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Intermedin facilitates 
hepatocellular carcinoma 
cell survival and invasion 
via ERK1/2‑EGR1/DDIT3 signaling 
cascade
Fei Xiao1,5, Hongyu Li2,5, Zhongxue Feng3,5, Luping Huang3,5, Lingmiao Kong3, Min Li3, 
Denian Wang3, Fei Liu4, Zhijun Zhu2*, Yong’gang Wei4* & Wei Zhang3*

As one of the most malignant cancer types, hepatocellular carcinoma (HCC) is highly invasive and 
capable of metastasizing to distant organs. Intermedin (IMD), an endogenous peptide belonging to 
the calcitonin family, has been suggested playing important roles in cancer cell survival and invasion, 
including in HCC. However, how IMD affects the behavior of HCC cells and the underlying mechanisms 
have not been fully elucidated. Here, we show that IMD maintains an important homeostatic state 
by activating the ERK1/2‑EGR1 (early growth response 1) signaling cascade, through which HCC cells 
acquire a highly invasive ability via significantly enhanced filopodia formation. The inhibition of IMD 
blocks the phosphorylation of ERK1/2, resulting in EGR1 downregulation and endoplasmic reticulum 
stress (ER) stress, which is evidenced by the upregulation of ER stress marker DDIT3 (DNA damage‑
inducible transcript 3). The high level of DDIT3 induces HCC cells into an ER‑stress related apoptotic 
pathway. Along with our previous finding that IMD plays critical roles in the vascular remodeling 
process that improves tumor blood perfusion, IMD may facilitate the acquisition of increased invasive 
abilities and a survival benefit by HCC cells, and it is easier for HCC cells to obtain blood supply via the 
vascular remodeling activities of IMD. According to these results, blockade of IMD activity may have 
therapeutic potential in the treatment of HCC.

Hepatocellular carcinoma (HCC) is the third most common malignant tumor in the world and is characterized 
by rapid development and a high mortality  rate1–5. Surgery is currently the most effective treatment, but it is 
only suitable for patients who are diagnosed early [stage 0 and stage A of Barcelona clinic liver cancer (BCLC)] 
and have no distant  metastasis4,6. HCC cells are highly malignant and prone to postoperative recurrence and 
intrahepatic  invasion7, and the rate of distant metastasis reaches 40–71.6%8.

Local invasion and distant metastasis are the most important biological characteristics of malignant tumors 
and the major causes of death in cancer  patients9–12. As one of the most malignant cancer types, HCC is highly 
invasive and capable of metastasizing to distant organs. Although considerable progress has been made in the 
area of HCC, the molecular mechanism that affects the ability of HCC cells to migrate, invade and metastasize 
has not been fully clarified. Thus, further studies on HCC signaling pathways and their regulatory mechanisms in 
invasion and metastasis will provide new targets and a scientific basis for screening new molecular markers for the 
early prediction of HCC invasion and metastasis and for seeking more effective therapeutic strategies for HCC.

OPEN

1Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan 
University, Chengdu, People’s Republic of China. 2Liver Transplantation Center, Beijing Friendship Hospital, 
Capital Medical University, Beijing, People’s Republic of China. 3Department of Critical Care Medicine, State Key 
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation 
Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu 610041, Sichuan, People’s Republic 
of China. 4Department of Liver Surgery, West China Hospital, Sichuan University, No. 1, Ke Yuan 4th Road, Gao 
Peng Street, Chengdu 610041, Sichuan, People’s Republic of China. 5These authors contributed equally: Fei 
Xiao, Hongyu Li, Zhongxue Feng and Luping Huang. *email: Zhu-zhijun@Outlook.com; yourwyg@163.com; 
zhangwei197610@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-80066-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |          (2021) 11:488  | https://doi.org/10.1038/s41598-020-80066-x

www.nature.com/scientificreports/

Intermedin (IMD; or adrenomedullin 2, Adm2) is an endogenous peptide belonging to the calcitonin family. 
Previous studies on IMD mainly focused on its cardiovascular  functions13–15. Recent studies have shown that 
IMD is also associated with tumorigenesis and the prognosis of cancer  patients16–18. In 2008, Morimoto et al. first 
reported that IMD expression was upregulated in adrenal  tumors18. Compared with expression in normal people, 
IMD in the peripheral blood of breast cancer and prostate cancer patients was significantly increased, and high 
IMD levels correlated with poor survival outcomes in breast and prostate cancer  patients16,17. In addition, it was 
reported that IMD is overexpressed in HCC and regulates cell proliferation and  survival19. According to these 
studies, IMD may participate in biological processes such as cell signal transduction through transcriptional and 
posttranscriptional regulation. The dysfunction and expression of IMD are related to the occurrence and develop-
ment of HCC, suggesting that IMD may be used as a new molecular marker for tumor diagnosis and prognosis.

In this study, we aimed to explore how IMD affects the behavior of HCC cells, what the underlying mechanism 
is, and whether blockade of IMD has a therapeutic effect against HCC. Herein, we show that IMD significantly 
increases the migration and invasion ability of HCC cells by promoting the formation of filopodia. IMD induces 
the phosphorylation of ERK1/2, which triggers a robust change in gene transcription. Using gene transcriptome 
sequencing, we identified that EGR1 (early growth response 1) and DDIT3 (DNA damage-inducible transcript 3) 
were responsible for the effect of IMD. IMD activates an ERK1/2-EGR1 signaling cascade, through which HCC 
cells acquire highly invasive abilities and a survival benefit. The blockade of IMD inhibited the phosphorylation 
of ERK1/2, resulting in a significant downregulation of EGR1 and upregulation of DDIT3, which induced HCC 
cells into an ER-stress related apoptotic pathway. Our study may provide novel insights into the mechanism of 
HCC cell invasion and metastasis and provide evidence that anti-IMD strategies might have therapeutic effects 
against HCC.

Results
IMD expression was higher in HCC patients with metastasis. Firstly, we sought to determine 
whether the expression of IMD was correlated with the pathogenesis of HCC patients. Fifty-one HCC patients 
and 50 healthy volunteers were enrolled in this study. Serum IMD levels were found significantly increased in 
HCC patients compared with healthy volunteers (Fig. 1a). In addition, IMD levels in patients with metastasis 
were significantly higher than in patients without metastasis (Fig. 1b). Immunohistochemistry (IHC) staining 
showed similar trends in IMD expression in the patients with or without metastasis (Fig. 1c,d).

IMD expression was higher in more aggressive HCC cells than in less aggressive HCC cells. Pri-
mary HCC cells were collected from surgical samples, and two HCC cell lines with high/low invasive ability 
(named HCC-15H and HCC-15L cells) were screened in severe combined immune deficiency (SCID) mice 
according to their subcutaneous tumorigenicity and spontaneously metastatic ability. Wound healing assay 
(Fig. 2a,b) and Transwell assays (Fig. 2c,d) showed that the migration and invasion capacities of HCC-15H cells 
were significantly higher than those of HCC-15L cells. Consistent with the above clinical data, the mRNA level 
(Fig. 2e) and protein expression of IMD (Fig. 2f) in HCC-15H cells were significantly higher than that in HCC-
15L cells, suggesting that IMD may be closely related to the invasion ability of HCC cells.

The ELISA assay showed that in cell culture medium, IMD secreted by HCC-15H cells was significantly higher 
than that of HCC-15L cells, indicating that IMD may function in a paracrine/endocrine manner (Fig. 2g). The 
cells growth assay showed that IMD treatment increased the proliferation of HCC-15L cells (Fig. 2h). Thus, the 
increased invasive ability may also be due to the cell proliferation. Nevertheless, the time for detecting the migra-
tion and invasion was 24 h after IMD treatment, while cell growth assay showed that at the time point of 24 h, the 
advantage of cell proliferation after IMD treatment was not so significant as the migration experiments. Therefore, 
at least within 24 h, the effect of IMD on cell migration was likely greater than its effect on cell proliferation.

IMD promoted the formation of filopodia, which increased HCC cell migration and invasion 
abilities. Filopodia, finger-like protrusions on the cell surface, are bundled actin-containing plasma mem-
brane protrusions that aid in cancer cell migration and  metastasis20,21. Despite their broad biological signifi-
cance, studying these unique structure remains challenging, especially due to the lack of compatible methods 
to quantify filopodia properties. Herein, we used a freely available ImageJ plugin, FiloQuant, to analyze micro-
scopic images of  filopodia22. As shown in Fig. 3, the filopodia stained by AlexaFluo568-conjugated phalloidin 
(Fig. 3a) were labeled and measured using FiloQuant software (Fig. 3b). The quantification results showed that 
the density and length of filopodia on the surface of HCC-15H cells were significantly higher than those of HCC-
15L cells (Fig. 3c,d). In addition, exogenous administration of IMD peptide could further increase the filopodia 
density and length of both cell types (Fig. 3c,d). The IMD-induced filopodia formation was consistent with the 
increased migration and invasion abilities of both HCC-15L and HCC-15H cells (Fig. 3e,f, and Supplementary 
Fig. S1a, b).

Anti‑IMD antibodies markedly inhibited in situ tumor growth and lung metastasis. Mono-
clonal antibodies against IMD (anti-IMD mAbs) were prepared for the loss of function  studies23. Anti-IMD 
antibodies drastically inhibited the formation of filopodia in highly invasive HCC-15H cells (Fig. 4a–c). Consist-
ently, the migration ability and the invasion ability of HCC-15H cells were also inhibited by anti-IMD antibodies 
(Fig. 4d,e; and Supplementary Fig. S2a, b).

The role of IMD in filopodia formation in HCC cells may favor HCC tumor growth and distant metastasis. 
To test this, HCC-15H cells were injected subcutaneously into the SCID mice. Seven days after tumor inocula-
tion, anti-IMD antibodies were administered to the tumor-bearing mice (twice a week, 4 injections). At day 
30, when the volume of the largest tumor reached approximately 1500 mm3, the mice were sacrificed, and the 
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subcutaneous tumors were surgically removed. As shown in Fig. 5a–c, the administration of anti-IMD antibodies 
markedly inhibited the in situ tumor growth of HCC-15H tumors, and this effect was not due to body-weight 
loss (Fig. 5d). The lungs from the tumor-bearing mice were also examined. A large number of metastatic colonies 
were found in the lungs of HCC-15H tumor-bearing mice (Fig. 5e,f). In addition, the intrahepatic metastasis 
is the most common type of metastasis in HCC cases. We found the subcutaneous inoculation of HCC-15H 
cells also caused metastatic lesions in the liver (Fig. 5g–i). The administration of anti-IMD antibodies not only 
significantly reduced the lung metastasis but also decreased the intrahepatic metastasis (Fig. 5e–i). These results 
suggest that IMD may play important roles in HCC tumor growth and metastasis.

ERK1/2‑EGR1/DDIT3 signaling cascade was responsible for the effect of IMD on HCC cells. To 
obtain a more comprehensive understanding of the impact of IMD on HCC cells, we analyzed the gene profiles 
of HCC-15H cells treated with vehicle, IMD, or anti-IMD antibodies using transcriptome sequencing (RNA-
Seq) analysis. Two parallel samples from each group were analyzed, and the correlation coefficients of intragroup 
and intergroup samples were calculated. The square of the Pearson correlation coefficient  (R2) in each group was 
greater than 0.92 (Fig. 6a), indicating good reliability of the experiments and a high similarity of expression pat-
terns between samples. Principal component analysis (PCA) showed that the samples between groups were scat-
tered, and the samples within groups were clustered, indicating good duplication within groups and significant 
differences between groups (Fig. 6b).

We hypothesized that there may be one or more key factors that serve as downstream effectors for IMD to 
regulate the behavior of HCC cells. As shown in the DEG (differentially expressed gene) clustering heatmap, 

Figure 1.  IMD expression was higher in HCC patients with metastasis. (a) The IMD levels in healthy 
volunteers and in patients with HCC were presented as scatter plots with mean ± SD. (b) The IMD mRNA levels 
in HCC patients with or without metastasis. (c) The IMD staining scores in HCC patients with or without 
metastasis. (d) Representative images of the IHC staining. Significance was assessed by unpaired t test with 
Welch’s correction.
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IMD or anti-IMD antibodies caused significant changes in gene expression (Fig. 6c). We sought to identify the 
genes that were significantly upregulated in the IMD-treated group but significantly downregulated in the anti-
IMD-antibody-treated group or those that had opposite trends. Nine candidates (EGR1, MT-ATP6, ARHGAP31, 
ZC3H4, EMP2, GAS7, ENO1, HNRNPM, and NFATC2) that agreed with the former trend were identified. 
Among them, the change in EGR1 was the most obvious (Fig. 6d). Compared to the level in the vehicle-treated 
groups, the transcription level of EGR1 in the IMD-treated group increased by approximately 28% (read count: 
9,336 vs. 6,846), whereas the level of EGR1 in the anti-IMD-antibody-treated group decreased by approximately 
15-fold (read count: 438 vs. 6846) (Fig. 6e). On the other hand, 7 genes (DDIT3, CLK1, GDF15, IFRD1, EIF4A2, 
CCNL1, and TFPI2) were downregulated in the IMD group but upregulated after anti-IMD antibody treatment 
(Fig. 6f). Among them, the change in DDIT3 was the most obvious. The level of DDIT3 in the IMD-treated 
group decreased by approximately 63% (read count: 217 vs. 355), whereas the level of DDIT3 in the anti-IMD-
antibody-treated group increased by approximately 5.6-fold (read count: 2001 vs. 355) (Fig. 6g).

EGR1 is a zinc-finger transcription factor that plays important roles in many biological  processes24. The 
IHC analysis showed that EGR1 was mainly expressed in the nucleus. IMD slightly increased the expression of 
EGR1, but anti-IMD drastically reduced the expression of EGR1 in the nucleus (Supplementary Fig. S3). This 
is consistent with the RNA-Seq results. We used the STRING protein interaction database to analyze the EGR1 
interaction network. MAPK1 and MAPK3 (ERK1/2) were shown to be the closest proteins linked to EGR1 and 
had positive effects on EGR1 (Fig. 6h). Indeed, EGR1 has been reported to be a downstream effector of activated 
ERK1/225–29. Interestingly, our previous reports have shown that IMD potently induces the phosphorylation of 
ERK1/2 in endothelial  cells23,30. We then asked whether IMD induces the phosphorylation of ERK1/2 in HCC 
cells. Western blot (WB) analysis showed that IMD significantly induced ERK1/2 phosphorylation in HCC-15H 
cells, and this effect was abrogated by treatment with anti-IMD antibodies (Fig. 6i). To test whether EGR1 serves 
as a downstream effector of IMD-activated ERK1/2, we used PD98059 to inhibit the phosphorylation of ERK1/2. 
As shown in Fig. 6h, PD98059 completely blocked the IMD-induced upregulation of EGR1 and decreased EGR1 
transcription to the level seen with anti-IMD antibody treatment (Fig. 6j).

DDIT3 is also known as CHOP (CCAAT/enhancer binding proteins [C/EBP] homologous protein), belonging 
to the C/EBP transcription factor family that regulates a variety of genes involved in a broad range of biological 
processes, including immune functions, cell differentiation, proliferation, and  apoptosis31. DDIT3 has also been 
reported to be related to ERK1/232–35, and blocking ERK1/2 activity caused a significant transcriptional change 
in DDIT3, similar to the effect of anti-IMD antibodies (Fig. 6k). According to the results, ERK1/2 may serve as 
a signalling hub that orchestrates the gene regulation of EGR1 and DDIT3, and the expression changes of EGR1/
DDIT3 had opposite trends.

To test how EGR1 and DDIT3 affect each other, shRNAs that target the 3′-UTR regions of EGR1 or DDIT3 
were transfected into HCC-15H cells using lentiviral vectors, followed by gene-rescue by transfection of an 
EGR1 construct (Lv. EGR1) or DDIT3 construct (Lv. DDIT3) that did not contain the 3′-UTR region. The gene-
silencing and gene-rescue (overexpression) efficiency were verified using semiquantitative real-time PCR analysis 
(Fig. 7a). We then evaluated the mutual effects between EGR1 and DDIT3 by measuring the mRNA level of 
EGR1 or DDIT3 when the other gene was knocked down. As shown in Fig. 7b,c, silencing or overexpression of 
EGR1 or DDIT3 did not affect the transcription of each other.

Figure 2.  IMD expression was higher in more aggressive HCC cells. (a) The HCC-15L and HCC-15H cells 
were seeded on the 6-well plates. One day after cell scratching, the recovered area was measured by Area 1 
(before cell migration) minus Area 2 (after cell migration). (b) The recovered area (the mean level of the control 
group was set to 1) was calculated. (c) Cells were seeded on the upper chamber of the transwell system. The 
representative images showed the cells that invaded through the membranes were stained by Crystal Violet. (d) 
The Crystal-Violet-positive cells was counted (relative to the control; the mean level in the control group was set 
to 1.0; n = 6.). (e) The relative IMD mRNA level was measured using Real-time PCR. (f) The protein expression 
level of IMD was measured by Western blot analysis (WB) using the anti-IMD mAb. (g) The IMD levels in 
medium from HCC-15L or HCC-15H culture tested by ELISA. (h) 1 × 104 HCC-15L cells were seeded on the 
24-well plate and treated with vehicle or IMD for 4 days. The cell number was counted every day from day 0 
to day 4, and presented relative to that of day 0. All data were presented as scatter plots with mean ± SD (n = 6). 
Significance was assessed by unpaired t test with Welch’s correction.
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The shRNA-transfected cells were then stained with AlexaFluo568-phalloidin and subjected to FiloQuant 
analysis (Fig. 7d). DDIT3 knockdown did not affect the formation of filopodia. However, EGR1 knockdown dras-
tically reduced the density and length of filopodia on the cell surface (Fig. 7d–f), and significantly inhibited HCC 
cell migration and invasion (Fig. 7g,h, Supplementary Fig. S4). To exclude possible off-target effects, the cells 
transfected with shR-EGR1 or shR-DDIT3 were rescued by transfection of Lv. EGR1 or Lv. DDIT3. The EGR1 
gene overexpression significantly promoted filopodia formation, cell migration and invasion, whereas DDIT3 
overexpression did not affect these functions (Fig. 7d–h). According to these results, EGR1, but not DDIT3, may 
be responsible for the inhibitory effects of anti-IMD antibodies on HCC cell filopodia formation and invasion.

The cell viability assay showed that anti-IMD antibodies dose-dependently induced HCC cell death in vitro 
(Fig. 7i), which may be because anti-IMD antibodies induced significant HCC cell apoptosis (Fig. 7j). DDIT3 has 
been found to be the key effector that mediates the ER stress-induced apoptotic  pathway31,36–38. Indeed, DDIT3 
knockdown nearly completely abrogated the anti-IMD-antibody-induced apoptosis and killing activity (Fig. 7i,j).

To exclude possible off-target effects, the HCC-15H cells transfected with shR-DDIT3 were rescued by trans-
fection with a DDIT3 construct (Lv. DDIT3) that did not contain the 3′-UTR region. The DDIT3 gene rescue 
restored the ability of anti-IMD antibodies to induce HCC cell apoptosis and death (Fig. 7i,j). However, the 
EGR1 knockdown or overexpression did not affect the HCC cell viability and apoptosis (Fig. 7i,j). Thus, the 

Figure 3.  IMD promoted the formation of filopodia, which increased the HCC cell migration and invasion 
ability. (a) HCC-15L and HCC-15H cells treated with or without IMD were stained with AlexaFluo568-
phalloidin (red) and DAPI (blue), and observed under 1000 × oil immersion lens. (b) The microscopic images 
were analyzed using FiloQuant. The filopodia were marked with pseudo color. (c) The filopodia density (the 
number of filopodia relative to border length [pixels]) were measured using 10 randomly chosen fields. (d) The 
filopodia length (pixels) were counted using 10 randomly chosen fields. (e,f) The cell migration and invasion 
ability were measured using Wound healing assay and Transwell assay (n = 6). All data were presented as scatter 
plots with mean ± SD. Significance was assessed by unpaired t test with Welch’s correction (c,e,f, which passed the 
normality test) or Mann–Whitney U test (d, which did not pass the normality test).
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drastic upregulation of DDIT3 induced by anti-IMD antibodies may be responsible for the inhibitory effects of 
anti-IMD antibodies on HCC tumor growth.

Activation of the unfolded protein response (UPR) depends on three ER stress sensor proteins, that is, Inositol 
requiring enzyme 1 (IRE1), Protein kinase RNA (PKR)-like ER kinase (PERK), and activating transcription fac-
tor 6 (ATF6). The RNA-Seq showed that the anti-IMD antibody significantly upregulated the expression of IRE1 
and PERK, but no ATF6. The treatment of IMD did not affect the expression of the 3 genes may be due to that 
the IMD-induced of ERK1/2 phosphorylation increases cell growth and invasive ability, but it will not induce 
UPR, therefore it will not affect the expression of the ER-stress sensor proteins (Fig. 7k–m). In addition, XBP1 
(X-box binding protein 1), the downstream UPR target gene of IRE1, and GADD34 (growth arrest and DNA 
damage-inducible 34) and DDIT3, the downstream UPR targets of PERK, were also significantly increased after 
anti-IMD treatment (Fig. 7n,o). According to these results, the blockade of IMD may induce ER-stress via IRE1 
and PERK, the two canonic sensors of UPR.

Discussion
Previous studies have suggested that IMD may play important roles in cancer cell survival and  invasion16–19, 
including in  HCC19. However, how IMD affects the behavior of HCC cells and the underlying mechanisms have 
not been clearly elucidated. In this study, we found that IMD maintained an important homeostatic state by 
activating the ERK1/2-EGR1 signaling cascade, through which HCC cells acquire highly invasive abilities and 
a survival benefit. The inhibition of IMD using anti-IMD antibodies blocked the phosphorylation of ERK1/2, 
inducing ER stress and significant upregulation of DDIT3, which suppressed EGR1 transcription and induced 
apoptosis (Supplementary Fig. S5).

Previous studies on IMD mainly focused on its cardiovascular  activity14,15. The relationship between IMD and 
cancer was first reported in 2008, showing that IMD expression was increased in adrenal  tumors18. IMD level in 
peripheral blood was also reported to be associated with the prognosis of breast  cancer17 and prostate  cancer16. 
Interestingly, Guo and colleagues have reported that IMD is overexpressed in HCC and regulates HCC cell pro-
liferation and  survival19. They found that blocking IMD signaling inhibited HCC growth in a dose-dependent 
manner by inducing apoptosis, findings that are consistent with our results. However, they reported that the 
IMD-blockade-induced apoptosis was mediated by the Gli1-Blc2 pathway, whereas our results suggest that anti-
IMD antibodies may cause homeostatic disturbance and ER stress, which triggers apoptosis via accumulation of 
DDIT3. This difference may be because they mainly used the HCC cell lines SK-Hep-1 and SNU-398, whereas 
we used primary HCC cells (HCC-15L and HCC-15H, from surgical samples) as our major research models.

Figure 4.  Anti-IMD inhibited the formation of filopodia and invasive ability of HCC cells. (a) HCC-15H cells 
treated with or without anti-IMD were stained with AlexaFluo568-phalloidin and analyzed using FiloQuant. 
(b,c) The filopodia density and length were measured using 10 randomly chosen fields. (d,e) The cell migration 
and invasion ability were measured using Wound healing assay and Transwell assay (n = 6). All data were 
presented as scatter plots with mean ± SD. Significance was assessed by unpaired t test with Welch’s correction 
(b,d,e) or Mann–Whitney u test (c).
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Activation of the UPR depends on IRE1, PERK, and ATF6, the three ER stress sensor proteins. We found that 
the anti-IMD antibody upregulated the expression of IRE1 and PERK, but did not affect the expression of ATF6. 
IRE1 belongs to type I transmembrane proteins, and is the only ER stress sensor present in all eukaryotes and 
therefore reflects the most ancient and most conserved branch of the  UPR39. PERK is also a type I transmembrane 
protein that partially resembles  IRE140. Unlike Ire1 and PERK, ATF6 is a type II transmembrane protein with 
a carboxy-terminal stress-sensing lumenal  domain41. The difference may be the reason why the two kinds of 
sensors react differently to IMD. On the other hand, the treatment of IMD did not seem to affect the expression 
of the ER stress sensor genes, which may be due to that the IMD-induced of ERK1/2 phosphorylation increases 
cell growth and invasive ability, but it will not induce UPR, therefore it will not affect the expression of the ER-
stress sensor proteins.

The published literatures have shown that IMD can induce ERK1/2 phosphorylation in multiple types of 
 cells30,42,43. IMD shares the receptor CRLR with other family members, such as CGRP and  ADM44–46. Accord-
ing to our previous researches, IMD induces ERK1/2 phosphorylation via a Src-signaling cascade by interac-
tion with its receptor CRLR (calcitonin receptor-like receptor). We found that IMD induced the formation of 
a signaling complex containing CRLR and Src and promoted this complex internalizing into cytoplasm in a 
clathrin-dependent manner to activate downstream ERK1/247. IMD is likely to induce ERK1/2 phosphorylation 
in tumor cells through the same signaling pathway because CRLR and Src are commonly expressed in tumor 

Figure 5.  Anti-IMD markedly inhibited the in situ tumor growth and lung metastasis. (a) 2.5 × 106 HCC-15H 
cells were injected subcutaneously into SCID mice. Seven days after tumor inoculation, anti-IMD mAb (5 mg/
kg) or control IgG was injected into the mice through tail vein (twice a week, 4 injections). The tumor volumes 
were measured every 5 days until the biggest tumor reaches approximately 1500 mm3. (b) After the experiment 
was terminated, the tumors were removed (b), and the final volumes were measured (c). (d) The bode weight of 
the tumor-bearing mice were measured every 5 days. (e) The lungs from HCC-15H tumor-bearing mice treated 
with vehicle or the anti-IMD antibody. (f) The metastatic colonies in the lungs were counted. (g) The liver from 
HCC-15H tumor-bearing mice treated with vehicle or the anti-IMD antibody. (h,i) The number and covered 
area of metastatic colonies in the liver were counted. Data were presented with presented as growth curve (a,d) 
or scatter plots with mean ± SD (c,f). Significance was assessed by unpaired t test with Welch’s correction (n = 6).
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Figure 6.  IMD induced phosphorylation of ERK1/2, which significantly increased EGR1 but suppressed 
DDIT3 transcription. (a) The square of Pearson correlation coefficient  (R2) of the transcriptome sequencing 
analysis.  R2 > 0.92 indicates good reliability. (b) Principal component analysis (PCA) showed good duplication 
within groups and significant differences between groups. (c) The differentially expressed genes (DEG) heatmap 
showed IMD or anti-IMD causing significant changes in gene transcription. (a–c were extracted from the 
original RNA-Seq report). (d) Nine genes were found up-regulated in IMD-treated group, but significantly 
down-regulated in anti-IMD group. (e) The RNA-sequencing read counts of EGR1 in IMD- or anti-IMD-
treated group (n = 2). (f) Seven genes were found down-regulated in IMD-treated group, but up-regulated in 
anti-IMD group. (g) The RNA-sequencing read counts of DDIT3 in IMD- or anti-IMD-treated group (n = 2). 
(h) The STRING protein interaction analysis of the EGR1 interaction network. (i) HCC-15H cells were 
incubated with IMD or anti-IMD for 10 min and subjected to Western blot assay. The density of the band for 
p-ERK1/2 (referred to total ERK1/2) is presented relative to that of the control. The mean level in the control 
group was set to 1.0; n = 3. (j,k) HCC-15H cells were pre-treated with PD98059; 60 min later, the cells were 
incubated with IMD or anti-IMD for 10 min, and the mRNA level of EGR1 or DDIT3 were measured using 
Real-time RT PCR. The mean level in the control group was set to 1.0; n = 6. Data were presented as scatter plots 
with mean ± SD (d,e,f,g,j,k were generated using the software GraphPad Prism 8.0. https ://www.graph pad.com/
scien tific -softw are/prism /); and (h) was generated using the online tool STRING, https ://strin g-db.org/cgi/input 
.pl?sessi onId=o2YSl ODG8A 4I&input _page_show_searc h=on.) Significance was assessed by unpaired t test with 
Welch’s correction.

https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
https://string-db.org/cgi/input.pl?sessionId=o2YSlODG8A4I&input_page_show_search=on
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Figure 7.  EGR1 and DDIT3 were responsible for the effect of IMD on HCC cells. (a) The HCC-15H cells 
were transfected with shRNAs that target the 3′UTR region of EGR1 or DDIT3 (with or without Lv. EGR1 an 
Lv. DDIT3 rescuing). After 48 h, the mRNA levels of EGR1 or DDIT3 was measured using Real-time PCR. 
(b,c) The mutual effects between EGR1 and DDIT3 by measuring the mRNA level of EGR1 or DDIT3 under 
the condition of another gene being knockdown or overexpression (n = 3). (d) The HCC-15H cells transfected 
with shRNA-EGR1, shRNA-DDIT3 (with or without Lv. EGR1 an Lv. DDIT3 rescuing) were stained by 
AlexaFluo568-phalloidin and analyzed using FiloQuant. (e,f) The filopodia density and length were measured 
using 10 randomly chosen fields. (g,h) The cell migration and invasion ability were measured using Wound 
healing assay and Transwell assay (n = 6). (i,j) Before the HCC-15H cells were treated by different dose of anti-
IMD, the cells were transfected with shRNA-DDIT3 or shRNA-EGR1 (with or without Lv. EGR1 an Lv. DDIT3 
rescuing), and the cell viability (i) and apoptosis was measured (j). Data were presented as scatter plots with 
mean ± SD (n = 6). (k–o) The RNA-sequencing read counts of PERK, IRE1, ATF6, GADD34, XBP1 in IMD- or 
anti-IMD-treated group (n = 2). Significance was assessed by unpaired t test with Welch’s correction (a,b,c,e,g,h,j), 
Mann–Whitney u test (f), and p.adj comparison in the RNA-Seq DEG analysis (k–o).
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cells and normal cells. During the research on IMD, we have found that IMD can activate ERK1/2 by inducing 
Src phosphorylation in more than 20 kinds of cells (including tumor cells such as liver cancer cells, breast cancer 
cells, glioma cells; and normal cells such as endothelial cells, fibroblasts, smooth muscle cells, etc.). According to 
these results, the IMD-ERK1/2 cascade may be considered to be an established signaling pathway.

Previous studies have not mentioned the role of IMD in cancer cell motility or invasive abilities. Here, we show 
that IMD increases HCC cell migration and invasion abilities by promoting the formation of filopodia. Although 
IMD was reported to be involved in the regulation of  RhoA48,  Rac149, and  myosin50, which are related to cell 
contraction and deformation, we did not find proof that IMD affects the expression of RhoA, Rac1 or myosin, 
at least in the circumstances of this study. Instead, our study suggests that the induction of EGR1 transcription 
induced by ERK1/2 activation may be responsible for the IMD-induced filopodia formation and cell migration.

Our data suggest that IMD is not only involved in HCC cell invasion and metastasis but also activates a sign-
aling pathway that makes HCC cells prone to survival. In addition, we have previously shown that IMD plays a 
critical role in the vascular remodeling process that improves tumor blood  perfusion30. Thus, the high level of 
IMD may facilitate the acquisition of increased invasive abilities and a survival benefit by HCC cells, and it is 
easier for HCC cells to obtain blood supply via the vascular remodeling activities of IMD. According to these 
results, blockade of IMD activity may have therapeutic potential in the treatment of HCC.

Experimental procedures
Cells and culture conditions. The primary HCC tumors were collected from the surgical samples. The 
resected tumor tissues from HCC patients at West China Hospital were mechanically digested and temporarily 
cultured in vitro. The cells were then collected and mixed 1:1 with Matrigel (Corning) and injected subcutane-
ously into SCID mice. Once established, the subcutaneous tumors were collected again and re-established on 
another batch of SCID mice. According to the subcutaneous tumorigenicity and the metastatic ability (spon-
taneously metastasizes to the lungs or not), two cell lines (HCC-15L & HCC-15H) were screened out for this 
study. HCC-15L cell was able to form subcutaneous tumor and grew at a relatively medium speed, but unable to 
metastasize to the lungs; on the other hand, HCC-15H cell grew faster than HCC-15L, and was able to sponta-
neously metastasize to the lungs (100% lung metastasis). The cells were established in June 2018, authenticated 
using PowerPlex 18D System (Promega Corporation), and the last time these cells were tested was June 2019. For 
in vitro studies, the tumor tissues were digested into single cell suspensions through enzymatic digestion meth-
ods. The cells were routinely grown in DMEM supplemented with 10% fetal bovine serum at 37 °C and 5%  CO2.

Antibodies and reagents. Antibody for Ki-67 (Cat. RM-9106) was from Thermo Scientific; antibodies 
for total-ERK1/2 (#4695) and p-ERK1/2 (#4370) were from Cell Signaling Technology; AlexaFluo568-conju-
gated phalloidin (A12380) was from Invitrogen, Thermo Fisher; PD98059 was from Sigma-Aldrich, Merck. The 
shRNA targeting 3′-UTR of EGR1 (Clone ID: V2LHS_262011) and DDIT3 (Clone ID: V3LHS_646287) were 
from Dharmacon. The IMD mature peptide was synthesized and purchased from Shinegene, and the anti-IMD 
mAb (clone number: 1106CT1.2.1; isotype: IgG2b) was customized and purified by Abgent  Co30.

The monoclonal antibody to IMD. The monoclonal antibody that recognizes the epitope of mouse 
IMD (CRPAGRRDSAPVDPSSPHSY) was generated, as described  in23. In brief, 6 subclones (929CT5.1.1, 
929CT19.2.1, 1072CT2.1.1, 1072CT2.1.2, 1106CT1.2.1, 1106CT2.2.1) that were able to recognize the peptide-
KLH antigen were screened after immunization (ELISA assay OD 450 nm, > 1/4000). The isotypes of 1072CT2.1.1 
and 1072CT2.1.2 are IgG1, and 1106CT1.2.1 and 1106CT2.2.1 are IgG2b, which are appropriate subtypes to 
block the activity of target protein in mouse model. Among them, 1106CT1.2.1 showed highest binding capac-
ity to mouse-IMD. In addition, 1106CT1.2.1 was also able to recognize human-IMD, as evidence by the bind-
ing capacity assay of the 1106CT1.2.1 to mouse-IMD and human-IMD at the concentrations of 1/500, 1/1000, 
1/2000, 1/4000, 1/8000, 1/16,000, 1/32,000, 1/64,000, 1/128,000, 1/256,000.

Wound healing assay. Cells were seeded on the 6-well plate and cultured until confluent. A straight 
scratch was made using a pipette tip under an angle approximately 30°, simulating a wound. IMD or anti-IMD 
were added into the medium as indicated in the figure legends. One day after scratching, the recovered area was 
determined by Area 1 (before scratching) minus Area 2 (24 h after scratching). The experiment was performed 
in duplicate wells and repeated three times independently.

Transwell assay. The Transwell assay has been described  previously51. In brief, 5000 cells were seeded on 
the Matrigel-coated upper chamber (transwell inserts, pore size: 3.0 μm, Millipore) of the 24-well plates and sub-
sequently incubated at 37 °C, 5% CO2. Following incubation for 24 h, transmigrated cells on the lower surface 
of the membrane were stained with CFSE, fixed with 4% PFA. The total number of migrated cells was counted 
under microscope. The experiment was performed in duplicate wells and repeated three times independently.

Fluorescent microscopy and filopodia quantification. Cells cultured on coverslip were fixed with 
4% PFA, and stained with AlexaFluo568-conjugated phalloidin (1 μg/ml) and DAPI (10 μg/ml). The cells were 
observed under 1000 × oil immersion lens, and the fluorescent images were acquired using a Zeiss Z2 micro-
scope. The filopodia on cell surface were analysed using the software FiloQuant, which was developed as a plugin 
for the freely available software ImageJ. FiloQuant is a tool for automated detection and quantification of filopo-
dia properties such as length and density.
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The Fiji distribution of ImageJ was recommended. To run FiloQuant in Fiji, the following dependencies 
need to be installed:

1. Enhanced Local Contrast (CLAHE.class; http://image j.net/Enhan ce_Local _Contr ast_(CLAHE ))
2. Skeletonize3D.jar (http://image j.net/Skele toniz e3D),
3. AnalyzeSkeleton.jar (http://image j.net/Analy zeSke leton )
4. Temporal-Color Code (http://image j.net/Tempo ral-Color _Code).

The single image analysis of FiloQuant contains step-by-step user validation of the various processing steps to 
achieve optimal settings for filopodia detection: (1) choose the region of interest; (2) brightness/contrast adjust-
ment; (3) parameters to detect the cell edge; (4) validation of filopodia-free cell edge detection; (5) parameters to 
detect filopodia; (6) validation of filopodia detection. The FiloQuant will label the filopodia with pseudo color. 
The filopodia number, the length (pixels) of each filopodia, and the cell edge length (pixels) were automatically 
output to an Excel file. The filopodia density (the number of filopodia relative to border length [pixels]) and the 
filopodia length (pixels) were counted using 10 randomly chosen fields (n = 10).

Western blot (WB) analysis. The method to perform WB assay has been described  previously23. In brief, 
Cell extracts were separated by SDS-PAGE and electro-transferred onto polyvinylidene fluoride membranes, 
and blocked in 5% nonfat milk in Tris-buffered saline/0.01% Tween 20 for 2 h. Blots were incubated at 4 °C in 
Tris-buffered saline with primary antibody (dilution according to the manufacturer’s instruction), followed by 
1 h incubation with horseradish peroxidase-conjugated secondary antibody and detected by a chemilumines-
cence kit (Millipore, Cat. WBKLS0100).

Tumor study. All animal experiments were approved by the Animal Ethics Committee of Sichuan Univer-
sity and performed according to institutional and national guidelines. The NOD-SCID female mice (6 weeks, 
20-25 g, housed in specific pathogen-free [SPF] conditions) were used in this study. Mice were injected sub-
cutaneously with 2.5 × 106 cells into the shaved right flank. The tumor volume was measure every 5 days after 
cell injection. The tumor volume was determined by the following formula: Volume  (mm3) = 1/2 × length 
(mm) × width (mm) × width (mm). The body weights of the tumor-bearing mice were measure every 5 days 
accordingly. At the end point when the largest tumor reached approximately 1500 mm3 according to the ethical 
standards for animal welfare, mice were anesthetized and euthanized, and the subcutaneous tumors and the 
lungs were surgically removed. The metastatic colonies on the surface of lungs were counted under stereoscopic 
microscope.

Annexin V/PI apoptotic assay. The Annexin V/PI assay was performed according to the protocol of the 
KIT supplier (BD bioscience). In brief, 1 × 106 cells were incubated 4–6  h at 37  °C prior to the experiment. 
Prepare the solution of FITC Annexin V, Propidium Iodide (PI), and 10 × Annexin V Binding Buffer, and stain 
the cells following the manufacturer’s instruction. Wash cells twice with cold PBS and then re-suspend cells in 
1 × Binding Buffer at a concentration of 1 × 106 cells/ml. Transfer 100 μl of the solution (1 × 105 cells) to a 5 ml 
culture tube. Add 5 μl of FITC Annexin V and 5 μl PI, and gently vortex the cells and incubate for 15 min at RT 
(25 °C) in the dark. Add 400 μl of 1 × Binding Buffer to each tube. The cells were subjected into Flow cytometry 
analysis within 1 h.

Transcriptome sequencing analysis (RNA‑Seq). Inter‑sample correlation. The correlation of gene 
expression levels among samples is an important index to test the reliability of experiments and the rationality 
of sample selection. The closer the correlation coefficient is to 1, the higher the similarity of expression patterns 
between samples is. The square of Pearson correlation coefficient  (R2) between biologically repeated samples is 
usually required be at least greater than 0.8, otherwise we need to make appropriate explanations for the samples, 
or re-experiment. The  R2 be greater than 0.92 indicates ideal sampling and experimental conditions. According 
to the FPKM values of all genes in each sample, the correlation coefficients of intra-group and inter-group sam-
ples were calculated, and the thermal maps were drawn to visually show the differences between groups and the 
repetition of intra-group samples. The higher the correlation coefficient between samples, the closer the expres-
sion pattern is. The R2 correlation heat map in this study was shown in Fig. 5a.

Principal component analysis. Principal component analysis (PCA) is used to evaluate the differences between 
groups and sample duplication within groups. PCA uses linear algebraic method to reduce the dimension of 
genetic variables and extract principal components. We performed PCA analysis of gene expression values 
(FPKM) in all samples, as shown in Fig. 5b. Ideally, in a PCA diagram, the samples between groups should be 
scattered and the samples within groups should be clustered.

Differential gene clustering analysis. More than two groups of experiments can cluster differentially expressed 
genes, which may have common functions or participate in metabolic and signaling pathways. Genes with simi-
lar expression patterns will be clustered together. The color in each grid reflects not the gene expression value, 
but the values obtained by homogenizing the rows of the expressed data. Therefore, the color in the heatmap 
can only be compared horizontally (the expression of the same gene in different samples), but not vertically (the 
expression of different genes in the same sample). When compared horizontally, red indicates high gene expres-

http://imagej.net/Enhance_Local_Contrast_(CLAHE
http://imagej.net/Skeletonize3D
http://imagej.net/AnalyzeSkeleton
http://imagej.net/Temporal-Color_Code
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sion and blue indicates low gene expression. The result file contains both inter-group clustering and inter-sample 
clustering, as shown in Fig. 5c.

Human study. All methods were carried out in accordance with relevant guidelines and regulations. The 
observational study using the human data for prospective measurements of IMD levels was approved by the 
ethics committee of West China Hospital, Sichuan University. The method to analyse the human data has been 
described  previously47. In brief, 50 healthy volunteers and 51 patients with newly diagnosed HCC were enrolled 
in this study from the Department of Liver and Vascular Surgery of the West China Hospital, Sichuan University. 
The diagnosis of HCC included a combination of pathological examination, ultrasound and clinical manifesta-
tions. Identification of the stage of tumor is based on the TNM (tumour–node–metastasis) classification system 
promulgated by the American Joint Committee on Cancer and International Union Against Cancer in 2003. 
Patients who had other type of cancers were excluded. All subjects were genetically unrelated ethnic Han Chi-
nese from Chengdu City and surrounding regions. The volunteers were not blood relatives of the patients or 
each other and were frequency-matched with the cases by age at enrollment, sex and residential area. Informed 
consents were obtained according to the Declaration of Helsinki. After blood collection, serum was separated by 
centrifugation (2000g, 20 min, 4 °C) and stored at − 80 °C until ELISA detection. IMD levels in human serum 
samples were measured using an ELISA kit (Phoenix Pharmaceuticals, Beijing, China). Serum IMD levels are 
presented as scatter plots showing the mean ± SD.

Statistics. The statistical power was calculated to determine the n-number of each group. In the animal 
studies, no randomization was applied because all mice (NOD-SCID mice) used in this study were geneti-
cally defined, inbred mice. When comparing two groups for which a Gaussian distribution was assumed, the 
unpaired, 2-tailed parametric t test with Welch’s correction was used; when a Gaussian distribution was not 
assumed, the unpaired, 2-tailed nonparametric Mann–Whitney U test was used. A p value < 0.05 was considered 
statistically significant.
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