. However, in the previous loss 
function analysis (Fig. 6b) both D and G model were trained seemingly well and the accuracy of the D model 
increases as epochs increase. In fact, both Cases were trained to generate the drainage network with similar 
shapes and patterns rather than their connectivity as shown in Fig. 7. These results demonstrate that the drainage 
network image (Case 1-2) and the D-matrix (Case 2-2) alone are not enough for DCGANs to suitably reproduce 
the connectivity between neighboring nodes especially in the relatively complex drainage network. Additional 
information enforcing the network connectivity should be incorporated for river network generation.

Trained with the proposed connectivity-informed D-matrices (Case 3), DCGANs successfully generated 
a number of fully connected drainage network samples with relatively large complexity. Case 3-2 shows the 
increase in the fully connected networks from several hundreds to 1,647 over the training. While the chance of 
generating fully connected network is still low (16.4%), Figure 7 clearly shows that a majority of fully connected 
networks in Case 3-2 has the connected pathway to the network outlet, while the network connectivity in Cases 
1-2 and 2-2 are partly broken or short circuited with Case 2-2 being fragmented into small clusters. Practically, 
with the proposed approach, one may generate as many samples as possible and screen them for generating the 
required number of fully-connected network samples. These results demonstrate that the proposed connectivity-
informed approach allows DCGANs to learn key physical features (e.g., connection pathway(s)) inherent in the 
original drainage network samples suitably and better reproduce the fully connected drainage networks than 
the other two cases.

Evaluation of network similarity via stochastic analysis. In this subsection, we perform a stochastic analysis of 
surrogate runoff response at the outlet of the network for evaluating the network complexity and similarity of 

Table 3.  Drainage network generation performance on connectivity reproduction and computational training 
efficiency. The number of fully connected drainage networks among the generated 10,000 drainage network 
samples were measured at four different numbers of epochs. 1NVIDIA K80 GPUs, Intel Xeon E5-2686 v4 62 G 
RAM. 2NVIDIA GTX 1050 GPUs, Intel i7-7700HQ 32 G RAM.

# of the fully connected 
drainage networks at the 
epoch of Averaged time (s)

1e4 2e4 5e4 10e4 Training per 10 epoch1 Generating 10,000 samples2

Case 1-1 3566 4163 5697 – 7.47 43.34

Case 2-1 1954 4865 8885 8690 1.35 21.12

Case 3-1 9262 9216 9134 9123 1.25 15.03

Case 1-2 50 49 68 54 7.67 43.43

Case 2-2 0 0 2 0 1.41 22.38

Case 3-2 338 573 1067 1647 1.28 28.26
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the generated drainage networks. It is often difficult to visually distinguish one from the other in many natural 
and man-made drainage networks and determine their network complexity. Alternatively, the similarity of the 
drainage networks can be evaluated based on the runoff at the outlet. Here we use the width function, which 
has been widely used as a gauge of the shape of the catchment to compare the properties of the channel network 
like the drainage network at various grid  resolutions35–37. The width function describes the flow path from each 
pixel to the outlet, and consequently it depends on the geometric position of the nodes, the area drained by each 
node, and the distance from each node to the outlet in drainage  networks37. The width function can capture the 
essential features of the drainage network’s response so that the quality of generated networks by DCGANs is 
evaluated compared to the original networks simulated by the Gibbs’ model. The width function and the area 
function can be differently defined based on  channelization38. In this study, width function was obtained by 
counting the number of grid points given a distance from the outlet as

Figure 7.  Comparison of generated drainage networks for six cases at 10,000, 50,000 and 100,000 epochs. Note 
that Subcase 1 (Case 1-1, 2-1, 3-1) is with the less complex network and Subcase 2 (Case 1-2, 2-2, 3-2) with the 
more complex network. Cases 1-2 and 2-2 rarely generated the fully connected drainage networks although 
the training results (Fig. 6) showed that both D and G models were trained and the accuracy of the D model 
increases as epochs increase.
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where, ξ is the distance from the outlet along the drainage path, and s(xi) is the number of grid points drained 
by each node xi with a distance ξ.

We compared the width functions obtained from Gibbs’ model and 1,000 fully connected networks generated 
for each Case as shown in Fig. 8; the width function for Case 2-2 was obtained from only 20 generated networks 
because the DCGANs in Case 2-2 hardly generated the fully connected networks. The width functions from 
Gibbs’ model with β = 103 (Subcase 1) shows a higher peak and shorter flow travel stance in the runoff response. 
The width functions from Gibbs’ model with β = 10−4 (Subcase 2) has a lower peak and long travel distance due 
to the complex network topology of Subcase 2. Although individual width functions (gray lines) of the generated 
fully connected networks differ slightly from the original of the Gibbs’ model, the averaged width functions (solid 
black lines in Fig. 8) show that the Nash-Sutcliffe efficiencies (NSE) was above 0.9 in Subcase 2 and close to 1 in 
Subcase 1. This means that the fully connected drainage networks generated by DCGANs have various drainage 
paths to the outlet with almost same complexity which has identical responses to the original networks by Gibbs’ 
model. In particular, Case 3 not only generated the largest number of fully connected network with various 
drainage paths to the outlet, but also generated networks with most similar complexity to the original drainage 
network. In addition, this runoff test demonstrates that DCGAN models used in this work do not experience 
mode collapse problems that may not capture the stochastic nature of drainage networks, contrast to our results.

Efficiency. The stochastic network model takes a relatively long time to generate individual drainage net-
work because of its probabilistic approach for all flow directions at each nodes of the network. Specifically, the 
computation cost increases exponentially when generating more complex and bigger network. Figure 9 shows 
the time spent for generating one drainage network with a size of n× n using Gibbs’ model with β = 10−4 and 
the generation time of one network indeed increases exponentially with the size.

On the other hand, DCGANs, once trained, could generate very quickly a large number of drainage networks 
with low computational costs. The average time for DCGANs to generate 10,000 drainage networks were all less 
than 1 min as shown in Table 3 on a computer equipped with NVIDIA GTX 1050 GPUs and Intel i7-7700HQ 32 
G RAM. Compared to the stochastic network Gibbs’ model, network generation time for statistical evaluation 
could be significantly reduced by DCGANs. In training DCGANs, the proposed method using connectivity-
informed D-matrices could reduce the number of training epochs required to generate fully connected networks 
as shown before, and increase the training speed of DCGANs due to its compact representation of network 
complexity and connectivity with a smaller size than the original network images (Table 3).

Conclusions
In this study, DCGANs were applied to quickly reproduce many drainage networks from the drainage network 
samples already generated by the stochastic network generation model, Gibb’s model. DCGANs have the promis-
ing potential for quickly generating similar network topology, as many previous studies have already shown that 
it could generate similar images and patterns very well. However, DCGANs trained with the drainage network 
image did not properly reproduce the network connectivity inherent in the drainage network due to the complex 
features and patterns in the drainage network images. The additional information of the connectivity via the 
drainage network sample was required for DCGANs to effectively learn and reproduce the physical information 
such as network connectivity and complexity in the original drainage network samples. Hence, the DCGANs 
trained with original drainage network images were compared with two other cases where two different types 
of training samples were constructed with the directional information only ( D-matrix) and the connectivity-
informed directional information (binary matrices layers).

D-matrix was more effective as a training sample than the drainage network images to reproduce the con-
nectivity in the less complex drainage network topology where many connection pathways to the central drainage 
path were possible. However, for the relatively complex drainage network samples, both DCGANs trained with 
D-matrix and network images rarely reproduce the fully connected drainage networks. This poor performance 
was attributed to the fact that both drainage network images and D-matrix do not explicitly exhibit the spatial 
structural information such as the directional connectivity in the drainage network samples and DCGANs 
would require more training with wider and deeper neural network architectures. Without accounting for the 
connectivity between adjacent pixels (or nodes in the D-matrix), each pixel (node) in the network images ( D
-matrix) can take any values (directions) regardless of the value (direction) of the adjacent pixels(nodes) (i.e., 
high-frequency feature). Our novel connectivity-informed method in the form of binary matrix layers performed 
much better than the other two cases, indicating that both directional information and their constraints on con-
nectivity were embedded into two or three binary matrices layers (connectivity-informed D-matrix) so that the 
connectivity constraints between the directions on each node in the drainage network can be optimally stored. 
In training DCGANs, the proposed connectivity-informed D-matrix could train DCGANs more effectively in 
term of accuracy and computational cost, which can be used to quickly generate many drainage networks with 
better representation of the network complexity and connectivity of the original drainage network sample as 
shown in the width function analysis in this work.

This study highlights that the generation performance of DCGANs to reproduce the structural features of 
images can be improved by transforming the physical information of the images (i.e., high-frequency features 
and connectivity between the neighboring nodes) into the efficient binary matrix layers. Since the complex 
and sparse features are common in many earth and material sciences such as fractures, defects, connected 
pathways in porous media (e.g., pore network), and engineered features for high conductive pathways, the 

(4)W(ξ) =

n
∑

i=1

s(xi)
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Figure 8.  Comparison of width functions of the generated 1000 fully connected networks from (a) Gibbs’ 
model with β = 103 (Subcase 1); (b) Gibbs’ model with β = 10−4 (Subcase 2). The width function for Case 2-2 
(Case 2: β = 10−4 ) was obtained from only 20 generated networks because Case 2-2 hardly generated the fully 
connected networks.
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connectivity-informed method developed in this study can be applicable for generating these challenging multi-
dimensional features in a computationally efficient way with relatively high statistical accuracy. In addition, 
hyperparameter optimization of DCGANs with a various size of training images containing the physics-informed 
network representation needs to be evaluated to explore the possibility of DCGANs for better convergence rate 
in the future.

Code availability
Python scripts used in this paper can be found in https ://githu b.com/saint -kim/River DCGAN s.
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