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Revisiting cosmic microwave 
background radiation using 
blackbody radiation inversion
Koustav Konar, Kingshuk Bose & R. K. Paul*

Blackbody radiation inversion is a mathematical process for the determination of probability 
distribution of temperature from measured radiated power spectrum. In this paper a simple and stable 
blackbody radiation inversion is achieved by using an analytical function with three determinable 
parameters for temperature distribution. This inversion technique is used to invert the blackbody 
radiation field of the cosmic microwave background, the remnant radiation of the hot big bang, to 
infer the temperature distribution of the generating medium. The salient features of this distribution 
are investigated and analysis of this distribution predicts the presence of distortion in the cosmic 
microwave background spectrum.

A blackbody is an ideal object which can absorb all of the incident radiation of all frequency. The total power 
radiated per unit frequency per unit solid angle by a unit area of a blackbody emitter can be expressed by Planck’s 
 law1,2

 where ν is frequency, T is the absolute temperature, h is Planck’s constant, k is Boltzmann’s constant and c is the 
speed of light. Usually telescopes are used to measure this power spectrum of any celestial object. But due to its 
finite field of view a telescope can observe a small portion of the sky at any time. These small portions consist of 
different blackbody radiators with different temperature T and each of them are in thermal equilibrium. When 
a collection of blackbodies with probability distribution α(T) and temperature T is considered, the total radiated 
power per unit area is given by the integration over the distribution  as3

 where W(ν) is the radiated power per unit frequency per unit area and per unit solid angle and α(T) is the prob-
ability distribution of temperature of the blackbody. The dimension of α(T) is 1K.

The blackbody radiation inversion problem aims to find the probability distribution of temperature from the 
radiated power spectrum.

In practice, a set of discrete values of W(ν) are available experimentally. By using this set of data, α(T) can be 
calculated by blackbody inversion method.

For mathematical convenience, a dimensionless parameter G(ν) = c
2

2hν3
 W(ν) is used.

Equation (3) is the first kind of Fredholm integral equation and is an ill-posed problem. Bojarski was the 
first to propose a solution to this problem using Laplace transform with an iterative  process4. Since then various 
other methods have been proposed for solving this problem like Tikonov regularization  method5, universal 
function set  method6, Mellin transform  method7, modified Mobius inverse  formula8, variational expectation 
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maximization  method9, maximum entropy  method10, regularised GMRES  method11. There are also several other 
methods available in literature as solutions to this  problem12–15.

However, the required number of input data is large in the existing method. The number of data points 
required for successful inversion is 50  in6, 50  in11 and 32  in15. In this paper, a simple and robust method for 
blackbody radiation inversion is developed which uses 3 input data. The size of programming is also small in 
comparison to the previous methods. The present method for blackbody radiation inversion reduces the com-
plexity of the overall program significantly.

This method is applied to obtain the probability distribution of temperature of the universe using cosmic 
microwave background radiation (CMB) from COBE, FIRAS  data16. “Method and validation” section describes 
the method and its validation and “Cosmic microwave background radiation” section describes the application 
of this method in CMB radiation.

Method and validation
Equation (3) takes all possible values of temperature into consideration; hence the limit runs from zero to infin-
ity. Here it is assumed that the temperature of black body radiators in a collection of blackbodies vary from  T1 
to  T2 and they have a finite frequency range of ν. Therefore, Eq. (3) can be written as

Using change of variable T = T1 + (T2 –  T1)t, Eq. (4)  becomes15

And a(t) = α(T1 + (T2 –  T1) t).
The required interval of a(t) is [0,1].
Equation (6) informs that the problem of solving α(T) is equivalent to solving a(t).
In the present article, an analytical function represented by Eq. (8) is proposed as a(t).

Equation (8) can be expanded as

In this method we are trying to obtain the probability distribution of temperature. The nature of the prob-
ability distribution is expected to be close to gaussian. So, Eq. (8) is chosen in such a way that for large vales 
of  k3, the e−k23t part in the sine hyperbolic function is very small. When  k2 ≈ k23 , Eq. (8) represents a gaussian 
distribution provided the value of  k1 is small.

The lower and upper limits of temperatures  (T1,  T2) are taken as 1 K and 6 K respectively. The motive behind 
this choice is that we will use this method to analyse the CMB spectrum and it closely resembles a blackbody 
radiation at a temperature range similar to  T1 and  T2. Then, t = T−1

5  or,

where  k1,  k2 and  k3 are three determinable parameters such that the interval of α(t) is [0,1] and T is absolute 
temperature.

The data have been simulated by using model function Eq. (11),

Equation (11) is used in Eq. (4) in place of α(T) and the values of G(ν) are calculated. This process is repeated 
with different frequencies ν . These simulated data are put in the left-hand side of Eq. (6). Three of such equations 
for three different values of frequency ν are obtained. These three equations with three unknowns  k1,  k2 and  k3 
are then solved. Thus, the function α(T) is obtained with these three parameters.

Taking b(T) = e−
(T−3.5)2

1  , we calculate α(T) for three different frequencies of 5 ×  1011 Hz, 6 ×  1011 Hz and 7 × 
 1011 Hz. Since we will be using this method in the CMB spectrum, the range of frequency is chosen such a way 
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that it resembles the frequencies in the data we  have16. It is observed in Fig. 1a that we have reconstructed the 
temperature distribution that resembles the model temperature distribution. The difference between b(T) and 
α(T) is expressed as  d1(T) = b(T) − α(T) and it is plotted in Fig. 1b against absolute temperature.

The �I
I  value obtained from Fig. 1b is 0.0119 for T = 3 K. Here I is the value of b(T) and �I is the value of 

 d1(T) for a specific temperature T. The method is sensitive to the chosen frequency. To quantify this sensitivity, 
we choose sets of frequencies as i, where i includes three frequencies with ν1 = i ×  1011 Hz, ν2 = (i + 1)×  1011 Hz 
and ν3 = (i + 2)×  1011 Hz. This set is then used in Eq. (5) to calculate α(T). The standard deviation from the model 
function is calculated by Eq. (12)

where N is the number of data used for the calculation of standard deviation and we have taken N = 51.
It is inferred from Fig. 2 that the standard deviation is less for the sets of i = 1, 2, 5 and 6. Therefore, it is 

expected to use either of these set of frequencies. All the values of  k1,  k2 and  k3 that are calculated during the 
validation, are listed in Table 1.

Cosmic microwave background radiation
Cosmic microwave background radiation is the afterglow as predicted by the hot big bang model. The presence 
of such radiation in the universe was first suggested in the late  1940s17. It was only in 1965 when a signal was first 
detected which was reported to be coming from every direction of the observed  sky18. This was the first detection 
of the radiation which later became to be known as cosmic microwave background radiation. The study of CMB 
can unravel the mysteries of the initial stage of the universe and its evolution for the last 13.7 billion years. Right 
after its first detection a lot of work has been done on  CMB19–25.

The first detection showed the radiation to be isotropic, i.e. similar in every direction. But subsequent studies 
showed that the radiation is in fact anisotropic in  nature26,27. More recent studies focus on the different types of 
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Figure 1.  (a) Model function b(T) and reconstructed function α(T) are plotted against absolute temperature. 
Here b(T) = e−

(T−3.5)2

1  and three frequencies of 5 ×  1011 Hz, 6 ×  1011 Hz and 7 ×  1011 Hz are used to calculate α(T). 
(b) The difference between b(T) and α(T) ,  d1(T) = b(T) − α(T) is plotted against absolute temperature.
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distortions in the CMB  spectrum28–32. It suggests that the radiation is not of a blackbody with single temperature, 
rather it is a superposition of different blackbodies that are at different temperatures. When several blackbodies of 
different temperatures are mixed together it creates y and µ type  distortions32,33. In this paper we have calculated 
the distortions present in the CMB spectrum.

The blackbody radiation inversion (BRI), as discussed in “Method and validation” section, is applied to the 
cosmic microwave background radiation for obtaining the temperature of the universe and the probability 
distribution of temperature. We have used the data of COBE FIRAS to calculate  intensity16. For the input of the 
BRI, the spectral irradiance I(λ) is transformed to the power spectrum W(ν) according to the relation

where λ (= c
ν
 ) is the wavelength. For each value of W(ν) corresponding to a particular frequency ν, we have an 

integral equation in Eq. (6). Three of such equations are taken to calculate  k1,  k2 and  k3 of Eq. (10). Table 2 shows 
the values of  k1,  k2 and  k3 that we have calculated.

(13)W(ν)dν = − I(�)d�

Figure 2.  The standard deviation is plotted against the chosen set of frequencies. We have used different profiles 
of b(T) by varying δ and γ in Eq. (10). For (a) δ = 3, (b) δ = 3.5 and (c) δ = 4. For different γ values, the standard 
deviation differs slightly.

Table 1.  It lists all the values of  k1,  k2 and  k3 obtained during the validation process. In this table (a) δ = 3, (b) 
δ = 3.5 and in (c) δ = 4.0 and the value of γ is varied as 0.8, 1 and 1.2 for each δ

Frequency set ( ×  1011 Hz)

γ = 0.8 γ = 1.0 γ = 1.2

k1 k2 k3 k1 k2 k3 k1 k2 k3

a

1,2,3 0.01 33.395 5.162 0.018 29.143 4.859 8.337 × 10−3 31.362 5.154

2,3,4 0.278 17.598 3.416 0.623 13.185 2.822 1.86 8.857 1.928

3,4,5 4.019 × 10−5 53.165 6.927 2.705 × 10−4 42.067 6.219 1.636 × 10−3 33.049 5.527

4,5,6 0.012 31.637 5.041 0.039 24.836 4.451 0.072 20.788 4.076

5,6,7 0.014 31.025 4.974 0.042 24.58 4.418 0.071 20.843 4.084

6,7,8 0.015 30.969 4.968 0.025 26.063 4.614 0.068 20.955 4.101

b

1,2,3 0.013 21.065 4.51 3.078 × 10−3 26.149 5.107 0.015 19.573 4.418

2,3,4 8.33 × 10−14 104.96 10.70 2.466 × 10−6 49.555 7.24 0.017 19.225 4.372

3,4,5 0.023 21.621 4.436 8.552 6.04 0.93 9.337 × 10−8 52.753 7.752

4,5,6 1.009 × 10−3 30.631 5.522 0.025 18.011 4.169 0.498 11.536 2.941

5,6,7 6.54 × 10−4 31.802 5.652 4.96 × 10−3 24.391 4.92 0.013 20.501 4.515

6,7,8 8.707 × 10−4 31.073 5.569 3.306 × 10−3 25.358 5.048 9.973 × 10−3 21.035 4.595

c

1,2,3 6.062 × 10−4 22.673 5.183 6.328 × 10−5 28.607 5.876 5.495 × 10−4 22.595 5.223

2,3,4 9.062 × 10−3 15.737 4.24 0.017 14.432 4.041 1.147 × 10−3 20.773 4.991

3,4,5 3.599 × 10−3 18.542 4.618 0.041 12.534 3.693 6.771 × 10−4 21.983 5.151

4,5,6 5.763 5.339 1.172 0.017 16.119 4.189 2.119 × 10−3 19.521 4.809

5,6,7 1.714 × 10−5 32.129 6.223 2.976 × 10−4 24.619 5.428 1.371 × 10−3 20.41 4.938

6,7,8 3.676 × 10−5 30.556 6.042 2.417 × 10−4 25.033 5.482 9.158 × 10−4 21.192 5.052
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We have taken the average of these probability distribution functions as M(T),

Since M(T) is a probability distribution, it should be normalised for the temperature range  T1 = 1 K to  T2 = 6 K. 
We normalise M(T) with normalisation constant 0.982 ( 1

∫61 M(T)dT
 = 0.982). α(T) is the normalised probability 

distribution of temperature.

The moments of different order of α(T) are calculated by using Eq. (16)

where n is the order of the moment and µ is the mean value.
First order moment or mean value is calculated as

The mean temperature is 2.69 K, which is close to the average value 2.725 K23.
Second order moment or variance is calculated as

So, standard deviation

σ indicates the uncertainty in temperature which is 0.195 K23.
Third order standardised moment or Skewness is calculated as

An ideal normal distribution has a skewness of 0. We get a positive skewness which describes its deviation 
from ideal behaviour. A positive skewness suggests that the tail of the distribution right to the mean is more 
extended than the left-hand side  tail34,35.

Fourth order standardised moment about mean

Kurtosis represents the peakedness and tailedness of a distribution. An ideal normal distribution has a kur-
tosis of 3, so 3 is subtracted from β2 to measure the deviation from ideal normal behaviour. In our calculation 
γ2 (= β2 − 3) yields 0.0563, a positive number. A distribution with positive kurtosis is called Leptokurtic. A 

(14)M(T) =
a1(T)+ a2(T)+ a3(T)+ a4(T)

4

(15)α(T) = 0.982×M(T)

(16)nth Moment =
6
∫
1
(T− µ)nα(T)dT

(17)µ =
6

∫

1

T× α(T)dT ∼= 2.69

(18)σ2 =
6
∫
1
(T− µ)2α(T)dT = 0.038

(19)σ =
√
σ2 = 0.195

(20)µ3 =
6

∫

1

(T− µ)3α(T)dT = 8.303× 10−4

(21)β3 =
µ3

σ3
= 1.118× 10−3

(22)µ4 =
6
∫
1
(t− µ)4α(t)dT = 4.429× 10−3

(23)Excess kurtosis γ2 = β2 − 3, where β2 =
µ4

σ4
= 3.056.

Table 2.  k1,  k2 and  k3 values for different probability distribution function are listed. Three wavelengths are 
used to obtain three integral equations. The probability distributions are denoted by  a1(T),  a2(T),  a3(T) and 
 a4(T) corresponding to a set of frequency.

Wavelength in µm k1 k2 k3

a1(T) 1049, 1224, 1468 2.299 × 10−16 327.813 14.884

a2(T) 918, 1224, 1468 2.811 × 10−16 331.555 14.909

a3(T) 918, 2451, 1468 2.136 × 10−16 331.808 14.938

a4(T) 1049, 2451, 1468 2.290 × 10−16 324.566 14.846
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positive kurtosis means that the peak of the curve is slightly higher than the normal distribution while the tail 
and shoulder portion is slightly pushed towards the mean  value34,35.

From the standard deviation σ and mean value µ, a Gaussian function ( 1
σ
√
2π

e
− (x−µ)2

2σ2  ) is constructed in 
Eq. (24).

 α(T) and s(T) are plotted against absolute temperature in Fig. 3a. And the difference between α(T) and s(T), 
expressed as  d2(T) = α(T) – s(T) is plotted against absolute temperature in Fig. 3b.

A deviation from the ideal gaussian behaviour is observed. The �I
I  value obtained from Fig. 3b is 0.0194 for 

T = 2.5 K. Here I is the value of s(T) and �I is the value of  d2(T) for a specific temperature T. The deviation in 
Fig. 3b (0.0194) is larger than the deviation in Fig. 1b (0.0119). So, this deviation in Fig. 3b is not due to the 
error in the inversion method we have used. A small deviation from ideal Gaussian behaviour is also predicted 
when non-extensive case is  considered36. The temperature distribution of CMB is found to be primarily between 
2 and 3.5 K.

To verify the accuracy of our method to obtain probability distribution of temperature, we reconstructed the 
intensity of the radiation by using the calculated α(T) in Eq. (2) for different frequencies ν. W(ν ) is then converted 
to I(λ) by using Eq. (13). Figure 4 displays the overlay of reconstructed data on the original data of COBE FIRAS.

(24)s(T) = 2.044× e−
(T−2.69)2

0.076

Figure 3.  (a) The calculated temperature distribution α(T) and the Gaussian function s(T) are plotted against 
absolute temperature. (b) The difference between α(T) and s(T), expressed as  d2(T) = α(T) – s(T) is plotted 
against absolute temperature.
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The small error bars are not visible in Fig. 4. Hence the values of the intensity and the error are given in Table 3 
for the original and reconstructed data. The order of the error in the reconstructed spectrum (~ 10−13 W/m2 × 
μm × sr) is larger than the error in the original spectrum (~ 10−14 W/m2 × μm × sr). It is evident from Fig. 4 that 
the present method can faithfully reconstruct the original data.

In this paper, the original data of COBE/FIRAS are used as the input in the blackbody radiation inversion 
problem. These data are thus mathematically processed to obtain the distortion of the CMB spectrum. The stand-
ard deviation between the original and reconstructed data is 0.142 ×  10−10 W/m2 × μm × sr or 5.209 ×  10−20 W/
m2 × Hz× sr for the wavelength of 1049 μm. The deviation is the distortion present in the CMB spectrum. The 
spread in the probability distribution of the temperature (Fig. 3a) suggests that there are multiple blackbodies 
with different temperatures ( �T = σ ). Due to this mixing of blackbodies, the original spectrum becomes dis-
torted. So, the calculated deviation is interpreted as the distortion of the CMB spectrum.

The COBE data shows a spectrum similar to a perfect  blackbody21. But the possible distortions are limited 
by the maximum sensitivity of the instrument. It has y distortion of |y|< 1.5 ×  10−5 and µ distortion of | µ|< 9.0 × 
 10−521. In our calculation we have obtained the temperature as  Tnew = T [1 + 

(

�T
T

)2
] = 2.704 K for T = 2.69 K and 

�T = 0.195 K. The y and µ distortions are calculated as y = 12
(

�T
T

)2
 ≈  10−3 and µ = 2.8×

(

�T
T

)2
 ≈  10−230.

The present set of data, collected by the COBE/FIRAS satellite is not sensitive enough to detect the distortions 
beyond the  10−5 order. More precise datasets are required to study these distortions. The TRIS, used between 
1996 to 2000, had the limit of µ < 6.0 ×  10−537. A balloon borne instrument ARCADE (Absolute Radiometer 
for Cosmology, Astrophysics, and Diffuse Emission) used in 2006, had the upper limit of µ < 6.0 ×  10−438. Two 
new projects,  PIXIE39 and  PRISM40 aim to find the distortions with  103–104 times better sensitivity than COBE/
FIRAS. PIXIE has �I = 5 ×  10−26 W/m2srHz and detection of |y|= 1 ×  10−8 and | µ|= 5.0 ×  10−8 is possible. PRISM 
is better than PIXIE with �I = 6 ×  10−27 W/m2srHz and sensitive to y and µ distortion of ~ 10−9.

Figure 4.  The obtained probability distribution of temperature is used to reconstruct the intensity of the 
original input data. Both of the intensities are plotted together against wavelength. The error bars are also shown.

Table 3.  The values of original and reconstructed data for intensity are listed. The original and reconstructed 
spectrum uncertainties are also included.

Wavelength (μm)
Original (COBE) 
 (10−10 W/m2 × μm × sr)

Original uncertainty (COBE) 
 (10−10 W/m2 × μm × sr)

Reconstructed 
 (10−10 W/m2 × μm × sr)

Reconstructed uncertainty 
 (10−10 W/m2 × μm × sr)

612 2.49 1.84 × 10−3 2.219 1.3 × 10−2

711 3.9 1.187 × 10−3 3.88 1.85 × 10−2

816 5.11 1.036 × 10−3 5.001 2.1 × 10−2

918 5.82 7.83 × 10−4 5.695 2.1 × 10−2

1049 6.15 3.817 × 10−4 6.239 1.95 × 10−2

1224 5.88 2.022 × 10−4 5.67 1.65 × 10−2

1468 4.92 1.81 × 10−4 4.809 1.15 × 10−2

1835 3.41 1.604 × 10−4 3.297 6.5 × 10−3

2451 1.77 1.099 × 10−4 1.713 3 × 10−3
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The distortions obtained in our calculation are limited by the sensitivity of available measured data. The 
experiments planned in the  future39,40 are expected to provide data with better precision that will help in carrying 
out more precise calculations and lead to a better understanding of CMB.

Discussion
A novel method of blackbody radiation inversion is studied. This technique is then applied to study cosmic 
microwave background radiation and some of its most important features. We have described the deviation 
of the temperature probability distribution from ideal gaussian distribution. The distortion in the spectrum, 
caused due to mixing of blackbodies are mathematically described as well. Our approach is much simpler than 
the existing techniques and the computational bulkiness is significantly reduced. While we can obtain the prob-
ability distribution of the temperature effectively, the present method is not completely general in nature. The 
frequency range needs to be selected to minimise the error in the calculation.

Received: 1 October 2020; Accepted: 17 December 2020
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