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Domain randomization‑enhanced 
deep learning models for bird 
detection
Xin Mao1, Jun Kang Chow1, Pin Siang Tan1, Kuan‑fu Liu2, Jimmy Wu1, Zhaoyu Su1, 
Ye Hur Cheong1, Ghee Leng Ooi1, Chun Chiu Pang3,4 & Yu‑Hsing Wang1*

Automatic bird detection in ornithological analyses is limited by the accuracy of existing models, 
due to the lack of training data and the difficulties in extracting the fine‑grained features required to 
distinguish bird species. Here we apply the domain randomization strategy to enhance the accuracy 
of the deep learning models in bird detection. Trained with virtual birds of sufficient variations in 
different environments, the model tends to focus on the fine‑grained features of birds and achieves 
higher accuracies. Based on the 100 terabytes of 2‑month continuous monitoring data of egrets, our 
results cover the findings using conventional manual observations, e.g., vertical stratification of egrets 
according to body size, and also open up opportunities of long‑term bird surveys requiring intensive 
monitoring that is impractical using conventional methods, e.g., the weather influences on egrets, 
and the relationship of the migration schedules between the great egrets and little egrets.

Bird detection, including bird localization, classification, counting and density estimation, is crucial for different 
applications of ornithological studies, such as investigating the stopover pattern of  birds1–3; exploring the long-
term influence of climatic change on the arrival behavior of migrant  birds4 and identifying the habitat selection of 
different bird  species5,6. However, such research remains challenging as manual observation by experts, which is 
time-consuming and labor-intensive, is the primary method for bird detection. Consequently, the collected data 
are often fragmentary and of low-frequency and coarse-spatial-resolution7, resulting in a lack of training data. 
Although radar  scanning8,9 and traditional computer vision  techniques10–12 have been applied to automate bird 
detection, these techniques are highly influenced by the environment (e.g., trees and buildings)13,14 and ineffec-
tive in extracting fine-grained features that are needed by experts to distinguish bird  species15. The emergence 
of deep  learning16–24, specifically models used for object  detection25–28, has provided opportunities to enhance 
the efficiency and accuracy of bird detection  algorithms14,29–31. For instance, deep learning-based semantic seg-
mentation models are used to detect birds and other objects (sky, cloud, forest and wind turbine) from images 
taken at wind  farms29–31; different deep learning-based object detection models (e.g., Faster R-CNN32,  YOLO33 
and  RetinaNet34) are evaluated for detecting birds from aerial photographs collected by an unmanned aerial 
 vehicle14. However, these studies focus on distinguishing birds from other objects, instead as classifying different 
bird species. Some studies focus on bird species classification, e.g., LeNet, a simple deep learning-based classi-
fier was used for classifying hawk and crow from  images35. Other training strategies have also been developed 
to extract fine-grained features for deep learning-based image  classification15,36–40. Nevertheless, most of these 
strategies are inappropriate for the bird detection in this project. For instance, the feature maps produced by 
bilinear convolutional neural networks that generate second order bilinear features to describe two-factor varia-
tion (e.g., “style” and “content”)36,37 are extremely high-dimensional and require excessive computational memory. 
Next, the limited amount of labeled bird detection data may cause overfitting and restricts the applicability of the 
domain-specific transfer  learning39,40. In addition, objects of low spatial resolution might reduce the  capacity41 
of the weak  supervision15,34 in extracting the fine-grained features.

Thus, alternatives are urgently needed to tackle the aforementioned challenges. We first designed and installed 
a tailor-made Green AI Camera (see Fig. 1a and “Methods”) at the study site, i.e., Penfold Park, Hong Kong, 
China (see Fig. 1b), to automate the data collection steps of the bird videos. In addition to saving manpower 
for manual bird detection, months-long data that were automatically acquired by this advanced vision sensing 
device enabled comprehensive analyses on bird behavior. Next, we adopted domain randomization to enhance 
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Figure 1.  Penfold Park, the study site: (a) Green AI camera used to automatically record bird videos at this 
study site; (b) aerial view of the study site. The orange region represents the viewpoint of Green AI Camera; and 
(c) trees at the centre of the pond, which is the background image recorded by Green AI Camera.
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the accuracy of deep learning models for bird detection from the recorded video data, which is the main focus 
of this study. Domain randomization, which makes use of virtual objects and/or environments to augment the 
data variability for model training, are found to be effective in building models that are generalized to different 
complex real-world  circumstances42. For example, domain randomization with synthetic data helps to train 
robotic manipulation for grasping specific  objects43 and for learning collision  avoidance44 and gets promising 
results. Inspired by these studies, we generated synthetic data by creating virtual birds (great and little egrets 
shown in Fig. 2) in different environments so as to further augment the data size, and at the same time, to ensure 
sufficient variations for rendering the fine-grained bird features, i.e., neck and head, that are used by experts to 
distinguish bird species. Then, we pretrained the Faster R-CNN32 (a deep learning detection model; see Fig. 3a) 
with the synthetic data, i.e., virtual birds with different real-world backgrounds, followed by fine-tuning the 
model with real data collected at the test site. Based on the detection results of the continuously monitored data, 
we conducted analyses to study the bird behaviour, that were practically difficult in the past due to expensive 
data collection and limited labeled data. Our results not only provide more evidence to support previous stud-
ies (e.g., nest site selection of the great egrets and little egrets), but also reveal interesting findings (e.g., weather 
influences and daily schedule of egrets), suggesting the potential applications of our proposed innovation for 
better habitat management, conservation policies and protection measures.  

Results
Performance evaluation of the domain randomization‑enhanced deep learning model. We 
selected Faster R-CNN32 to detect different bird species from real images, including great egrets, little egrets 
and other birds (mainly black-crowned night herons). ResNet-5045 was used as the backbone for feature extrac-
tion, and Feature pyramid network (FPN)46 was applied to efficiently extract multiscale features. The real-world 
data was collected with the Green AI Camera (see “Methods”). The labeled data were split into 900, 100 and 
110 images as the training, validation and testing sets (see Methods). With domain randomization, we gener-
ated 1000 synthetic images for model pretraining, then fine-tuned the model with the 900 real images. Figure 4 
depicts an example of the detection result, and the analysed video is provided in the Supplementary Video. The 
domain randomization-enhanced model is capable of distinguishing and localizing bird species with high pre-
diction scores under different backgrounds (e.g., clear sky, and partially covered by leaves and branches), achiev-
ing a mean average precision (mAP, at the intersection over union of 0.5) of 87.65% (see “Methods”).

We next examined the advantages of domain randomization on augmenting the detection accuracy. Figure 5 
depicts the perception achieved by the models in distinguishing bird species, based on the feature maps computed 
at the last layer of the ResNet-50 backbone, together with the baseline model (Faster R-CNN trained with real 
images only) for comparison. We observe that the domain randomization-enhanced model focuses on the subtle 
features of the neck and head, which are the essential fine-grained features used by the experts to distinguish 
bird species. On the other hand, the baseline model tends to identify bird species from the color and textural 
features of the body, which may not be the optimal criteria. It should be noted that the bird size, which is one of 
the features used by human experts, is not considered by the deep learning models as the observed size could 
change over the distance from camera, and the depth information is unavailable from the images.

We further examined the effectiveness of domain randomization by performing quantitative evaluation. In 
addition to the baseline model (Faster R-CNN trained with real images only), the weakly supervised method 
based on attention  mechanism15 (Fig. 3b), which locates the “parts” of birds and then extract the fine-grained 
features, was also used as a training strategy for comparison. We used a small subset of the real images for the 
comparison to highlight the strength of the domain randomization under a limited amount of labeled data, which 

Figure 2.  Application of domain randomization to enhance the accuracy of the detection models. Virtual great 
egret (a) and little egret (b) were created with the open-source 3D graphics toolset Blender. Synthetic image (c) 
was generated by merging virtual 3D models and 2D background images. When merging, we applied a large 
variety of the prominent features, such as body size and pose, at different camera viewpoints and locations at the 
images, in order to force the models to focus on the fine-grained bird features, which are essential features used 
by experts for bird identification.
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is a common challenge in most of the fine-grained visual recognition  tasks39. The training set was made up of 
60 real images (136 great egrets, 43 little egrets and six other birds) and 1000 synthetic images; the validation 
set comprised 40 real images (85 great egrets, 12 little egrets and eight other birds) and the test set comprised 
40 real images (124 great egrets, 21 little egrets and 10 other birds), respectively. Summarizing, we considered 
four cases in our comparison:

1. Case 1 (baseline): Faster R-CNN, trained with the real images only.
2. Case 2 (domain randomization): Faster R-CNN, pretrained with the synthetic images, and fine-tuned with 

the real images.
3. Case 3 (attention): Faster R-CNN with attention mechanism, trained with real images only.
4. Case 4 (attention + domain randomization): Faster R-CNN with attention mechanism, pretrained with the 

synthetic images, and fine-tuned with the real images.

We used mAP (IoU = 0.5) to evaluate the performances of all the four cases based on the test set (see “Meth-
ods”). The reported mAPs (± standard deviation) of the four cases are 0.342 ± 0.017, 0.397 ± 0.017, 0.329 ± 0.031 
and 0.385 ± 0.036. For referencing, the precision-recall curve (at IoU = 0.5) for all four cases is also presented 
(see Fig. 3c), which indicates information about the trade-off between precision and recall values at different 
sensitivity threshold. The domain randomization-enhanced model (Case 2) achieves the most balanced result, 
with better precision scores at a wide range of recall scores between 0.11 and 0.58. Consistent with the previ-
ous analysis, Case 2 outperforms the baseline model (Case 1), asserting the effectiveness of the synthetic data 
with sufficient variations in enabling the models to focus on the fine-grained features of the birds. Although 

Figure 3.  Object detection model used in this study for bird detection and the performance results of the 
related experiments: (a) Faster R-CNN, which is the state-of-the-art model in most object detection tasks. In this 
study, we selected ResNet-50 as the backbone for feature extraction (represented by the “convolutional layer” 
stage of the figure). We also attached Feature Pyramid Network to Faster R-CNN to render effective fusion of 
multiscale information; (b) Object detection models trained with the attention mechanism (represented by the 
dotted region), which was used for the performance comparison with our proposed domain randomization-
enhanced deep learning model; and (c) precision-recall curve (at IoU = 0.5) for Case 1 (baseline), Case 2 
(domain randomization), Case 3 (attention) and Case 4 (attention + domain randomization).
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the attention mechanism-based model has state-of-the-art performance in some fine-grained visual categori-
zation  tasks15, overall the model performance is unstable in our study, represented by the relatively low mAP 
and high standard deviation of Cases 3 and 4. We believe that the failure in gaining advantage of the attention 
mechanism is due to the restricted resolution of the regional feature maps of the birds (output of the “region of 
interest pooling” stage shown in Fig. 3b)39,41, as the original dimension of bird is small (i.e., about 0.095% of the 
image size, see “Methods”).

Analyses of the egret behaviour. Our analyses focus on the great egrets and little egrets because they 
are the dominant species at the study site, according to the on-site monitoring and the observations during data 
annotation. The following analyses are based on the detection results of the videos recorded within the periods 
2019-09-23–2019–11-26, which is about 2 months, and the data size is about 100 terabytes.

Figure 6a presents the daily counts of all birds, great egrets and little egrets during the study period based 
on the detection results. The daily counts (vertical axis of Fig. 6a) are inferred from the maximum number of 
birds detected in a single frame per day and presumed as the number of birds staying at the study site. The great 
egret numbers increase and then decrease during the period 2019-09-23–2019-09-30. This trend repetitively 
occurs at the periods 2019-09-30–2019-10-13, 2019-10-13–2019-10-25, 2019-10-25–2019-11-10 and 2019-11-
10–2019-11-23. This observation is consistent with the weekly count of the great egrets in Hong Kong between 
1958 and 1998, as documented by the Hong Kong Bird Watching  Society47. We also notice a surge of the great 
egret counts between the end of October and the beginning of November, which can be explained by the influx 
of the migratory population during this  period47. For the little egrets, our analysis shows that similar trend of 
counts as the great egrets exists, with the Pearson correlation coefficient of 0.89, suggesting the highly-correlated 
migratory activities between the two species. While supporting the existence of migratory population of the lit-
tle  egrets47,48, this finding also motivates us to conduct more studies about the migratory behaviour of and the 
interaction between egrets.

We scaled down the monitoring duration to observe the daily schedule of egrets. For each individual day, 
we calculated the backward 1-h moving average of the bird counts for each time point, then presumed the time 
point with the maximum average value in the morning and evening as the departure and return time of the 
egrets. The departure times of the great egrets and little egrets are similar during the study period (from 04:33 to 
07:31, see Fig. 6b), supported by the hypothesis testing HT1 (p-value = 0.296, which is not statistically significant 
to reject that the departure times are similar; see “Methods”). On the other hand, the little egrets return later 
than the great egrets on most of the days (from 16:03 to 19:10, see Fig. 6b), with the reported p-value = 0.098 
(marginally significant to reject that the little egrets return earlier than or at the same time as the great egrets, 
in HT2). We believe that the daily schedule of the egrets are highly related to the prey availability in different 
foraging habitat preferences (e.g., at Hong Kong, little egrets mostly forage at commercial fishponds and great 
egrets forage at  mudflats49,50).

In addition to the temporal perspective, we analysed the spatial distribution of egrets at the study site via 
heatmap visualization (see “Methods”). We observe some horizontal overlap for the great egrets and little egrets 
in the middle right regions of the trees (see Fig. 7a). However, in terms of elevation, the coverage of the great 
egrets is wider, i.e., from the middle to the top of trees (Fig. 7a), whereas the little egrets mainly stay around the 
middle region of the trees (Fig. 7a). This pattern of vertical stratification, to a certain extent, is consistent with 
the observations of other  studies51–53, where birds align themselves vertically according to the actual body size 

Figure 4.  Example of bird detection result. The blue, orange and green bounding boxes are used for the 
predictions of the great egrets, little egrets and other birds.
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(not the body size represented in images, which is influenced by the distance to the camera). Furthermore, we 
split the testing periods according to the trends observed in the bird counts (Fig. 6a) to identify the spatial change 
of the egret hotspots (Fig. 7b). For great egrets, the hotspot near the middle right region of the trees remains 
relatively constant in size and intensity, whereas the hotspots at the top of the trees (vulnerable to wind) shrink 
and grow over time, and similar changes are observed for the little egrets. Based on the aerial view (Fig. 1b), 
we observe that the hotspots (at the middle right region of Fig. 7b) are sheltered from wind/gales in the north/
south direction, which renders this location a favorable habitat for egrets to inhabiting, breeding and hatching.

We attempted to probe the relationship between weather factors and bird activities (reflected from the bird 
counts) by building a multivariable linear regression model. The weather data were collected from the Hong 
Kong Observatory Open  Data54. We used the natural logarithm of the total bird counts to reflect its proportional 

Figure 5.  Visualization of the perception made by detection models for distinguishing bird species. We 
compared our proposed method with the same architecture that is trained with real images only (known as the 
baseline model). For examples of different bird species (first column), the feature maps (response of the model) 
of the baseline model and domain randomization-enhanced model are shown in second and third column, 
respectively. The viridis colormap is used to illustrate the intensity of the response, where yellow represents the 
strongest response. The feature maps are overlaid on the bird images to depict the features used by the baseline 
model (forth column) and the domain randomization-enhanced model (fifth column) for bird detection. We 
realize that model pretraining with the synthetic images forces the model to focus on the fine-grained features, 
such as neck shape and beak color, which are the crucial features used by experts for bird identification.
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change over the study period. We detrended the data based on the hypothesis testing HT3 (p-value = 0.025, 
which is statistically significant to reject that the time has no influence on the regression; see “Methods”). Table 1 
summarizes the multivariable linear regression analysis. We realized that the influence of the combined weather 
factors is highly statistically significant (p-value of the F-test = 0.002) and undertook further analysis on each 
factor. Total Bright Sunshine (p-value = 0.031) is statistically significant in affecting bird activities, consistent 
with previous studies reporting that sunlight influences migration, foraging and other activities of  birds55–57 
Prevailing Wind Direction (EW, p-value = 0.011) is also statistically significant, suggesting that wind has nega-
tive effect on nestlings  survival51. Although several studies suggested that temperature and humidity might play 
crucial roles and affect the bird  behaviour58,59, e.g., varying air temperature and humidity might influence water 
temperature, that possible alter the activity levels of forage fishes, which in turn affects the foraging efficiency 
of  egrets60, our results in Table 1 shows that the Daily Mean Temperature (p-value = 0.080) and Mean Relative 
Humidity (p-value = 0.089) are just marginally significant. While supporting the influence of some weather fac-
tors in affecting the bird behaviours, more rigorous analysis (e.g., collecting in situ measurements using a local 
weather station) is required to provide evidence to validate the hypothesis.

Discussion
Here we leverage domain randomization to enhance the accuracy of the bird detection models. We create syn-
thetic data, i.e., virtual egrets merged on real background, to tackle the lack of labeled bird data. Importantly, we 
demonstrate that by pretraining deep learning models with synthetic data of sufficient variations, we can force 
the model to focus on the fine-grained features of the great egrets and little egrets, which are the crucial features 
used by human experts for bird detection. This could be useful and applicable for the detection of other bird 
species with limited labeled data, of which the features are highly similar (e.g., species under the same family).

We explore the application of domain randomization-enhanced deep learning models based on the 2-months 
monitoring data of one testing site. Our findings provided multiple potential advantages over conventional 
monitoring by the visual technique and human endurance. Our deep learning-based object detection enables 

Figure 6.  Analyses of the egret behaviour from the temporal perspective: (a) Daily bird counts during the 
study period. The bar graphs show the counts of all birds, great egrets and little egrets. We observe the bird 
counts increase from 2019-09-23 to 2019-09-27 and then decreases from 2019-09-27 to 2019-09-30. Such a 
trend repetitively occurs at the periods 2019-09-30–2019-10-13, 2019-10-13–2019-10-25, 2019-10-25–2019-
11-10 and 2019-11-10–2019-11-23. All these sub-periods are separated with black lines in the figure. We also 
realize a surge in bird counts between the end of October and the beginning of November, which is believed 
to be attributed to the presence of migratory population; (b) Daily schedule of the greats and little egrets. The 
departure and return time of the egrets are estimated from the peak hourly counts in the morning and evening, 
respectively.
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extreme intensive surveys for bird count of different species, behavioural study, spatial preferences and inter- and 
intra-specific interaction, under different weather conditions (i.e., 12 weather factors were used in this study). In 
our study, for instance, an influx of the total bird counts might indicate the presence of migratory birds, which 
could be useful for the study of the bird migratory behaviour and pattern. This new technology could therefore 
be applied in important breeding, stopover or wintering sites, e.g. the RAMSAR wetlands or Important Bird and 
Biodiversity Areas (IBAs), in order to monitor their number, and arrival and departure times. A high speed and 
resolution camera could further allow assessment of their diets and the search time for prey items. Ornithologists 
could also examine the hotspots of the bird intensity maps and the influence of different weather factors (e.g., 
wind intensity, relative humidity, temperature) to investigate the nest site selection and habitat preferences of 
certain bird species across different periods, e.g., during the breeding season. Furthermore, the daily record of 
the bird departure and return times facilitates the planning of environmental monitoring and audit. Construction 
activities, which inevitably create noise, could be scheduled at periods with the least numbers of birds, thereby 
minimizing disturbance to birds during inhabiting, foraging and breeding activities. Following this study, the 
established framework can be applied to other sites for monitoring same/different bird species, so as to implement 
more thorough investigation to obtain more conclusive evidences in studying the bird behaviour. Furthermore, 
datasets of different bird species can be continuously collected and annotated to augment the size of training 
set. While automating the bird detection, more sophisticated deep learning models and training strategies can 
also be implemented to enhance the model accuracy. To summarise, this study presents a paradigm shift from 
the conventional bird detection methods. The domain randomization-enhanced deep learning detection models 
(together with the Green AI Camera) enables wide-scale, long-term and end-to-end bird monitoring, in turn 
formulating better habitat management, conservation policies and protective measures.

Figure 7.  Spatial distribution of the great egrets (red) and little egret (blue) at the study over (a) the entire 
study period; and (b) the testing periods split based on the results observed at Fig. 6a to observe the associated 
changes. The intensity of hotspot reflects the bird counts at a region, which could be used as an indicator to 
study the nest site selection and habitat preference of different bird species.
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Methods
Data collection and annotation. We invented a tailor-made Green AI Camera (see Fig. 1a). The “Green” 
term refers to the application related to environmental monitoring and ecological conservation, and the “AI” 
term, that represents Artificial Intelligence, refers to the combination of different types of machine learning and 
deep learning algorithms used to analyse the huge amounts of data generated from this data collection system. 
Green AI camera exhibits several advantages to meet the needs of long-term monitoring at outdoor areas: (i) 
automatic continuous recording; (ii) high-resolution videos; (iii) high-frame rate videos; (iv) huge local data 
storage; and (v) protection over harsh environments (e.g., extreme weather conditions). As shown in Fig. 1a, six 
cameras of 4 K resolution are used to continuously render videos of wide field of view. The videos are acquired 
at a rate of 25 frames per second with High Efficiency Video Coding (also known as H.265) for preserving the 
visual quality of high-resolution inputs. The external part of the Camera is an optical window composed of two 
parallel curved surfaces, that provides protection to the electronic sensors and detectors, and at the same time, 
ensures clear and distortion free field of view.

In this project, we installed the Green AI Camera at Penfold Park, Hong Kong, China (22° 23′ 57.22″ N, 114° 
12′ 24.42″ E; see Fig. 1b for the aerial view of the study site) to monitor the bird behaviour at trees in the centre 
of a pond (see Fig. 1c for the recorded background image). The dominant bird species found at this park are 
great egrets (Egretta alba) and little egrets (Egretta garzetta). Other birds includes black-crowned night herons 
(Nycticorax nycticorax), Chinese pond herons (Ardeola bacchus) and eastern cattle egrets (Bubulcus ibis)7. The 
data used in this study covered two periods, i.e., 2019-05-13–2019-09-13 and 2019-09-23–2019-11-26 (62 days); 
the recorded time for each day was from 04:00 to 20:00, as the usage of infrared is prohibited at the study site 
(which is completely dark at night). For the first period, we annotated 900 images from the data period of 2019-
05-13–2019-06-08 for model training, 100 images from the data period of 2019-08-01–2019-08-17 for model 
validation, and 110 images from the data period of 2019-08-18–2019-09-13 for model testing. For the second 
period, this 2-months continuous monitoring data was used for the analyses of the egret behaviour, based on 
the detected egrets from the trained model. We annotated images by drawing bounding boxes for the observed 
birds; three labels, which were great egrets, little egrets and other birds (most of them were black-crowned night 
herons), were used, and the bird counts for each label were 2591, 1401 and 372. Our labels were sent for review 
by ornithologists for verification. The image dimension was 2139 × 1281 pixels; both length and width of the 
bounding boxes of birds were within the range of 42 and 160 pixels, and the average and maximum sizes of birds 
were ~ 0.095% and 2.94% of the image, respectively.

Domain randomization. Domain randomization enables the generation of 3D models with desired fea-
tures and rendering them on specific 2D backgrounds. We used the open-source 3D graphics toolset Blender 
(v2.79) to create virtual birds, i.e., a great egret and a little egret. Other birds, such as black-crowned night her-
ons, were not considered as their features are highly distinctive compared to egrets. During the development of 
the virtual images, we applied a large variation of the prominent features (e.g., pose, and body size presented 

Table 1.  Multivariable linear regression analysis. Results of the overall model fit and parameter estimates 
are compiled to examine the weather influence on the bird activities. Hypothesis testings were carried out 
at a significant level of 0.05. Bold values indicate the p-values less than 0.05 (statistically significant) and 
0.10 (marginally significant). *Individual weather factors that are statistically significant to the count of all 
birds (p-value < 0.05). **Individual weather factors that are marginally significant to the count of all birds 
(p-value < 0.10).

Overall model fit

Number of observations 62

R2 0.434

p-value (F-test) 0.002

Parameter estimates

Dependent variable ln (count of all birds)

Independent variable Coefficient p-value (Student’s t-test)

Mean pressure (hPa) − 0.0098 0.814

Absolute maximum daily temperature (°C) 0.2460 0.121

Daily mean temperature (°C)** − 0.8448 0.080

Absolute minimum daily temperature (°C) 0.0005 0.997

Mean dew point (°C) 0.7026 0.127

Mean relative humidity (%)** − 0.1921 0.089

Mean amount of cloud (%) − 0.0029 0.695

Total rainfall (mm) − 0.0105 0.447

Total bright sunshine (hours)* − 0.1303 0.031

Mean wind speed (km/h) 0.0109 0.322

Prevailing wind direction (EW, °)* 0.0070 0.011

Prevailing wind direction (NS, °) 0.0019 0.514
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in images due to varying distanced from camera), and environmental and operational conditions (e.g., light-
ing condition, camera viewpoint and bird location in images), which in turn forced the models to focus on the 
fine-grained bird features. We used Inverse Kinematics to adjust the armature (bones) of the birds to create dif-
ferent poses. Then, we carefully selected background images that contained no real egrets for creating synthetic 
images. We merged the 3D models onto the 2D backgrounds, by pasting the virtual egrets using Gaussian paste, 
Poisson paste and direct paste, at any reasonable location of the images. When pasting, the bird size distribu-
tion was set as uniform, ranging from 0.04% to 0.56% of the background dimension. Other attributes included 
applying light at a uniform distribution between 0.6 and 1.0 of the maximum light values of Blender, and setting 
the camera viewpoint as a uniform joint distribution of the three Euler angles. All these computing procedures 
were deployed by creating a python plug-in for Blender. A total of 1000 synthetic images was created for model 
pretraining.

Network architecture and training details. We selected Faster R-CNN32 (Fig. 3a) for performing object 
detection, due to its satisfactory performance in similar  tasks14. Faster R-CNN is a two-stage detector. In the 
first stage, Faster R-CNN extracts feature maps from input image using a convolutional layer (see Fig. 3a of the 
manuscript) and proposes potential image regions that contain target objects with a regional proposal network. 
In the second stage, based on the proposed regions, Faster R-CNN extracts the bounding box and the category 
information of objects using a region of interest head. In this study, the term “convolutional layer” refers to a 
feature extraction backbone used to extract and learn features from inputs; a ResNet-5045, of which the residual 
networks have been useful, was used as the backbone in this study. Furthermore, we adopted Feature Pyramid 
 Network46, which uses a top-down structure with lateral connections to produce feature maps at all scales, to 
fuse the multi-scale  information46, so as to enhance the detection of tiny objects in small scale (birds only occupy 
small areas of the recorded images). The overall architecture of our model was similar to the  RetinaNet34, except 
that the cross entropy was used as the loss function in our model, instead of the focal loss. The focal loss, which 
was used to tackle the problem of imbalanced datasets, was not considered as the usage of synthesized datasets 
has balanced the proportion of the great egrets and little egrets.

We applied stochastic gradient descent as the optimizer for model training, with a weight decay of 0.0001, a 
momentum of 0.9 and a learning rate of 0.0005. We first pretrained the Faster R-CNN with the synthetic images, 
then fine-tuned the pretrained model with the real images. The training was deployed with two GeForce RTX 
2080 Ti GPUs and the batch size was two per GPU. For comparison, we used the attention  mechanism15 to build 
similar object detection models (see the dotted region in Fig. 3b for the attention mechanism) under the same 
training settings.

Model evaluation metrics. We adopted the commonly used mean average precision (mAP) to evaluate 
the model performance. The mAP metric jointly takes precision, recall and intersection over union (IoU) into 
consideration, where precision measures how relevant the predictions are based on all the retrieved instances; 
recall reflects the fractions of the relevant instances that are actually retrieved; and IoU defines the ratio inter-
section and union of the predicted and ground-truth bounding boxes. For a specific IoU, mAP is computed by 
averaging the precision value over the recall values from 0 to 1. For all analysed cases, we trained the model ten 
times and ran inference for all the individual trained models. The mAP (IoU = 0.5) was reported in the format of 
“mean ± standard deviation”. We also plotted the precision-recall curves (at IoU = 0.5) for all four cases.

Perception made by models for bird detection. We attempted to visualize the feature maps produced 
by deep learning models, to shed light on how models localize and classify different bird species. However, noise 
is presented in the feature maps. Such noise effects are located at the null space of the matrix of the affine trans-
formation operator following these feature maps in the network, and are set to zero vectors by the affine trans-
formation and eventually omitted by the network. Therefore, in order to effectively visualize the feature maps 
without the noise influence, we split the features into row space and null space of the aforementioned matrix, 
followed by extracting the row-subspace features to visualize the model-related  information61. Supposing that 
the matrix of the affine transformation operation is A , the feature maps are x , the coordinates of x in the row 
subspace are x̂ , the feature maps in the row subspace are xr and the feature maps in the null subspace are xn , the 
decomposition could be performed by the following Eqs. 61:

After extracting the row-subspace features, the dimensions of the remaining feature maps were in the hun-
dreds, which is difficult to visualize. Therefore, we applied principal component analysis (PCA) to reduce the 
dimensions of the remained feature maps to three and then used the weighted average of these three dimensions 
for visualization. As the first dimension usually carries the most important information, we applied the heaviest 
weight on the first dimension, followed by the second and third dimensions. The weights used herein were the 
coefficients used to convert RGB images to grayscale images:

(1)AAT x̂ = Ax

(2)xr = ATx̂

(3)xn = x − xr

(4)V = 0.7152V1 + 0.2126V2 + 0.0722V3



11

Vol.:(0123456789)

Scientific Reports |          (2021) 11:639  | https://doi.org/10.1038/s41598-020-80101-x

www.nature.com/scientificreports/

where V  is the weighted feature map, and V1 , V2 and V3 are the first, second and third dimensions after applying 
PCA.

Heatmap showing the spatial distribution of egrets. Heatmaps were created to visualize the spatial 
distribution of egrets based on the random field theory. We first partitioned the recorded video frames into cells 
of 200 × 200 pixels. For each grid, we applied a spatial smoothing to estimate the count of the kth bird species 
( k = 1 for the great egret, k = 2 for the little egret) at time t :

where xt,pi ,k is the count of the kth bird species of cell pi at time t  , after spatial smoothing over all n cells; d
(
pi , pj

)
 

is the Euclidean distance between the central points of the cells pi , pj ; c
(
t, pi , k

)
 is the number of birds located at 

the corresponding cell; and β is a smoothing constant, satisfying β ≥ 0 . Following that, we applied an exponential 
smoothing on xt,pi ,k:

where st,pi ,k is the count of the kth bird species of cell pi at time t  after spatial and temporal smoothing; and α 
is a smoothing constant, with 0 ≤ � ≤ 1 . After computing all st,pi ,k , we averaged them over time to create the 
heatmaps within a specified period.

Statistical analyses. We computed the Pearson correlation coefficient to identify the correlation between 
the counts of the great egrets and little egrets. The daily schedule of the great egrets and little egrets were studied 
with two hypothesis testings using the following null hypotheses: (i) the departure time of the great egrets and 
little egrets are same (HT1, tested with a two-tailed Student’s t-test); and (ii) the return time of the great egrets 
is equal to or later than the little egrets (HT2, tested with a one-tailed Student’s t-test). A significant level of 0.05 
was chosen for all hypothesis testings. We also built a multivariable linear regression model to study the weather 
influence on bird activities. Prior to that, hypothesis testing (HT3) was conducted with a two-tailed Student’s 
t-test to examine whether data detrending was required, by stating a null hypothesis of “the time does not have 
influence on the bird count-weather relationship”. Detrending was conducted to eliminate the time factor that 
might bias the bird counts:

where yt and ÿt are respectively the original and detrended bird counts at the time step t  ; xti and ẍti are respec-
tively the original and detrended ith weather factor at t  , and α̂0 , α̂1 , α̂2 , γ̂0i , γ̂1i and γ̂2i are the regression coef-
ficients. The multivariable linear regression model was then built with detrended ÿt and ẍti:

where ̂̈yt is the fitted bird counts at time step t  , n is the total number of weather factors and β̂i is the regression 
coefficient.
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12

Vol:.(1234567890)

Scientific Reports |          (2021) 11:639  | https://doi.org/10.1038/s41598-020-80101-x

www.nature.com/scientificreports/

 13. May, R., Steinheim, Y., Kvaløy, P., Vang, R. & Hanssen, F. Performance test and verification of an off-the-shelf automated avian 
radar tracking system. Ecol. Evol. 7, 5930–5938 (2017).

 14. Hong, S.-J., Han, Y., Kim, S.-Y., Lee, A.-Y. & Kim, G. Application of deep-learning methods to bird detection using unmanned 
aerial vehicle imagery. Sensors 19, 1651 (2019).

 15. Hu, T. & Qi, H. See Better Before Looking Closer: Weakly Supervised Data Augmentation Network for Fine-Grained Visual Clas-
sification. Preprint at https ://arxiv .org/abs/1901.09891  (2019).

 16. Wen, B., Li, K., Zhang, Y. & Zhang, B. Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis. 
Nat. Commun. 11, 1–14 (2020).

 17. Zheng, X. et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat. Commun. 11, 
1–9 (2020).

 18. Dwivedi, S. K., Tjärnberg, A., Tegnér, J. & Gustafsson, M. Deriving disease modules from the compressed transcriptional space 
embedded in a deep autoencoder. Nat. Commun. 11, 1–10 (2020).

 19. Golestani, N. & Moghaddam, M. Human activity recognition using magnetic induction-based motion signals and deep recurrent 
neural networks. Nat. Commun. 11, 1–11 (2020).

 20. Wu, S. et al. Artificial intelligence reveals environmental constraints on colour diversity in insects. Nat. Commun. 10, 4554 (2019).
 21. Park, S., Kwak, W. & Lee, H. K. Accelerated spin dynamics using deep learning corrections. Sci. Rep. 10, 13772 (2020).
 22. Eun, D. et al. Deep-learning-based image quality enhancement of compressed sensing magnetic resonance imaging of vessel wall: 

Comparison of self-supervised and unsupervised approaches. Sci. Rep. 10, 13950 (2020).
 23. Lee, C. et al. Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network. Sci. Rep. 10, 13694 

(2020).
 24. Adhikari, B. A fully open-source framework for deep learning protein real-valued distances. Sci. Rep. 10, 13374 (2020).
 25. Zou, Z., Shi, Z., Guo, Y. & Ye, J. Object Detection in 20 Years: A Survey. Preprint at https ://arxiv .org/abs/1905.05055  (2019).
 26. Jiao, L. et al. A survey of deep learning-based object detection. IEEE Access 7, 128837–128868 (2019).
 27. He, K., Girshick, R. & Dollár, P. Rethinking Imagenet Pre-training. in Proceedings of the IEEE International Conference on Computer 

Vision 4918–4927 (2019).
 28. Szegedy, C. et al. Going Deeper with Convolutions. in Proceedings of the IEEE conference on computer vision and pattern recognition 

1–9 (2015).
 29. Yoshihashi, R., Kawakami, R., Iida, M. & Naemura, T. Evaluation of Bird Detection using Time-Lapse Images Around a Wind 

Farm. in European Wind Energy Association Conference (2015).
 30. Takeki, A. et al. Detection of Small Birds in Large Images by Combining a Deep Detector with Semantic Segmentation. in 2016 

IEEE International Conference on Image Processing (ICIP) 3977–3981 (2016).
 31. Takeki, A. et al. Combining deep features for object detection at various scales: finding small birds in landscape images. IPSJ Trans. 

Comput. Vis. Appl. 8, 5 (2016).
 32. Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE 

Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017).
 33. Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You Only Look Once: Unified, Real-time Object Detection. in Proceedings of 

the IEEE conference on computer vision and pattern recognition 779–788 (2016).
 34. Lin, T.-Y., Goyal, P., Girshick, R. B., He, K. & Dollár, P. Focal loss for dense object detection. Preprint at https ://arxiv .org/

abs/1708.02002  (2017).
 35. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 

(1998).
 36. Lin, T.-Y., RoyChowdhury, A. & Maji, S. Bilinear CNN Models for Fine-grained Visual Recognition. in 2015 IEEE International 

Conference on Computer Vision (ICCV) 1449–1457 (2015).
 37. Dai, X., Gong, S., Zhong, S. & Bao, Z. Bilinear CNN model for fine-grained classification based on subcategory-similarity measure-

ment. Appl. Sci. 9, 301 (2019).
 38. Ge, W., Lin, X. & Yu, Y. Weakly Supervised Complementary Parts Models for Fine-Grained Image Classification from the Bottom 

Up. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3034–3043 (2019).
 39. Cui, Y., Song, Y., Sun, C., Howard, A. & Belongie, S. Large Scale Fine-grained Categorization and Domain-Specific Transfer Learn-

ing. in Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 4109–4118 (2018).
 40. Ngiam, J. et al. Domain Adaptive Transfer Learning with Specialist Models. Preprint at https ://arxiv .org/abs/1811.07056  (2018).
 41. Kang, B. & Lee, Y. High-resolution neural network for driver visual attention prediction. Sensors 20, 2030 (2020).
 42. Peng, X. B., Andrychowicz, M., Zaremba, W. & Abbeel, P. Sim-to-Real Transfer of Robotic Control with Dynamics Randomization. 

2018 IEEE Int. Conf. Robot. Autom. ICRA  3803–3810 (2018).
 43. Tobin, J. et al. Domain randomization for transferring deep neural networks from simulation to the real world. Preprint at https 

://arxiv .org/abs/1703.06907  (2017).
 44. Sadeghi, F. & Levine, S. Cad2rl: Real single-image flight without a single real image. Preprint at https ://arxiv .org/abs/1611.04201  

(2016).
 45. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in Proceedings of the 2016 IEEE Conference on 

Computer Vision and Pattern Recognition 770–778 (2016).
 46. Lin, T.-Y. et al. Feature pyramid networks for object detection. in Proceedings of the IEEE conference on computer vision and pattern 

recognition 2117–2125 (2017).
 47. Carey, G. The Avifauna of Hong Kong (Hong Kong Bird Watching Society, Hong Kong, 2001).
 48. HKBWS. The First GPS-Tracking Research of Egrets in Hong Kong Fishpond Plays A Key Role for Both Resident and Migratory 

Little Egret. The Hong Kong Bird Watching Society https ://cms.hkbws .org.hk/cms/en/hkbws /egret -track ing-2 (2018).
 49. Young, L. The importance to ardeids of the deep bay fish ponds, Hong Kong. Biol. Conserv. 84, 293–300 (1998).
 50. Choi, Y.-S., Kwon, I.-K. & Yoo, J.-C. Foraging habitat preferences of herons and egrets. J. Ecol. Environ. 30, 237–244 (2007).
 51. Pang, R. H., Yu, T. L. & Busam, M. Low breeding success of the little egret (Egretta garzetta) near residential areas and in colonies 

exposed to gales: A comparison of colony in Sichuan, Southwest China, with literature. Anim. Cells Syst. 23, 235–240 (2019).
 52. Post, W. Nest survival in a large ibis-heron colony during a three-year decline to extinction. Colon. Waterbirds 13, 50 (1990).
 53. Hilaluddin, J., Shah, N. & Shawl, T. Nest site selection and breeding success by cattle egret and little egret in Amroha, Uttar Pradesh, 

India. Waterbirds 26, 444–448 (2003).
 54. HKO. Hong Kong Observatory Open Data. Hong Kong Observatory https ://www.hko.gov.hk/en/cis/clima t.htm (2019).
 55. Wiese, J. H. Courtship and pair formation in the great egret. Auk 93, 709–724 (1976).
 56. Moore, F. R. Sunset and the orientation behaviour of migrating birds. Biol. Rev. 62, 65–86 (1987).
 57. Recher, H. F., Holmes, R. T., Davis, W. E. & Morton, S. Foraging behavior of Australian herons. Colon. Waterbirds 6, 1–10 (1983).
 58. Pinto, D., Chivittz, C., Bergmann, F. & Tozetti, A. Microhabitat use by three species of egret (Pelecaniformes, Ardeidae) in southern 

Brazil. Braz. J. Biol. 73, 791–796 (2013).
 59. Corrêa, T. C., Del Lama, S. N., De Souza, J. R. & Miño, C. I. Genetic structuring among populations of the Great Egret, Ardea 

alba Egretta, in major Brazilian wetlands: Genetic structuring in great egret populations. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 
333–349 (2016).

https://arxiv.org/abs/1901.09891
https://arxiv.org/abs/1905.05055
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1811.07056
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1703.06907
https://arxiv.org/abs/1611.04201
https://cms.hkbws.org.hk/cms/en/hkbws/egret-tracking-2
https://www.hko.gov.hk/en/cis/climat.htm


13

Vol.:(0123456789)

Scientific Reports |          (2021) 11:639  | https://doi.org/10.1038/s41598-020-80101-x

www.nature.com/scientificreports/

 60. Smith, J. P. An energy-circuit population model for Great Egrets (Ardea alba) at Lake Okeechobee, Florida, USA. Ecol. Model. 97, 
1–21 (1997).

 61. Mao, X., Su, Z., Tan, P. S., Chow, J. K. & Wang, Y.-H. Is Discriminator a Good Feature Extractor? Preprint at https ://arxiv .org/
abs/1912.00789  (2019).

Acknowledgements
This research was supported by the Hong Kong Drainage Services Department, the Hong Kong Research Grants 
Council (project no. T22-603/15N) and the HKUST Sustainable Smart Campus as a Living Lab (SSC) project. 
The authors are grateful to the reviewers for their valuable comments.

Author contributions
X.M., P.S.T., G.L.O. and Y.H.W. conceived and planned the experiments. K.F.L., P.S.T. and J.W. contributed to 
the setup of data collection and annotation. X.M., P.S.T. and Z.S. built the deep learning models and performed 
the experiments. X.M., J.K.C., P.S.T., Z.S. and Y.H.C. contributed to the interpretation of the results. X.M., J.K.C. 
and Z.S. drafted the manuscript, and designed the figures and table. C.C.P. and Y.H.W. aided in the interpreta-
tion of the analysis of the egret behaviour. Y.H.W. supervised the project and was in charge of overall direction 
and planning. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https ://doi.
org/10.1038/s4159 8-020-80101 -x.

Correspondence and requests for materials should be addressed to Y.-H.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2021

https://arxiv.org/abs/1912.00789
https://arxiv.org/abs/1912.00789
https://doi.org/10.1038/s41598-020-80101-x
https://doi.org/10.1038/s41598-020-80101-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Domain randomization-enhanced deep learning models for bird detection
	Results
	Performance evaluation of the domain randomization-enhanced deep learning model. 
	Analyses of the egret behaviour. 

	Discussion
	Methods
	Data collection and annotation. 
	Domain randomization. 
	Network architecture and training details. 
	Model evaluation metrics. 
	Perception made by models for bird detection. 
	Heatmap showing the spatial distribution of egrets. 
	Statistical analyses. 

	References
	Acknowledgements


