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In‑depth blood proteome profiling 
analysis revealed distinct functional 
characteristics of plasma proteins 
between severe and non‑severe 
COVID‑19 patients
Joonho Park1, Hyeyoon Kim1, So Yeon Kim2, Yeonjae Kim3, Jee‑Soo Lee4, Kisoon Dan1, 
Moon‑Woo Seong 4* & Dohyun Han 1*

The severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) has infected over forty million 
patients worldwide. Although most coronavirus disease 2019 (COVID‑19) patients have a good 
prognosis, some develop severe illness. Markers that define disease severity or predict clinical 
outcome need to be urgently developed as the mortality rate in critical cases is approximately 61.5%. 
In the present study, we performed in‑depth proteome profiling of undepleted plasma from eight 
COVID‑19 patients. Quantitative proteomic analysis using the BoxCar method revealed that 91 
out of 1222 quantified proteins were differentially expressed depending on the severity of COVID‑
19. Importantly, we found 76 proteins, previously not reported, which could be novel prognostic 
biomarker candidates. Our plasma proteome signatures captured the host response to SARS‑CoV‑2 
infection, thereby highlighting the role of neutrophil activation, complement activation, platelet 
function, and T cell suppression as well as proinflammatory factors upstream and downstream of 
interleukin‑6, interleukin‑1B, and tumor necrosis factor. Consequently, this study supports the 
development of blood biomarkers and potential therapeutic targets to aid clinical decision‑making 
and subsequently improve prognosis of COVID‑19.

Coronavirus disease 2019 (COVID-19) pandemic is an unprecedented global health threat caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies have reported an astonishing case fatality 
rate of 61.5% for critical cases, increasing sharply with age and in patients with underlying  comorbidities1. The 
severity and increasing number of cases, the medical services face immense pressure, and there is a shortage of 
intensive care resources. To curtail the pandemic and return to normalcy, it is essential to find markers that define 
the disease severity, have prognostic value, or predict a specific phase of the disease. Unfortunately, no prognos-
tic biomarkers are presently available that can distinguish patients requiring immediate medical attention and 
estimate their associated mortality rates. Nevertheless, Yan et al.2 reported that blood-borne marker panels can 
identify the mortality rate in individual patients more than 10 days in advance with > 90% accuracy. Moreover, 
they suggested that tissue damage markers can be leveraged to predict COVID-19 outcomes.

Mass spectrometry (MS)-based proteomics may potentially be used as an ideal technology in this situation 
as it can quickly deliver substantial amounts of clinical and biological information from blood plasma or serum 
in an untargeted  manner3,4. Furthermore, these MS-based proteomic workflows for biomarker discovery and 
profiling are well  established3. Though a few studies to date have applied MS-based proteomics to the blood of 
COVID-19 patients, no protein has been demonstrated to be a promising marker  yet5–7. Therefore, more prot-
eomic information from a variety of cohorts is needed to clarify the in-depth COVID-19 blood proteome and 
aid development of prognostic or predictive protein markers.
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In the present study, we performed in-depth proteome profiling of undepleted plasma samples using the 
BoxCar acquisition  method8 from an exploratory cohort comprising 8 COVID-19 patients to identify candidate 
biomarkers for evaluating the disease severity.

Results and discussion
Label‑free quantification of plasma samples. Here, we report the in-depth plasma proteome data 
of the Korean COVID-19 cohort. Our dataset was generated using the plasma samples collected from eight 
COVID-19 positively confirmed patients, including three non-severe (mild) and five severe cases (Supplemen-
tary Table S1). The plasma proteome was analyzed via ultra-high-resolution LC–MS and the proteins whose 
expression revealed significant differences were discovered (Fig. 1). We provided this in-depth proteome as a 
cornerstone to the communities doing research on COVID-19.

To increase the proteome depth, we performed label-free quantification based on BoxCar acquisition using 
a small amount (2 µl) of plasma sample without high-abundant protein depletion. In total, 1639 proteins were 
identified at the protein FDR 1% level. Notably, we identified 22 proteins with unreviewed entries only. An aver-
age of 1064 proteins were quantified in the individual samples (Fig. 2a). Our dataset also included 56 quantifiable 
FDA-approved biomarkers (Supplementary Table S2). The details of the identified and quantified proteins are 
listed in Supplementary Table S2. To assess the reproducibility of our proteomics workflow, a sample generated by 
pooling equal volumes of all samples was repeatedly analyzed in an untargeted manner (BoxCar), and the vari-
ability of protein abundances was examined. Calculating the correlation using iBAQ intensities, we observed tight 
correlation between each replicate (mean Pearson correlation coefficient = 0.993) (Supplementary Figure S1). To 
identify the differences within and between groups, the protein profiles were plotted as multi-scatter plots, and the 
Pearson correlation coefficient (PCC) value between proteome pairs was calculated (Supplementary Figure S2). 
The intra-group correlation displayed average PCCs of 0.82 and 0.80 in mild and severe groups, respectively. The 
average PCC value of inter-group between the mild and severe was 0.78. Presumably, the differences between 
groups were slightly larger than those within groups. The overall mass spectrometric intensities presented no 
significant differences between all samples, although the plasma samples were prepared based on equal volume 
and not on the amount of plasma protein (Supplementary Figure S3). Interestingly, principal component analysis 
(PCA) performed using all identified plasma proteomes presented clear separation of the samples, indicating that 
the plasma protein expression was considerably altered based on the clinical symptoms (Fig. 2b).

After considering the proteins quantified by at least 50% in either the mild or severe COVID-19 groups, 1222 
proteins were subjected to statistical analysis. Statistical tests with stringent criteria (Student’s t-test, p value < 0.05, 
and |fold-change|> 1.5) revealed that expression of 91 proteins significantly differed between mild and severe 
groups (Fig. 2c). These 91 proteins were regarded as DEPs and are summarized in Supplementary Table S3.

Comparison with previous studies. After the outbreak of COVID-19, two articles that intensively 
explored proteomics to discover blood biomarkers for COVID-19 have been published. Shen et al. analyzed 
the serum proteome and metabolome in a Chinese cohort (N = 118), suggesting a set of proteins as serum bio-
markers for classifying COVID-19  patients6. Messner et  al. developed a high-throughput Data independent 
acquisition (DIA)-based proteomic method and reported numerous significant proteins that could distinguish 
the COVID-19 patient from the healthy  control5. To verify the comprehensiveness of the proteome, our protein 
identifications and DEPs were compared with those of the previously published articles. Due to the different 
technologies used, it was difficult to directly compare our identified proteins with those of other studies. Thus, 
we converted the accession numbers in the database to gene symbols and removed the redundancy of gene 
names resulting from multiple protein isoforms in each proteome set (Supplementary Table S4). The compara-
tive analysis revealed that our proteome data covered most of the previous datasets, overlapping approximately 
71% and 72% of the proteome from Messner et al.’s dataset and Shen et al.’s dataset, respectively (Fig. 3a). When 
identified peptides were compared, approximately 69.5% of peptides identified in Shen et al.’s dataset overlapped 
with those identified in our study (Supplementary Figure S4). Despite the high overlap in identification results, 
only 7 DEPs (IGFBP3, ITIH4, SERPINA3, ORM1, VWF, SERPING1, and LBP) were commonly identified 
between our study and Shen et al.’s study (Fig. 3b). Of note, all proteins except IGFBP3 showed identical trends 
of expression in both studies. With identical trends in different patient cohorts, these 6 proteins may constitute 
a reliable blood marker for classification of COVID-19.

Interestingly, although proteins such as C-reactive protein (CRP), serum amyloid A-1 (SAA1), protein 
Z-dependent protease inhibitor (SERPINA10), and albumin (ALB) were previously reported as promising marker 
candidates, these proteins could not fit into our criteria for differential expression. Presumably, the temporal gap 
between the blood sample collection time and the first symptom may be a reason for this disparity. The blood 
samples in our cohort were collected approximately 3 weeks after the first symptom, and the patients were treated 
with medications during this period. Therefore, the severe symptoms of the patients would have been allevi-
ated, and thus the level of these proteins associated with acute responses might be restored to mild-symptom 
patients. Although a few proteins involved in early inflammation and immune responses were excluded, the 
expression of CRP, SAA1, Complement factor B (CFB), Cofilin-1 (CFL1), Complement C2 (C2), Leucine-rich 
alpha-2-glycoprotein (LRG1), Apolipoprotein C-I (APOC1), and Serotransferrin (TF) revealed expression trend 
consistent with those of other studies with medium significance (p value < 0.1) (Supplementary Figure S5). 
Significant proteins reported in the previously published article are listed in Supplementary Table S4. On the 
other hand, we found previously unreported 77 DEPs that are novel biomarker candidates. These DEPs and their 
functional characteristics were further investigated, as explained in the following section.
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Functional characteristics distinguish the severe COVID‑19 group from the mild group. To 
recapitulate the functional characteristics of differentially expressed plasma proteome and further suggest 
potential therapeutic targets for COVID-19, we investigated the biological functions and signaling pathways 
associated with DEPs. The over-representative analysis using  EnrichR9 based on bioPlanet and Wiki-pathway 
database derived numerous biological functions and signaling pathways satisfying the statistical criteria (Fish-
er’s exact test p value < 0.05) (Supplementary Table S5). Notably, the functions related to the neutrophils and 
blood coagulation were mostly significant (Fig. 4a). For example, the function “neutrophil activation involved in 

Figure 1.  Overall scheme of in-depth plasma proteome profiling. This figure was created with Biorender.com 
and exported under a paid subscription.
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immune response” was associated with nine upregulated proteins, including Polymeric immunoglobulin recep-
tor (PIGR), Fructose-bisphosphate aldolase C (ALDOC), Heat shock cognate 71 kDa protein (HSPA8), Vesicle-
associated membrane protein-associated protein A (VAPA), Ras GTPase-activating-like protein (IQGAP2), Ser-
pin B10 (SERPINB10), Alpha-1-antitrypsin (SERPINA1), and Alpha-1-antichymotrypsin (SERPINA3), and was 
deduced as one of the most important functions (p value = 1.12E-05). Other similar terms such as “neutrophil 
degranulation” and “neutrophil mediated immunity” were also enriched (p value = 1.04E-05 and p value = 1.19E-
05, respectively). Recently, the role of neutrophils in severe COVID-19 has received immense attention. Specifi-
cally, a microarray-based study of SARS-CoV-2 infected a peripheral blood mononuclear cell (PMBC) and sin-
gle cell analysis of epithelial and immune cells in COVID-19 patients revealed that the neutrophil markers were 

Figure 2.  Plasma proteome data generated using COVID-19 infected patients. (a) The number of proteins 
identified in each plasma sample as well as the number of total identifications is plotted. (b) The result of 
principle component analysis (PCA) is depicted as 2-dimensional diagram. (c) The log-transformed student’s 
t-test p value of each protein is plotted against the log-transformed fold-change. The middle line indicates the p 
value cut-off, 0.05. The proteins with high significance (top eight) were labeled.

Figure 3.  Comparison with other SARS-CoV-2 blood proteome datasets. (a) The list of protein identification 
in our data is compared to that of previously published papers (Shen et al., 2020, Cell and Messner et al., 2020, 
Cell systems). The protein accession numbers were transformed to gene symbol. (b) The significant proteins 
proposed in two datasets (ours and Shen et al., 2020, Cell) were compared. Seven proteins including IGFBP3, 
ITIH4, SERPINA3, ORM1, VWF, SERPING1, and LBP were commonly reported as significant.
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overexpressed, suggesting that the patients were under  neutrophilia10,11. Furthermore, a meta-analysis based 
on gene network constructed from the published datasets derived several neutrophil-enriched  genes12. Other 
articles have reported that neutrophils and their extracellular traps (Neutrophil extracellular traps, NETs) trig-
ger COVID-1913,14. Barnes et al.13 argued that the NETs formed by expelled proteins and DNA by neutrophils 
play a crucial role in protecting the host; however, the excessive persistence of NETs induce a hyperinflamma-
tory response and thus may damage the organs. Moreover, they suggested that NETs also contribute to cytokine 
storm by stimulating macrophages to secrete cytokines such as interleukin-1-beta (IL-1B) and interleukin-6 
(IL-6). Based on this perspective, the treatment strategy for the regulation of NET in severe COVID-19 patients 
is deemed important.

Interestingly, identical functions were enriched in the downregulated proteins; Neutrophil defensin 3 
(DEFA1), Cathepsin D (CTSD), Phosphoglycerate mutase 1 (PGAM1), Signal-regulatory protein beta-1 
(SIRPB1), Ferritin heavy chain (FTH1), and ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 2 (BST1) enriched 
the “neutrophil activation involved in immune response” (p value = 3.70E-05), “neutrophil degranulation” (p 
value = 3.53E-05), and “neutrophil mediated immunity” (p value = 3.87E-05) (Fig. 4b). Our results revealed that 
the two protein groups are conflictingly affecting the activation of neutrophils (Fig. 4c). The exact mechanism 
of these proteins in the SARS-CoV-2 infected blood cells need to be examined; however, these protein levels in 
plasma efficiently differentiate between the COVID-19 mild and severe groups, and thus, they could be suggested 
as potential prognostic markers.

Next, according to the study by Zhou et al., the proportion of coagulopathy increased significantly in the 
COVID-19 death  group15. A meta-analysis report revealed that COVID-19-confirmed patients presented coagu-
lopathy different from typical acute disseminated intravascular coagulopathy with the reduced levels of the 
fibrinogen and relatively minimal changes in platelet  counts16. According to the report, significantly elevated 
D-dimer and fibrinogen levels were the most common finding in COVID-19-related  coagulopathy14,16. Other 
studies have also reported similar phenomenon revealing that severely affected COVID-19 patients are under a 
hypercoagulable  state17–19. However, platelet counts in COVID-19 patients are variable depending on the reported 
 studies16. In the present study, upregulation of the proteins involved in regulating complement and coagulation 
activation and platelet degranulation in the severe group can be considered as a reflection of coagulopathy. Poten-
tially, SARS-CoV-2 entry from angiotensin-converting enzyme-2 (ACE-2) can release intracellular angiotensin II, 
triggering platelet  degranulation20. This resulted in inflammation and loss of platelets via deposition in peripheral 
microvascular beds, thereby heralding thrombocytopenia and intravascular coagulopathy in COVID-1921. Pres-
ently, some experts cautiously suggest that severe COVID-19 patients require medications with anticoagulation 
drugs as adjunctive therapy to reduce severity and  mortality22, and our results support this treatment strategy.

Additionally, signaling pathway enrichment using EnrichR software also revealed that the upregulated pro-
teins in the severe group were predicted to be involved mainly in pathways related to platelet function and 
coagulation, thereby further highlighting the importance of coagulation in COVID-19, as established by previous 
observations in patients with severe  symptoms14,16–18. Furthermore, the metabolism pathway was presumed to be 
activated (Supplementary Figure S6a). In contrast, various signaling pathways were enriched in downregulated 
proteins, such as interleukin-2 (IL-2) signaling, signaling events mediated by T cell protein tyrosine phosphatase, 
and lysosome (Supplementary Figure S6b). Notably, a recent study reported that the inhibition of IL-2 signaling 
may relate to the decreased CD8 + T cells in critical COVID-19  patients23. Here, we observed downregulation of 

Figure 4.  Functional analysis of differentially expressed proteins. (a,b) Biological function enrichment analysis 
was performed using the upregulated or downregulated DEPs. If the proteins on the left side were associated 
with the corresponding function, then they were filled with red. The level of significance of each biological 
function is displayed as the length of red (a) and blue (b) bars overlapped in the function term cell. (c) The 
expression levels of the 15 proteins associated with neutrophils were plotted.
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five proteins included in the IL-2 signaling pathway, such as Macrophage colony-stimulating factor 1 (CSF1), Vas-
cular endothelial growth factor receptor 2 (KDR), Myomegalin (PDE4DIP), Fas apoptotic inhibitory molecule 3 
(FAIM3), and CTSD, in critical patients, which may represent another potential therapeutic target for COVID-19.

To identify potential therapeutic targets, we used the molecule–molecule interaction causality information 
present in IPA. We constructed a regulator-target network using upstream regulators predicted to regulate the 
DEPs found in this study (Fig. 5). As a result, eight upstream regulators that regulate 28 DEPs were discovered; 
of these, six regulators were increased and remaining two regulators were decreased. One of the most significant 
regulators is IL-6, and the immune response triggered by it is activated in severe COVID-19 patients, as reported 
in previous  publications5,6,24,25. In addition to IL-6, IL-1B and tumor necrosis factor (TNF) are the major com-
ponents of the cytokine storm commonly observed in severe COVID-19  patients26. The aforementioned results 
might be due to immune responses that naturally occur in COVID-19. Notably, proto-oncoproteins such as Cel-
lular tumor antigen p53 (TP53) and the Myc proto-oncogene protein (MYC) family were predicted to regulate 
seven plasma DEPs. In particular, decrease in TP53 as well as increase in MYC, were predicted. Presumably, the 
regulation of these proteins may contribute to cell proliferation, particularly macrophages and neutrophils, in 
response to SARS-Cov-2 infection. In contrast, the regulated levels of DEPs, including Proprotein convertase 
1 inhibitor (PCSK1N), Galectin-3-binding protein (LGALS3BP), Insulin-like growth factor-binding protein 3 
(IGFBP3), and ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 2 (BST1), elicited a predicted increase in PDZ 
and LIM domain protein 2 (PDLIM2) levels. PDLIM2 has been reported to inhibit T cell development, which is 
in accordance with previous reports on reduced numbers and functional diversity of T cells in severe COVID-19 
 patients27–29. Moreover, the level of T cell receptor (TCR) complex was reduced in our analysis. Therefore, it can 
be considered that the quantity or function of T cells decreased as COVID-19 exacerbated. Nevertheless, our 
suggestion is based on in silico analysis; hence, the role of regulators and their target proteins in severe COVID-
19 should be verified via further functional studies.

Originality and limitations of the study. The major finding of Shen et al.’s study was that proteomic and 
metabolomic blood biomarker candidates can distinguish severe COVID-19 patients from non-severe patients 
or healthy people. A set of differentially expressed proteins and metabolites were discovered, and their implica-
tion in acute immune response was investigated. On the other hand, the COVID-19 study performed by Mess-
ener et al. had two aims; development of a standardized proteomic workflow for proteome analysis of serum or 
plasma, and discovery of protein markers for classifying COVID-19 patient groups. In this study, a 5-min gradi-
ent LC–MS analytic platform was developed, and its robustness and quantitative precision were demonstrated. 
Furthermore, a total of 27 DEPs were discovered by this method, and the authors propose them as biomarker 

Figure 5.  Upstream regulator–downstream plasma DEP network. The upstream regulators that were known or 
reported to regulate the input DEPs at the upper level were searched, and their status was calculated using the 
Ingenuity Pathway Analysis bioinformatics tool. Eight regulators were predicted to be upregulated and one to 
be downregulated. The upstream regulators, their regulation targets, that is, plasma DEPs in our dataset, and the 
functional connections between them were plotted.
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candidates. Both previous studies suggest biomarker candidate proteins in common, such as complement fac-
tors, serum amyloid proteins, interleukins, and ITIH3. In particular, Shen et al. showed that these significant 
proteins are involved in biological functions including platelet degranulation and acute inflammatory responses. 
On the other hand, our study, based on an in-depth profiling method, suggests an additional 77 DEPs as novel 
biomarker candidates. Moreover, bioinformatics analysis highlights not only the acute inflammatory response, 
but also neutrophil activation in the severe group. Furthermore, using upstream prediction analysis, we discov-
ered potential therapeutic targets that regulate downstream proteins in plasma.

To date, the COVID-19 blood proteome has been investigated using various protein assays based on non-MS 
methods, such as microarray and Single Molecule Array (Simoa™) testing. For instance, Hou et al. measured 
the abundance of blood proteins via antibody  microarray30. Serum protein profiling of early phase COVID-19 
and influenza patients revealed that cytokine- and chemokine-mediated inflammatory signaling pathways were 
significantly activated in COVID-19 patients. Furthermore, DEPs including CCL2 and CXCL10 showed signifi-
cant correlation with patients’ neutrophil and lymphocyte counts. The blood markers distinguishing influenza 
and COVID-19 patients have unique value during simultaneous flu and COVID-19 epidemics in the winter. 
Although we could not directly compare our results with this study due to a difference in comparison group, both 
studies highlight the immune response led by neutrophils in COVID-19 patients. The other study, performed by 
Ogata et al., used the Simoa™ assay to measure viral antigens and antibodies in  plasma31. In this study, antibody-
coated beads were used to detect and quantify viral fragments in the blood of COVID-19 patients, suggesting 
possibility of using this assay for diagnosis. In addition, biomarker candidates associated with disease progres-
sion were identified by measuring 31 proteins including viral proteins and immunoglobulins in a longitudinal 
sample cohort. This study differs from ours in that we aimed to develop blood biomarker candidates using a 
hypothesis-free approach.

Despite the strengths of our study, our research also has some inherent limitations. First, the age of the patients 
could not be controlled to be similar. The patient cohort was characterized by the fact that the mild group (26–47 
ages) is significantly younger than the severe group (56–76 ages). Age has been reported as a prominent factor 
regarding the severity of COVID-1932–36. One meta-analysis examining 29 studies involving 3411 COVID-19 
patients revealed that the age of mild and severe groups is significantly different (weighted mean difference of 
10.69)37. Age needs to be adjusted to more accurately examine the different characteristics of blood proteome 
between mild and severe groups. However, since the current study involved patients in the early phase of the 
epidemic, we were unable to achieve this criterion. With respect to statistical analysis, we could not adjust the 
ordinary p value using multiple hypothesis testing due to large inter/intra-group variation of plasma protein 
levels in COVID-19 patients, as well as small sample size. To make up for the lack of statistical power, we applied 
combined criteria for DEP selection, including the ordinary p value and fold-change cut-off. Although our study 
resulted in additional blood marker candidates according to severity of COVID-19, future proteomics studies 
including additional validation using larger sample sizes will be important to confirm our proteomic findings.

Methods
Patients and samples. Our team procured plasma samples from eight COVID-19 patients who visited the 
National Medical Center between February and April 2020 (Supplementary Table S1). All patients with posi-
tive results for SARS-CoV-2 infection, detected by analyzing the respiratory specimens via PCR, and willing to 
provide written informed consent were eligible for participation. Treatment and medical interventions follow 
the standard of care as recommended by the current international and Korean guidelines for COVID-19. The 
severity of COVID-19 in this study was classified based on the requirement of oxygen support (mild = no oxygen 
support; severe = oxygen support). The Ethics Committee and Institutional Review Board of the National Medi-
cal Center (IRB no. H-2002-111-002) approved all experimental procedures. All experiments were performed 
following the approved guidelines.

Sample preparation. The protein digestion process was optimized to 2 μl of each plasma or serum sample 
as previously described with some  modifications38. Briefly, 23 µl of digestion buffer, including reduction and 
alkylation reagents, was added to 2 µl of blood plasma or serum. The mixture was boiled for 25 min at 60 °C to 
denature and alkylate the proteins. After cooling to room temperature, proteins were digested at 37 °C overnight 
using a trypsin/LysC mixture at 100:1 protein-to-protease ratio. The second digestion was performed at 37 °C 
for 2 h using trypsin (enzyme-to-substrate ratio [w/w] of 1:1000). All resulting peptides were acidified with 10% 
trifluoroacetic acid (TFA). We then applied a three-fractionation strategy to increase proteome depth. Acidified 
peptides were loaded onto homemade styrenedivinylbenzene reversed-phase sulfonate (SDB-RPS)-StageTips 
according to previously described  procedures38,39. Briefly, the peptides were washed three times with 100 μL 
0.2% TFA and sequentially eluted with three elution buffers comprised with gradually increasing ACN concen-
tration. The eluate was vacuum-centrifuged to dryness and stored at − 80 °C.

LC–MS/MS analysis. All LC–MS/MS analyses were performed using Quadrupole Orbitrap mass spec-
trometers, Q-exactive HF-X (Thermo Fisher Scientific, Waltham, MA, USA) coupled to an Ultimate 3000 
RSLC system (Dionex, Sunnyvale, CA, USA) via a nanoelectrospray source, as described previously with some 
 modifications38,40. Peptide samples were separated on a 2-column setup with a trap column (75 µm I.D. × 2 cm, 
C18 3 µm, 100 Å) and an analytical column (50 µm I.D. × 15 cm, C18 1.9 um, 100 Å). Prior to sample injection, 
the dried peptide samples were predissolved in solvent A (2% acetonitrile and 0.1% formic acid). After loading 
the samples onto the Nano LC, a 90-min gradient from 8 to 26% of solvent B (100% acetonitrile and 0.1% formic 
acid) was applied to all samples. The spray voltage was 2.0 kV in the positive ion mode, and the temperature of 
the heated capillary was set to 320 °C. MaxQuant.Live version 1.2 was used to perform BoxCar  acquisition8,41. 
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The MS1 resolution was set to 120,000 at m/z 200 for BoxCar, and the acquisition cycle comprised two BoxCar 
scans at 12 boxes (scaled width, 1 Th overlap) with a maximum ion injection time of 20.8 per box with the indi-
vidual AGC target set to 250,000.

Spectral library generation. To generate spectral libraries for the BoxCar, 24 data-dependent acquisition 
(DDA) measurements of the immunodepleted plasma samples were performed. DDA spectra were searched 
using the Maxquant against Uniprot Human Database (December 2014, 88,657 entries) and the iRT standard 
peptide sequence.

Data processing for label‑free quantification. Mass spectra were processed using MaxQuant version 
1.6.1.042. MS/MS spectra were searched against the Human Uniprot protein sequence database (December 2014, 
88,657 entries) using the Andromeda search  engine43. In the global parameter, the BoxCar was set as the experi-
mental type. Primary searches were performed using a 6-ppm precursor ion tolerance for analyzing the total 
protein levels. The MS/MS ion tolerance was set at 20 ppm. Cysteine carbamide-methylation was set as a fixed 
modification. N-Acetylation of proteins and oxidation of methionine were set as variable modifications. Enzyme 
specificity was set to complete tryptic digestion. Peptides with a minimum length of six amino acids and up to 
two missed-cleavages were considered. The required false discovery rate (FDR) was set to 1% at the peptide, 
protein, and modification levels. To maximize the number of quantification events across samples, we enabled 
the “Match between Runs” option on the MaxQuant platform. The MS proteomics data have been deposited to 
the ProteomeXchange Consortium via the  PRIDE44 partner repository with the data set identifier PXD020354.

Statistical analysis. For pair-wise analysis in plasma experiments, data were statistically analyzed using 
Perseus  software45. Initially, proteins only identified by site, reverse, and contaminants were removed. The 
expression level of proteins in the plasma was estimated by determining their intensity based absolute quantifica-
tion (iBAQ) values calculated using Maxquant software. After log2 transformation was conducted for these val-
ues, valid values were filtered using proteins with a minimum of 50% quantified values in at least one symptom 
group. Missing values of the proteins were imputed based on a normal distribution (width = 0.5, down-shift = 1.8) 
to simulate signals of low-abundance proteins. Two-sided t-tests were performed for pairwise comparisons of 
proteomes to detect differentially expressed proteins (DEPs) with significant filtering criteria (p value < 0.05 and 
fold-change > 1.5). Protein abundances were subjected to z-normalization followed by hierarchical clustering 
with Pearson’s correlation distance.

Bioinformatics analysis. Funtional gene ontology (GO) and pathway enrichment analysis were performed 
using the EnrichR online tool (http://amp.pharm .mssm.edu/Enric hr/)9. Upstream regulation and protein net-
works were evaluated via Ingenuity Pathway Analysis (IPA, QIAGEN, Hilden, Germany) based on the DEPs in 
the plasma experiment. The analytical algorithms embedded in IPA uses lists of DEPs to predict the biological 
processes and pathways. The statistical significance of both the gene ontology classification and enrichment 
analysis was determined by Fisher’s exact test. All statistical tests were two-sided, and p < 0.05 was considered as 
statistically significant.

Conclusions
In conclusion, a class of emerging coronaviruses, including SARS-CoV-2, SARS, and MERS, caused worldwide 
health concerns. Although recent efforts can acquire the genetic sequence of the virus and initial data on the 
epidemiology and clinical consequences of SARS-CoV-2, numerous important questions remain unanswered, 
including its origin, extent, duration of transmission in humans, ability to infect other animal hosts, and the 
spectrum and pathogenesis of human infections. In particular, insufficient biochemical knowledge will make 
it difficult to identify the biomarkers and to define point-of-care clinical classifiers. MS-based proteomics can 
present valuable and unbiased information about disease progression and therapeutic targets, without prior 
knowledge about the etiologies and biomolecules.

To the best of our knowledge, with a total of 1639 proteins identified and 1222 proteins statistically analyzed, 
this is the first comprehensive study of the plasma proteome for COVID-19 patients, which provides a unique 
insight into the altered protein circulation based on the severity of COVID-19. We identified 91 differentially 
expressed plasma proteins between the mild and severe groups of COVID-19 and demonstrated the potential 
of plasma proteome signatures. The proteome signatures captured the host response to COVID-19 infection, 
highlighting the role of neutrophil activation, complement activation, and platelet function. Furthermore, our 
bioinformatics analysis indicated a high specificity of several inflammatory modulators, particularly IL-6, IL-1B, 
and TNF. Overrepresentation of the suppressing factor of T cells (PDLIM2) was also predicted. This study had 
certain limitation including the sample size of COVID-19 patients; the clinical significance and statistical power 
would increase with more patients. Nevertheless, our in-depth plasma proteome may provide insights into the 
development of prognostic biomarkers to support clinical decision-making as well as potential therapeutic 
targets.

Data availability
The mass spectrometry data generated during and/or analyzed during the current study are deposited and 
available in the PRIDE Archive (http://www.ebi.ac.uk/pride /archi ve) with the dataset identifier; PXD020354.
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http://www.ebi.ac.uk/pride/archive


9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:22418  | https://doi.org/10.1038/s41598-020-80120-8

www.nature.com/scientificreports/

Received: 18 August 2020; Accepted: 15 December 2020

References
 1. Yang, X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-

centered, retrospective, observational study. Lancet Respir. Med. 8, 475–481. https ://doi.org/10.1016/S2213 -2600(20)30079 -5 (2020).
 2. Yan, L. et al. An interpretable mortality prediction model for COVID-19 patients. Nat. Mach. Intell. 2, 283–288. https ://doi.

org/10.1038/s4225 6-020-0180-7 (2020).
 3. Geyer, P. E., Holdt, L. M., Teupser, D. & Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol. 13, 942. 

https ://doi.org/10.15252 /msb.20156 297 (2017).
 4. Whetton, A. D., Preston, G. W., Abubeker, S. & Geifman, N. Proteomics and informatics for understanding phases and identifying 

biomarkers in COVID-19 disease. J. Proteome Res. https ://doi.org/10.1021/acs.jprot eome.0c003 26 (2020).
 5. Messner, C. B. et al. Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection. Cell Syst. 11, 11 e14-24 

e14. https ://doi.org/10.1016/j.cels.2020.05.012 (2020).
 6. Shen, B. et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182, 59 e15-72 e15. https ://doi.

org/10.1016/j.cell.2020.05.032 (2020).
 7. D’Alessandro, A. et al. Serum proteomics in COVID-19 patients: altered coagulation and complement status as a function of IL-6 

level. J. Proteome Res. 19, 4417–4427. https ://doi.org/10.1021/acs.jprot eome.0c003 65 (2020).
 8. Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M. BoxCar acquisition method enables single-shot proteomics at a depth 

of 10,000 proteins in 100 minutes. Nat. Methods 15, 440–448. https ://doi.org/10.1038/s4159 2-018-0003-5 (2018).
 9. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90-

97. https ://doi.org/10.1093/nar/gkw37 7 (2016).
 10. Chua, R. L. et al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. 

Nat. Biotechnol. https ://doi.org/10.1038/s4158 7-020-0602-4 (2020).
 11. Hemmat, N. et al. Neutrophils, crucial, or harmful immune cells involved in coronavirus infection: a bioinformatics study. Front. 

Genet. 11, 641. https ://doi.org/10.3389/fgene .2020.00641  (2020).
 12. Gardinassi, L. G., Souza, C. O. S., Sales-Campos, H. & Fonseca, S. G. Immune and metabolic signatures of COVID-19 revealed by 

transcriptomics data Reuse. Front. Immunol. 11, 1636. https ://doi.org/10.3389/fimmu .2020.01636  (2020).
 13. Barnes, B. J. et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med. https ://doi.org/10.1084/

jem.20200 652 (2020).
 14. Zuo, Y. et al. Neutrophil extracellular traps in COVID-19. JCI Insight. https ://doi.org/10.1172/jci.insig ht.13899 9 (2020).
 15. Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective 

cohort study. Lancet 395, 1054–1062. https ://doi.org/10.1016/S0140 -6736(20)30566 -3 (2020).
 16. Iba, T., Levy, J. H., Levi, M., Connors, J. M. & Thachil, J. Coagulopathy of coronavirus disease 2019. Crit. Care Med. https ://doi.

org/10.1097/CCM.00000 00000 00445 8 (2020).
 17. Iba, T. et al. The unique characteristics of COVID-19 coagulopathy. Crit. Care 24, 360. https ://doi.org/10.1186/s1305 4-020-03077 

-0 (2020).
 18. Marietta, M., Coluccio, V. & Luppi, M. COVID-19, coagulopathy and venous thromboembolism: more questions than answers. 

Intern. Emerg. Med. https ://doi.org/10.1007/s1173 9-020-02432 -x (2020).
 19. Thachil, J. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 18, 

1023–1026. https ://doi.org/10.1111/jth.14810  (2020).
 20. Biancardi, V. C., Bomfim, G. F., Reis, W. L., Al-Gassimi, S. & Nunes, K. P. The interplay between angiotensin II, TLR4 and hyper-

tension. Pharmacol. Res. 120, 88–96. https ://doi.org/10.1016/j.phrs.2017.03.017 (2017).
 21. Kuchi Bhotla, H. et al. Platelets to surrogate lung inflammation in COVID-19 patients. Med. Hypotheses 143, 110098. https ://doi.

org/10.1016/j.mehy.2020.11009 8 (2020).
 22. Tang, N. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with 

coagulopathy. J. Thromb. Haemost. 18, 1094–1099. https ://doi.org/10.1111/jth.14817  (2020).
 23. Shi, H. et al. The inhibition of IL-2/IL-2R gives rise to CD8(+) T cell and lymphocyte decrease through JAK1-STAT5 in critical 

patients with COVID-19 pneumonia. Cell Death Dis. 11, 429. https ://doi.org/10.1038/s4141 9-020-2636-4 (2020).
 24. Aziz, M., Fatima, R. & Assaly, R. Elevated interleukin-6 and severe COVID-19: a meta-analysis. J. Med. Virol. https ://doi.

org/10.1002/jmv.25948  (2020).
 25. Ulhaq, Z. S. & Soraya, G. V. Interleukin-6 as a potential biomarker of COVID-19 progression. Med. Mal. Infect. 50, 382–383. https 

://doi.org/10.1016/j.medma l.2020.04.002 (2020).
 26. Del Valle, D. M. et al. An inflammatory cytokine signature helps predict COVID-19 severity and death. medRxiv. https ://doi.

org/10.1101/2020.05.28.20115 758 (2020).
 27. De Biasi, S. et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneu-

monia. Nat. Commun. 11, 3434. https ://doi.org/10.1038/s4146 7-020-17292 -4 (2020).
 28. Vabret, N. et al. Immunology of COVID-19: current state of the science. Immunity 52, 910–941. https ://doi.org/10.1016/j.immun 

i.2020.05.002 (2020).
 29. Zheng, H. Y. et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe 

progression in COVID-19 patients. Cell Mol. Immunol. 17, 541–543. https ://doi.org/10.1038/s4142 3-020-0401-3 (2020).
 30. Hou, X. et al. Serum protein profiling reveals a landscape of inflammation and immune signaling in early-stage COVID-19 infec-

tion. Mol. Cell. Proteom. https ://doi.org/10.1074/mcp.RP120 .00212 8 (2020).
 31. Ogata, A. F. et al. Ultra-sensitive serial profiling of SARS-CoV-2 antigens and antibodies in plasma to understand disease progres-

sion in COVID-19 patients with severe disease. Clin. Chem. https ://doi.org/10.1093/clinc hem/hvaa2 13 (2020).
 32. Richardson, S. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 

in the New York City Area. JAMA 323, 2052–2059. https ://doi.org/10.1001/jama.2020.6775 (2020).
 33. Zhang, J. et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin. 

Microbiol. Infect. 26, 767–772. https ://doi.org/10.1016/j.cmi.2020.04.012 (2020).
 34. Mo, P. et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin. Infect. Dis. https ://doi.org/10.1093/

cid/ciaa2 70 (2020).
 35. Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective 

cohort study. The Lancet 395, 1054–1062. https ://doi.org/10.1016/S0140 -6736(20)30566 -3 (2020).
 36. Du, R.-H. et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort 

study. Eur. Respir. J. https ://doi.org/10.1183/13993 003.00524 -2020 (2020).
 37. Ou, M. et al. Risk factors of severe cases with COVID-19: a meta-analysis. Epidemiol. Infect. 148, e175–e175. https ://doi.

org/10.1017/S0950 26882 00017 9X (2020).
 38. Rhee, S. J. et al. Comparison of serum protein profiles between major depressive disorder and bipolar disorder. BMC Psychiatry 

20, 145. https ://doi.org/10.1186/s1288 8-020-02540 -0 (2020).

https://doi.org/10.1016/S2213-2600(20)30079-5
https://doi.org/10.1038/s42256-020-0180-7
https://doi.org/10.1038/s42256-020-0180-7
https://doi.org/10.15252/msb.20156297
https://doi.org/10.1021/acs.jproteome.0c00326
https://doi.org/10.1016/j.cels.2020.05.012
https://doi.org/10.1016/j.cell.2020.05.032
https://doi.org/10.1016/j.cell.2020.05.032
https://doi.org/10.1021/acs.jproteome.0c00365
https://doi.org/10.1038/s41592-018-0003-5
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1038/s41587-020-0602-4
https://doi.org/10.3389/fgene.2020.00641
https://doi.org/10.3389/fimmu.2020.01636
https://doi.org/10.1084/jem.20200652
https://doi.org/10.1084/jem.20200652
https://doi.org/10.1172/jci.insight.138999
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1097/CCM.0000000000004458
https://doi.org/10.1097/CCM.0000000000004458
https://doi.org/10.1186/s13054-020-03077-0
https://doi.org/10.1186/s13054-020-03077-0
https://doi.org/10.1007/s11739-020-02432-x
https://doi.org/10.1111/jth.14810
https://doi.org/10.1016/j.phrs.2017.03.017
https://doi.org/10.1016/j.mehy.2020.110098
https://doi.org/10.1016/j.mehy.2020.110098
https://doi.org/10.1111/jth.14817
https://doi.org/10.1038/s41419-020-2636-4
https://doi.org/10.1002/jmv.25948
https://doi.org/10.1002/jmv.25948
https://doi.org/10.1016/j.medmal.2020.04.002
https://doi.org/10.1016/j.medmal.2020.04.002
https://doi.org/10.1101/2020.05.28.20115758
https://doi.org/10.1101/2020.05.28.20115758
https://doi.org/10.1038/s41467-020-17292-4
https://doi.org/10.1016/j.immuni.2020.05.002
https://doi.org/10.1016/j.immuni.2020.05.002
https://doi.org/10.1038/s41423-020-0401-3
https://doi.org/10.1074/mcp.RP120.002128
https://doi.org/10.1093/clinchem/hvaa213
https://doi.org/10.1001/jama.2020.6775
https://doi.org/10.1016/j.cmi.2020.04.012
https://doi.org/10.1093/cid/ciaa270
https://doi.org/10.1093/cid/ciaa270
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1183/13993003.00524-2020
https://doi.org/10.1017/S095026882000179X
https://doi.org/10.1017/S095026882000179X
https://doi.org/10.1186/s12888-020-02540-0


10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22418  | https://doi.org/10.1038/s41598-020-80120-8

www.nature.com/scientificreports/

 39. Kim, H. et al. An efficient method for high-pH peptide fractionation based on C18 StageTips for in-depth proteome profiling. 
Anal. Methods 11, 4693–4698. https ://doi.org/10.1039/c9ay0 1269a  (2019).

 40. Kim, Y. S. et al. In-depth, proteomic analysis of nasal secretions from patients with chronic rhinosinusitis and nasal polyps. Allergy 
Asthma Immunol. Res. 11, 691–708. https ://doi.org/10.4168/aair.2019.11.5.691 (2019).

 41. Wichmann, C. et al. MaxQuant.Live enables global targeting of more than 25,000 peptides. Mol. Cell Proteom. 18, 982–994. https 
://doi.org/10.1074/mcp.TIR11 8.00113 1 (2019).

 42. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. 
Protoc. 11, 2301–2319. https ://doi.org/10.1038/nprot .2016.136 (2016).

 43. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805. 
https ://doi.org/10.1021/pr101 065j (2011).

 44. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. 
Nucleic Acids Res. 47, D442–D450. https ://doi.org/10.1093/nar/gky11 06 (2019).

 45. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. 
https ://doi.org/10.1038/nmeth .3901 (2016).

Acknowledgements
We glad to acknowledge the contribution of the research staffs as well as other collaborators affiliated to Seoul 
National University and Seoul National University Hospital. We also thank all the patients who participated in 
the study. This work was supported by the National Research Foundation Grants (NRF-2019R1F1A1058753 
and NRF-2020R1A5A1019023), funded by the Korean Government (MSIP). Finally, this work was supported 
by Grant No. 0420190860 from the SNUH Research Fund.

Author contributions
D.H. and M-W.S. conceived, designed, and supervised the overall study. M-W.S., S.Y.K., Y.K. and J-S.L. contrib-
uted in recruiting cohorts and collecting the clinical samples. H.K., D.H., K.D. and J.P. collected the proteomics 
data and carried out the quantitative analyses. After J.P. and D.H. prepared the manuscript, all authors contributed 
in revising it. All authors approved the submission of the final manuscript and agreed to be responsible for all 
aspects of the work.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material  available at https ://doi.
org/10.1038/s4159 8-020-80120 -8.

Correspondence and requests for materials should be addressed to M.-W.S. or D.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1039/c9ay01269a
https://doi.org/10.4168/aair.2019.11.5.691
https://doi.org/10.1074/mcp.TIR118.001131
https://doi.org/10.1074/mcp.TIR118.001131
https://doi.org/10.1038/nprot.2016.136
https://doi.org/10.1021/pr101065j
https://doi.org/10.1093/nar/gky1106
https://doi.org/10.1038/nmeth.3901
https://doi.org/10.1038/s41598-020-80120-8
https://doi.org/10.1038/s41598-020-80120-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	In-depth blood proteome profiling analysis revealed distinct functional characteristics of plasma proteins between severe and non-severe COVID-19 patients
	Results and discussion
	Label-free quantification of plasma samples. 
	Comparison with previous studies. 
	Functional characteristics distinguish the severe COVID-19 group from the mild group. 
	Originality and limitations of the study. 

	Methods
	Patients and samples. 
	Sample preparation. 
	LC–MSMS analysis. 
	Spectral library generation. 
	Data processing for label-free quantification. 
	Statistical analysis. 
	Bioinformatics analysis. 

	Conclusions
	References
	Acknowledgements


