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TW‑SIR: time‑window based SIR 
for COVID‑19 forecasts
Zhifang Liao1, Peng Lan1, Zhining Liao2*, Yan Zhang3 & Shengzong Liu4*

Since the outbreak of COVID‑19, many COVID‑19 research studies have proposed different models 
for predicting the trend of COVID‑19. Among them, the prediction model based on mathematical 
epidemiology (SIR) is the most widely used, but most of these models are adapted in special situations 
based on various assumptions. In this study, a general adapted time‑window based SIR prediction 
model is proposed, which is characterized by introducing a time window mechanism for dynamic 
data analysis and using machine learning method predicts the basic reproduction number and the 
exponential growth rate of the epidemic. We analyzed COVID‑19 data from February to July 2020 in 
seven countries–––China, South Korea, Italy, Spain, Brazil, Germany and France, and the numerical 
results showed that the framework can effectively measure the real‑time changes of the parameters 
during the epidemic, and error rate of predicting the number of COVID‑19 infections in a single day is 
within 5%.

Since the outbreak of COVID-19, the epidemic has spread rapidly in many countries and regions in the world, 
the World Health Organization declared COVID-19 as a Public Health Emergency of International Concern 
(PHEIC) on January 30, 2020. According to data released by Johns Hopkins University, there are 37,213,592 
confirmed cases and 1,072,959 deaths in 188 countries and regions around the world on October 11, 2020. In 
order to reduce the impact of COVID-19, forecasting trend of COVID-19, such as COVID-19 peak and stage of 
its spread, is of great significance for the government to formulate prevention and control strategies, take timely 
measures, and allocate medical resources. There have been many studies to predict the development trend of the 
epidemic in various countries and regions. These studies can be roughly divided into three categories: statistical 
modeling methods, AI-based methods and mathematical epidemic models.

Statistical modeling methods estimate main epidemic parameters through case reports and other data statis-
tics, including the basic reproduction number ( R0 ), the incubation period, serial interval and generation time 
etc., then use mathematical models such as exponential growth to predict the epidemic curve. Zhao et al.1 used 
an exponential growth model to fit the COVID-19 epidemic curve in China and the results showed that the virus 
may cause outbreaks. Sanche et al.2 collected extensive case reports to estimate key epidemiological parameters, 
which indicated the need for early and robust control measures to stop the spread of the virus. Pike and  Saini3 
suggest that there may be an effective threshold for public health interventions by calculating future trends in 
other countries based on mortality statistics observed in China. Li et al.4 analyzed the spread of COVID-19 in 
Hubei Province of China using Gaussian distribution, and predicted the epidemic trends in South Korea, Italy 
and Iran. The results showed the evolution of the epidemic, and found that the implementation of control would 
have a significant impact. Tang et al.5 estimated the number of basic infections per day in China using time-
dependent exposure and diagnosis rates and found that the best measure was sustained and strict self-isolation. 
There are also some studies using statistical modeling  methods6–10. However, statistical modeling methods are 
suitable for roughly estimating the epidemic in the early stage of the epidemic. With the development of the 
epidemic, these epidemic parameters are constantly changing in different countries and regions, which leads to 
the kind of prediction is only does not reflect the actual situation of epidemic.

The AI-based prediction methods are emerging methods for predicting COVID-19, which are used to predict 
how COVID-19 propagates over time and space. Hu et al.11 used a modified stacked Auto-Encoder for model-
ling the transmission dynamics of the epidemics to real-time forecasting the confirmed cases of COVID-19 in 
China. Yang et al.12 divided into the data of SARS outbreak in 2003 with three days as input, and used the long 
and short-term memory network model (LSTM) for training to predict the new coronavirus outbreak in China 
mainland. Friston et al.13 developed a dynamic causal model of COVID-19 based population dynamics, and this 
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model leveraged Bayesian model comparison. Ardabili et al.14 compared and analyzed machine learning and soft 
computing models for predicting COVID-19 epidemic, and the results showed that the multi-layered perceptron 
and adaptive network-based fuzzy inference system had high generalization ability for long-term prediction. 
Arora et al.15 used a variety of deep learning models based on LSTM to predict the number of COVID-19 posi-
tive reported cases in India, and the results showed that the prediction effect of Bi-LSTM was the best, while the 
convolutional LSTM was the worst. Although the accuracy of AI-based method is very high and the prediction 
curve can be fitted well, there are still two problems with AI-based methods. The first one is that the prediction 
method cannot be trained well to achieve the desired effect because of lacking of the training data, special at 
the beginning of  pandemic16–18. The other one is the problem of overfitting in this kind of methods then it may 
therefore fail to predict reliably. Hence, established mathematical epidemiological models were used to track 
and forecast in most studies so far.

There are two kind of typical mathematical epidemiological models including SIR and SEIR (Susceptible, 
Exposed, Infected, and Removed). A number of studies have adapted these two mathematical epidemiological 
models to meet specific needs and to analyze the transmission dynamics of COVID-19. The modifications of the 
model are divided into several types: adding a new state or modifying the model parameters on the basis of the 
original model, integrating additional external data into the model, adding the effects of non-pharmaceutical 
interventions on the model, etc. Liu et al.19 added infected individuals who did not report symptoms based on 
the SIR model, and used the case data reported in China early to predict the cumulative number of reported 
cases. The main feature of the model is to model the timing of the government’s main public policies. Peng et al.20 
and others proposed a generalized SEIR model, re-formulated a new isolation state and considered the effects 
of preventive measures, and analyzed the epidemic situation in five different regions of China. However, due to 
the limitations of detection methods and diagnostic criteria, unreported cases and exposed cases are difficult 
to be estimated and accurate numbers of these cases are difficult to be obtained. These number are regarded as 
hidden variables in the research process. Sun et al.21 developed a time-varying coefficient vSIR model to reflect 
the changes of model parameters due to the government intervention. Chen et al.22 developed a time-dependent 
SIR model for COVID-19 with undetectable infected persons and used the two finite impulse response filters 
to track and predict the numbers of infected persons and recovered people in China. As far as the results are 
concerned, the prediction error is very small, but the training of the model is based on the fact that the data is 
sufficient, and it is not suitable for the early stage of prediction of the epidemic. Fanelli et al.23 used the SIRD 
model with the death status to predict the epidemic trends in China, Italy and France, and found that the time 
evolution of COVID-19 has a certain degree of universality and has little connection with geographical changes, 
but this research study is only based on a simple quantitative model to evaluate the effect of strict epidemic pre-
vention. In addition, other studies have modified the SEIR model, such as considering the population migration 
 data12, analyzing the proportion of infected passengers on evacuation  flights24, and so on. Biswas et al.25 used 
SIR model to fit Chinese data on Euclid network, and the results showed that adding other factors to the model 
would make the model more complicated. Although these methods of modifying epidemiological models can 
be used to assess the spread of epidemics and the impact of government intervention strategies, these models 
require the introduction of additional parameters and depend on many assumptions. At the same time, studies 
have shown that the increase in the number of unknown parameters in a complex model needs to be estimated 
by model fitting, which will lead to higher uncertainty in model predictions. Therefore, simple models may be 
more reliable than complex models in the process of model  selection26. In addition, considering that it is dif-
ficult to ensure the accuracy of the exposed cases data, so we chose the commonly used SIR model in this paper.

In the traditional SIR model, there are two key parameters that reflect the characteristics of the epidemic: 
infection rate β and recovery rate γ . The infection rate β indicates that each susceptible population randomly 
infects β people per day; the recovery rate γ indicates that the infected person recovers or dies with the prob-
ability of γ . These two parameters are constant in the traditional SIR model. When applied it to the real world, 
they are often not able to measure and predict the trend of epidemics. Therefore, many studies have regarded 
them as functions that change over  time21,22.

However, due to the different epidemic prevention and control measures in different countries and regions 
and the development of the epidemic, the manually selected functions are not applicable to the real-time changes 
of parameters. To reflect this change in key parameters of the infectious disease model, we propose to use a 
time window to dynamically measure key parameters and on a daily basis, taking into account the different 
levels of development resulting from the containment measures taken in different countries and regions during 
the course of the outbreak. The time window refers to the previous period of the day, so that the measurement 
model parameters can be adapted to different countries and regions. While the β and γ cannot fully measure the 
virus in the process of transmission capacity, usually we will use the basic number R0 to reflect the evolution of 
the epidemic situation. At the same time, we also used the exponential growth rate as an indicator to reflect the 
exponential growth during virus transmission. By combining these two indicators, we can track and predict β 
and γ . Based on this idea, we propose a time-window SIR prediction model (TW-SIR), which can capture and 
track and predict the dynamic changes of epidemic parameters in real time. We applied TW-SIR model on the 
COVID-19 historical data in China, South Korea, Italy, Spain, Brazil, Germany and France, and we are interested 
in addressing the following three important questions for COVID-19.

• RQ1: How does the TW-SIR model perform in measuring the R0 and exponential growth rate in the process 
of epidemic? Compared with the formula derivation method, is the parameter measurement of TW-SIR more 
reasonable and effective?

• RQ2: How effective is the prediction of the TW-SIR model in epidemic COVID-19?
• RQ3: Can TW-SIR adapt to the second wave of infection?
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The results of our numerical results analysis are encouraging. The results show that the model can effectively 
measure the real-time changes of parameters during the spread of epidemics, including the basic number of 
infections R0(t) and exponential growth rate Ex(t) . Our experiments demonstrate that TW-SIR perform better 
than the formula derivation method in the parameter measurement. And the error rate of predicting the number 
of COVID-19 infections in a single day is within 5%. At the same time, the model can adapt to the second wave 
of infection which traditional SIR model cannot do. This study is of great significance for understanding the 
spread of COVID-19 and guiding the designation of control strategies and measures.

The rest of this paper is organized as follows: in the second section, we propose the TW-SIR model. In the 
third section, we conducted some numerical experiments and analyzed the experimental results to illustrate the 
effectiveness of our model. Then, in “Discussion”, we made some discussions and suggestions. Finally, the last 
section is a summary of the paper.

Methods
SIR epidemic model. The susceptibility-infection-recovery (SIR)  model27 is one of the simplest and com-
monly used epidemic models. The model consists of three compartments: S : the number of susceptible individu-
als, I : the number of infectious individuals, R for the number of removed (and immune) or deceased individuals. 
The SIR epidemic model can be expressed by following set of ordinary differential equations (ODE):

Among them, S(t) , I(t) and R(t) , respectively represent the functions of S , I and R related to time t  , and their 
sum satisfies Eq. (4); N represents the total number of populations; β represents the probability of infection rate, 
which means that each susceptible population randomly infects β people every day. The recovery rate γ indicates 
that the infected person recovers or dies with the probability of γ.

Although the SIR model is simple, the analysis and use of it in many studies generally show that it can capture 
the trend and overall characteristics of the epidemic. In the traditional SIR model, β and γ are parameters that 
reflect the characteristics of the epidemic, and they are constants. However, if the parameters are constant, it is 
often impossible to measure and predict the development trend of epidemics when applied to the real world. 
Therefore, many studies have regarded them as functions that change over time and used equations to derive 
them. Considering that during the development of the epidemic, the parameters in the SIR model are changing 
in real time for different countries and regions. In order to reflect these changes in the parameters of the epidemic 
model, in this article we propose the TW-SIR prediction model, which can capture, track and predict the dynamic 
changes of the epidemic parameters in real time. We will introduce this model in detail in the next section.

Time‑window SIR model. In order to represent the changes of parameters in the SIR model, we propose a 
time window-based SIR model (TW-SIR) which splits historical data into a time window segment. The purpose 
of this method is to capture the real-time changes in R0 and the exponential growth rate Ex . The TW-SIR model 
is based on the assessment of the changes in the epidemiological parameters of historical data every day through 
a time window and solves the problem that the formula derivation method cannot be measured in real time. 
Figure 1 shows the main workflow of the model.

As shown in Fig. 1, the TW-SIR model is mainly composed of three parts: model solution, parameter evalu-
ation and parameter prediction. The detailed process is as follows.

Step 1: Solution of the SIR model. First, the historical data input for the TW-SIR model includes the daily 
number and data of susceptible, infected and recovered populations, and the data are divided according to the 
time window size. For the data in the specified time window, Runge–Kutta method is used to solve the SIR 
model numerically.

Step 2: Evaluation of the model parameters. Based on the historical data in the time window, the least square 
method is used to set the initial values of the model parameters, and then the model parameters are traversed 
and searched to represent the changes of the basic reproduction number R0 and the exponential growth rate Ex 
in the historical data.

Step 3: Prediction of the model parameters and the epidemic. Based on the existing parameter values obtained 
from the parameter evaluation, a machine learning method was used to track and predict the future parameter 
values with the combination of basic reproduction number R0 and exponential growth rate Ex . Finally, the pre-
diction results of the epidemic are returned.

Aim of TW-SIR is to evaluate the changes in the parameters of the epidemic in order to predict the develop-
ment trend of the epidemic. In the rest of this section, we will describe the contents of each part in detail.

(1)
dS(t)

dt
= −

βI(t)S(t)

N

(2)
dI(t)

dt
=

βI(t)S(t)

N
− γ I(t)

(3)
dR(t)

dt
= γ I(t)

(4)N = S(t)+ I(t)+ R(t)
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Model solution. The function of model solution is to numerically solve SIR model equations to facilitate subse-
quent parameter evaluation. Because SIR model equations are coupled nonlinear ordinary differential equations, 
it is difficult to find analytical solutions to the equations. Although it is possible to derive the analytical solution 
of the equation in implicit form, the solution process is complicated and practical applications have  limitations28. 
Compared with analytical solutions, methods such as numerical solutions are more commonly used in such 
research problems, and these methods are more effective. In this paper, numerical solution method, namely 
Runge–Kutta method, is used to numerically solve the SIR model. The Runge–Kutta method is a high-precision 
single-step algorithm, and its classic method is the fourth-order Runge–Kutta method (RK4). RK4 divides the 
time interval between t  and t + 1 into four subintervals and solves ordinary differential equations by calculating 
the slope values of these subintervals points and weighting them as the average slope. For the three states of the 
SIR model, we use RK4 to modify the differential equations in (1–3) into discrete differential equations:

where h is the step-size, S′i , I
′

i and R′

i ( i = 1, 2, 3, 4 ), respectively indicate the slopes of the four subintervals in the 
interval [t,t + 1] of S(t) , I(t) and R(t) , which can be calculated by Eqs. (8–11)

(5)S(t + 1) = S(t)+
h(S

′

1 + 2S
′

2 + 2S
′

3 + S
′

4)

6

(6)I(t + 1) = I(t)+
h(I

′

1 + 2I
′

2 + 2I
′

3 + I
′

4)

6

(7)R(t + 1) = R(t)+
h(R

′

1 + 2R
′

2 + 2R
′

3 + R
′

4)

6

(8)






S′1 = −
βS(t)I(t)

N
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Figure 1.  The main workflow of the TW-SIR model.
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Through the above equations, β and γ are substitute into the SIR model to solve the model numerically. The 
three functions of S(t) , I(t) and R(t) satisfy Eq. (4).

Parameter evaluation. The parameters evaluation part is mainly to characterize the change of the infected rate 
β and the recovered rate γ over time in the historical data, so as to facilitate subsequent parameter prediction. 
Firstly, the historical data is divided according to the size of the time window, then an initial values of the model 
parameters are set within the time window, and then traverse the search for the model parameters, and finally 
get the best model parameters for each day through evaluation. A time-dependent β(t) and γ (t) functions are 
used to instead of β and γ in the SIR model, which can be obtained

where β(t) and γ (t) are functions with time t  as an independent variable rather than constants. Due to the 
government action on infection prevention and control for COVID-19 and awareness of the population on 
COVID-19, β(t) and γ (t) change in real time. In order to measure this change, the time series data set is divided 
into time windows of size W, and then use the optimal parameter solution in the time window as the evaluation 
value. For historical data at time t  , its time window is {wt , 0 ≤ t ≤ T− 1} , we can get the following equation:

Among them, βwt and γwt represent a certain parameter solution in the SIR model at time t  in the historical 
data with a time window size of w . In order to obtain the optimal solution opt

{
βwt

}
 under the time window w , 

two steps are applied in calculating it through search: firstly, determine the initial values of the model parameters 
and secondly perform traversal search on the model parameters. The first is the determination of the initial values 
of the model parameters. In the early stages of the epidemic, the proportion of the number of infected and cured 
population in the population is negligible. We can regard the susceptible number S(t) and the total population 
N as approximately equal, so the differential Eq. (2) can be written as the Eq. (17):

Then we can get the analytical solution of the model through the above equation, as shown in Eq. (18):

where, the number of infected people is an exponential function that changes over time, and then the least 
squares method is used to retrospectively fit the actual data of the epidemic to obtain the initial values β0 and 
γ0 of the parameter. The initial value obtained can evaluate the characteristics of the early stage of the epidemic, 
but a simple exponential growth model cannot fully reflect the full picture of the epidemic and a more accurate 
estimation needed. Therefore, based on the initial values, total number of confirmed COVID-19 cases and model 
numerical solution methods are used to traverse the model parameters.

Given the data within a specified time window {C(t),R(t),D(t), 0 ≤ t ≤ T − 1} ( C(t),R(t) and D(t) are 
respectively the cumulative number of COVID-19 cases, cumulative number of cured COVID-19 cases, and 
cumulative number of death cases per day), Eq. (19) is used to calculate the actual daily number of infections I(t):

(10)






S
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2
2
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2
2
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N

I
′
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2
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S
′
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β(S(t)+hS

′

3)(I(t)+hI
′

3)

N

I
′

4 =
β(S(t)+hS

′

3)(I(t)+hI
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3)

N − γ (I(t)+ hI
′

3)

R
′

4 = γ (I(t)+ hI
′

3)

(12)
dS(t)

dt
= −

β(t)I(t)S(t)

N

(13)
dI(t)

dt
=

β(t)I(t)S(t)

N
− γ (t)I(t)

(14)
dR(t)

dt
= γ (t)I(t)

(15)β(t) = opt
{
βwt

}
,wt = [t − w + 1, t]

(16)γ(t) = opt
{
γwt

}
,wt = [t − w + 1, t]

(17)
dI(t)

dt
= (β − γ )I(t)

(18)I(t) = e(β−γ )t

(19)I(t) = C(t)− R(t)− D(t)
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After getting the daily actual number of infected people, we use the RK4 method to find the numerical solu-
tion of the model, which is the predicted number of infected people I(t) . In order to evaluate the parameters β 
and γ , the following equation is used to calculate the MSE (mean squared error) of the predicted result:

In order to get the optimal size of time window, the size of time window is set from 3 to 30 to be tested and 
the accumulated forecast error is used to evaluate the accuracy and effectiveness of the forecast under each time 
window. Errorw is the accumulated prediction error under the time window w , and the equation is shown as 
following:

In the process of searching for model parameters, it takes too much time if a grid search is applied and it is 
easy to fall into the local optimum. To overcome this problem, in this article an optimized search method is used. 
First, we assume that the value of β is greater than the value of γ in the early stage of the epidemic, because this is 
necessary to ensure that the epidemic infection  continues29, namely the value of R0 is greater than 1 and estimate 
the initial parameter values β0 and γ0 using Eqs. (17) and (18). Based on the initial values β0 and γ0 , we set the 
size of search step and the size of search interval. Then RK4 is used to solve the model by using Eq. (6). Finally, 
the MSE for βwt and γwt are calculated and the βwt and γwt with minimize of MSE are as Optimal parameters. The 
detailed steps of our parameter evaluation based on time window are shown in Algorithm 1.

After getting β(t), γ (t){β(t), γ (t),w − 1 ≤ t ≤ T − 1} , machine learning methods can be applied to predict 
the time change of the infection coefficient and the cure coefficient and predict the future development trend 
of the epidemic.

Parameter prediction. Parameters prediction is to predict the subsequent model parameters based on the 
changes over time of the model parameters obtained from the previous part of the parameter evaluation. In this 
section, the polynomial regression algorithm widely used in machine learning is applied to track and predict 
β(t) and γ (t) . It is difficult to accurately directly predict β(t) and γ (t) because of value fluctuations. Therefore, 
this paper proposes a new prediction method, using the method of predicting the R0 and exponential growth 
rate Ex(t) to calculate them, which their changing curve is easier to predict in the development of the epidemic. 
The Basic reproduction number R0also reflects the development of the epidemic. It can also be regarded as a 
function over time R0(t) which can be obtained by using Eq. (22):

In order to get β(t) and γ (t) , we define an exponential growth rate index Ex(t) according to the exponential 
growth model of Eq. (18), which is shown in the following equation:

where the predicted basic reproduction number is R̂0(t) , and the predicted exponential growth rate is Êx(t) . 
Through polynomial regression, they can be written in the following form:

(20)MSE(β , γ ) =
1

T

T∑

t

(̂I(t)− I(t))
2

(21)Errorw =
1

T −W

T∑

t=w−1

∣∣∣̂I(t)− I(t)
∣∣∣

I(t)

(22)R0(t) =
β(t)

γ (t)

(23)Ex(t) = β(t)− γ (t)
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n and m are the order of R̂0(t) and Êx(t) polynomials (n, m ≥ 2), ai(i = 0, 1, . . . , n) and bj(j = 0, 1, . . . , m) 
are the coefficients of these two polynomial functions. In order to determine the coefficient and order of the 
polynomial function, the most widely used least squares method (OLS) to evaluate the prediction results. At the 
same time, in order to ensure that the model is under-fitting and reflect the real-time changes of the epidemic, 
Time window method mentioned in the previous section is used to solve the following optimization problems:

W is the size of the time window. The coefficients and orders of the polynomial can be obtained by solving 
the objective optimization function, such as ai , i = 0, 1, . . . , n , and bj , j = 0, 1, . . . , m . After obtained these coef-
ficients, R̂0(t) and Êx(t) at time t = T can be obtained through the Eqs. (24, 25), and then the predicted infection 
rate β(t) and the predicted recovery rate γ (t) can be calculated by using Eqs. (28) and (29), namely:

Now we have got β̂(t) and γ̂ (t) , and then through the model solution method in “Model solution”, the number 
of infections 

{
Î(t), t > T

}
 in the subsequent epidemic can be predicted.

Numerical results
Data sources. In this paper, we gathered epidemiological data from Johns Hopkins  University30. Project 
data is available on the open source GitHub site, and the life cycle of the project is  continuous31. The data include 
the various countries from January 23, 2020 up to now. The daily cumulative number of confirmed cases, cumu-
lative death cases, and cumulative cured cases in the region. Taking China as an example, Table 1 shows the 
details of the data we used. In this article, we use the data of seven countries including China, South Korea, 
France, Spain, Italy, Germany and Brazil as our data set. In addition, in order to verify that our method is appli-
cable to different epidemics, we also gathered the SARS epidemic data of Beijing, China from April 20, 2003 to 
June 23, 2003 from the website of the Ministry of Health of China, and the format of the data is the same as in 
Table 1. Table 2 shows the COVID-19 data for China, South Korea, France, Spain, Italy, Germany, and Brazil, and 
the time frame of the 2003 Beijing SARS data. 

Parameter setup. 

(1) Determination of window value W

(24)

R̂0(t) = a0 + a1R0(t− 1)+ a2(R0(t− 1))2 + · · · + an(R0(t− 1))n

=

n∑

i=0

ai(R0(t− 1))i

(25)

Êx(t) = b0 + b1Ex(t− 1)+ b2(Ex(t− 1))2 + · · · + bm(Ex(t− 1))m

=

m∑

j=0

aj(Ex(t− 1))j

(26)min

T−1∑

t=T−W

(R̂0(t)− R0(t))
2

(27)min

T−1∑

t=T−W

(Êx(t)− Ex(t))
2

(28)β̂(t) =
Êx(t)R̂0(t)

1− R̂0(t)

(29)γ̂ (t) =
Êx(t)

1− R̂0(t)

Table 1.  COVID-19 data in China.

Date Confirmed Deaths Recovered

2020/01/27 2877 131 58

2020/01/28 5509 133 101

… … … …

2020/07/01 84,816 4641 79,650

2020/07/02 84,830 4641 79,665
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  Different time window sizes are used in the experiment, which scope is from 3 to 30. Figure 2 shows the 
cumulative forecast error of China under different time windows calculated according to Eq. (21). It can 
be found that there is a time window that minimizes the cumulative forecast error, that is, W = 7.

  For every country in the data set, the respective optimal time window size is shown in Table 3.
(2) Parameter evaluation
  After determining the appropriate time window size, Algorithm 1 is used to evaluate the model param-

eters. When using polynomial regression to predict the parameters β(t) and γ (t) , we set initial order of 
the polynomial to 2, that is, n = m = 2 . Because β(t) and γ (t) are non-negative, if their value is less than 
0 in the regression calculation, we set them to 0. The stopping condition in the model solving process is 
I(t) ≤ 0 . Finally, we use model solving methods to predict the development trend of the epidemic.

Experiment and result analysis. In order to illustrate the scientificity and effectiveness of the TW-SIR 
model, we will present and analyze the three research questions (RQ1, RQ2 and RQ3) in this section.

RQ1 experiment results. In the epidemic model, a very important question is when the epidemic will end. To 
answer this question, one commonly used indicator is the basic reproduction number R0 , which is defined as 
the average of how many other people an infected person will transmit the disease to before they recover. In the 
TW-SIR prediction model, R0(t) is a time-dependent function. If R0(t) > 1 , the epidemic will spread quickly 
and infect a certain percentage of the total population N. On the contrary, if R0(t) < 1 , the epidemic will eventu-
ally be brought under control and end. Therefore, by observing the changes in R0(t) and predicting the future 
R̂0(t) , the development trend of the epidemic and whether the control measures of the epidemic are effective 
can be known. At the same time, in this paper, an indicator exponential growth rate Ex(t) is used, that is, the 
difference between β(t) and γ (t) , to measure the exponential growth trend of the epidemic, which also reflects 
the changing trend of the epidemic. When Ex(t) > 0 , it means that the infection speed of the epidemic is faster 
than the cure. On the contrary, the number of people infected by the epidemic is gradually cured and the epi-
demic is gradually coming to an end. Firstly, we applied TW-SIR model to the historical data of COVID-19 in 

Table 2.  Data set description.

Country or Province Date Type of epidemic

China 2020/01/27–2020/07/02 COVID-19

Korea South 2020/02/20–2020/07/02 COVID-19

Italy 2020/02/26–2020/07/02 COVID-19

Spain 2020/02/26–2020/07/02 COVID-19

Brazil 2020/02/26–2020/07/02 COVID-19

Germany 2020/02/27–2020/07/02 COVID-19

France 2020/02/28–2020/07/02 COVID-19

Beijing province in China 2003/04/20–2003/06/23 SARS

Figure 2.  Changes in prediction error when the time window size is 3–29.

Table 3.  The optimal time window size of each country or region in the data set.

Country China Korea South Italy Spain Brazil Germany France Beijing

Optimal time window size 7 7 4 4 6 6 5 7
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China, South Korea, Italy, Spain, Brazil, Germany and France from January 27 to July 2, 2020 to measure R0(t) 
and Ex(t) . We compare TW-SIR prediction model with the measurement method based on formula derivation 
proposed  in22. Tables 4 and 5, respectively summarize the basic reproduction number R0 and exponential growth 
rate Ex measured using the TW-SIR model and the formula derivation method used in  literature22. It can be seen 
from the table that the parameter values measured based on the TW-SIR model are closer to the actual situation, 
while the formula derivation method has outliers inconsistent with the actual situation, such as too large or too 
small.

Figure 3a shows the result of using the data to measure R0(t) method in the  literature22, and Fig. 3b is the result 
of using the TW-SIR model to measure R0(t) . All date starts from February 21, 2020 in the two figures. R0(t) 
in Fig. 3a has reached two hundred, and there are negative values, which is obviously not true. We can also see 
from Fig. 3b that the value of the R0(t) is much smaller and more in line with the actual situation. In addition, in 
Fig. 3b, it can be seen that there is a turning point of R0(t) < 1 on April 19, 2020, that is, the epidemic situation 
in Italy reaches its peak at this moment. After April 19, 2020, R0(t) remains at a level less than 1, which means 
that the number of infected people I(t) will decrease and will lead to the end of the Italian epidemic. TW-SIR 
model can accurately measure the time when R0(t) < 1 and the measured value is close to the actual situation. 
At the same time, our results are similar to those measured in most  literatures32, which shows the effectiveness 
of TW-SIR model to measure R0(t).

Similarly, Fig. 4 shows the results of TW-SIR model and formula derivation method in measuring the expo-
nential growth rate Ex(t) . The exponential growth rate Ex(t) calculated by the two methods can reflect the 
development and changes of the epidemic, and the overall trend is roughly the same, and both can measure 
the peak time of the epidemic. However, the Ex(t) value calculated based TW-SIR model includes the value 

Table 4.  The measurement of the reproduction number and the exponential growth rate according to TW-SIR 
model.

China Korea South Italy Spain Brazil Germany France

R0 average value 2.285 2.428 3.407 4.217 5.136 4.029 4.091

R0 min value 0.031 0.143 0.125 0.167 0.125 0.013 0.043

R0 max value 49 61 41 50 44 67 42

Ex average value − 0.0138 0.0412 0.0512 0.075 0.1045 0.0518 0.0681

Ex min value − 0.31 − 0.08 − 0.07 − 0.09 − 0.11 − 0.78 − 0.22

Ex max value 0.48 0.77 0.98 0.62 0.5 0.77 0.98

Table 5.  The measurement of the reproduction number and the exponential growth rate according to the 
formula derivation method.

China Korea South Italy Spain Brazil Germany France

R0 average value 4.551 5.094 5.469 14.278 7.627 11.599 − 1.885

R0 min value − 0.25 − 15.71 − 70 − 3.35 0.16 0 − 719

R0 max value 134.4 195 229 287.7 156.57 372.125 257.82

Ex average value 0.0016 0.0655 0.0968 0.0896 0.1325 0.0981 0.0995

Ex min value − 0.3468 − 0.1699 − 0.0704 − 1 − 0.3929 − 0.7333 − 0.7143

Ex max value 0.9280 3.5789 5.33 1.75 2.25 3 4

Figure 3.  Basic reproduction number R0(t) in Italy.
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calculated based on the formula derivation method, which can more clearly reflect the change of the exponential 
growth rate.

RQ2 experiment results. Figure 5 shows the measured R0(t) and the predicted R̂0(t) in Italy by using TW-SIR 
model. The blue curve is the measured R0(t) , from February 26, 2020 to July 2, 2020. The gray curve is the 
predicted R̂0(t) from June 1, 2020 to July 2, 2020. The red dotted line is the threshold value representing the 
R̂0(t) = 1 . We can see that R0 in Italy was almost the same as R0 in China in the early stages of the epidemic. 
From the figure that R0 is a turning point around April 19, which means a peak of the epidemic. Compared with 
China, Italy has a relatively long time to enter the peak, which may be caused by different prevention and control 
strategies.

In Fig. 6, we show the exponential growth rate Ex(t) measured by Italy and the predicted exponential growth 
rate Êx(t) . The green curve is the measured exponential growth rate Ex(t) , from February 26, 2020 to July 2, 2020. 
The yellow curve is the predicted exponential growth rate Êx(t) , from June 1, 2020 to July 2, 2020. In Fig. 6, the 
exponential growth rate of the Italian epidemic has approached zero. If this situation remains, the number of 
infected persons will decrease and the epidemic will be faded. But due to the changes of temperatures, govern-
ment’s epidemic control measures and people’s awareness, there is a second wave of infection from August, 2020, 
which we’ll discuss later. Figures 5 and 6 show that TW-SIR model accurately predicted the changes of R̂0(t) and 
Êx(t) from June 1 onwards, which shows that our parameter prediction method is effective.

In order to show the accuracy of our model, we show the prediction results of our model for the next day 
(single-day forecast) in Fig. 7. The orange curve in the figure represents the actual number of infections I(t) in 
Italy, and the blue curve represents the predicted number of infections Î(t) . The figure shows that the predicted 
curve is very close to the actual data curve.

We further tested the accuracy of our prediction and calculated the error of the single-day prediction of the 
number of infected people, as shown in Fig. 8. The error rate of the predicted number of infected people is all 
within 5%, which shows that our model can accurately predict the number of infected people next day.

Judging from the results of applying TW-SIR model to the data of epidemic in China and Italy, the model can 
effectively measure the real-time changes of parameters during the development of the epidemic, including the 
basic reproduction number of the epidemic and the exponential growth rate of the development of the epidemic, 
as well as the development trend of the epidemic follow up and forecast.

Figure 4.  The result of the exponential growth rate Ex(t) in Italy from February 21 to July 2, 2020. (The dark 
green curve represents the measurement result of our proposed TW-SIR prediction model, and the light green 
curve is the formula-based method used  in22).

Figure 5.  R0(t) and the predicted R̂0(t) in Italy measured by the TW-SIR prediction model.
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RQ3 experiment results. From September 2020 into the autumn and winter season, many countries have a sec-
ond wave of COVID-19 infections. We applied the TW-SIR model to the data from August to October 2020 for 
seven countries in the data set, and the measurement results are shown in the Table 6.

In South Korea and Brazil, the R0 value was less than 1, indicating a downward trend in the number of infec-
tions from September to October. For the exponential growth rate, only China and South Korea’s exponential 
growth rate is less than 0, and the average number of infected persons I(t) in these two countries is very small, 
which means that the development trend of the epidemic in these two countries is in a relatively stable state for 
a long time. Italy, Spain, Germany and Brazil have all seen a second wave of attacks, and the number of cases is 
rising.

In Italy, for example, Fig. 9 shows the trend change in the number of existing infections after the TW-SIR 
model was applied. The orange line is the actual number of infections, and the blue line is the predicted change 
in the number of infections. As can be seen from the figure, the number of existing infections showed a slow 
decline from July to early August 2020. The average value of R0 obtained by using the TW-SIR model during 

Figure 6.  The basic number of infections Ex(t) and the predicted basic number of infections Êx(t) of COVID 
in Italy measured by the TW-SIR prediction model.

Figure 7.  A single-day forecast of the number of infections in Italy. The orange curve represents the actual 
number of infections I(t) in Italy, and the blue curve represents the predicted number of infections Î(t).

Figure 8.  The forecast error of the single-day forecast of the number of infections in Italy.
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this period was 0.333, while the number of infected people gradually increased from August, with the average 
value of R0 being 1.551. The TW-SIR model successfully predicted the trend of the second wave of infection.

The trend of the number of infections in Italy from July to October shows an increase in the number of 
infections caused by the second wave. The blue line at the back end is the TW-SIR prediction curve (Fig. 10).

Discussion
Since the outbreak began in China, COVID-19 has spread to many countries and regions around the world. There 
have been 37,213,592 confirmed cases in 188 countries and regions on 11 October 2020. Different countries and 
regions have taken different measures to prevent and control the epidemic, such as closing cities, closing schools 
and quarantining people at home. As a result, the epidemic has developed at different levels. In previous stud-
ies, constants are usually used to measure parameters in epidemic transmission  models1,33–35, but it is difficult 
to measure the dynamic and real-time evolution of the epidemic. Different from the fixed parameters of the 
traditional SIR model, we use the time window to measure the model parameters dynamically and propose the 
TW-SIR model based on the time window. The advantage of the TW-SIR model is that it is more in line with the 
actual dynamic measurement of epidemic parameters. We applied the proposed TW-SIR model to historical data 
from 27 January to 2 July 2020 for China, South Korea, Italy, Spain, Brazil, Germany and France to measure the 
basic number of infections R0(t) and the exponential growth rate Ex(t) . Compared with the formula measure-
ment method proposed in  literature22, the measurement results of the TW-SIR model are closer to the reality.

As for the R0 values assessed, as shown in Table 6, Brazil has the highest R0 mean (5.136) and China has the 
lowest R0 mean (2.285) among the seven countries. Liu Ying et al. reviewed the R0 of COVID-19 in 12 studies and 
found that the estimated average R0 of COVID-19 was about 3.28, with a median of 2.79 and an IQR of 1.1632. Our 
R0 of seven countries average measurement results for the average, the R0 value of 3.656, and studies have found 

Table 6.  The measurement of the reproduction number and the exponential growth rate according to TW-SIR 
model.

China Korea South Italy Spain Brazil Germany France

R0 average value 1.009 0.581 1.551 1.272 0.97 1.576 1.293

Ex average value − 0.0074 − 0.03226 0.0235 0.033 0.0058 0.0187 0.0342

I(t) average value 374 2524 45,917 496,275 428,226 23,907 386,586

Figure 9.  A single-day forecast of the number of infections in Italy from February to October 2020.

Figure 10.  A forecast of the number of infections in Italy from October 2020.
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similar worth pointing out that measured value R0 is large, it is because we only select the parameter measure-
ment, seven countries outbreak spread of COVID—19th in various countries have differences, further studies 
are needed to confirm this measurement index of growth also illustrates some problems, in the selection of seven 
countries, only China’s exponential growth rate is negative, for other countries outbreak development degree 
and not to a fairly low level. This also shows that China has done a good job in prevention and control measures.

In order to show that our method is applicable to different epidemics, we also used epidemiological data 
for SARS in Beijing, China, from April 20, 2003 to June 23, 2003. Figure 11 shows the change curves of R0 and 
exponential growth rate Ex of the SARS in Beijing, China in 2003. Among them, the average number of basic 
infections transmitted by SARS in Beijing was 2.099 and the average exponential growth rate was − 0.02046. 
Compared with the spread of COVID-19 in China, R0 of SARS in the early stage of infection is about half of R0 
of COVID-19, and the exponential growth rate is about a quarter of that of COVID-19. This is consistent with 
the actual  situation32, indicating that COVID-19 spread more violently than the SARS in 2003. At the same time, 
the average rate of exponential growth was negative during the whole epidemic period, which ensured the end 
of SARS epidemic.

Our model has several limitations when it comes to parameter measurement and trend prediction of epi-
demic transmission processes. First, the model did not take account of asymptomatic infected persons because 
they are difficult to obtain and may be inaccurate. Second, another limitation of our study is that the methods 
we use in each part of the model may not be optimal, and there are better methods for solving the model and 
predicting the parameters.

Conclusion
With the outbreak of the epidemic in other countries and regions, COVID-19 has swept the world. In this study, 
we proposed a TW-SIR prediction model which is able to reflect the real-time trend of the epidemic in the process 
of infection for different areas, different policies and different epidemic diseases. Machine learning methods are 
applied to predict the basic number of infections R0 and the exponential growth rate of the epidemic Ex . And we 
conducted mathematical and numerical analyses for COVID-19. The numerical results shows that the model can 
effectively measure the real-time changes of parameters during the spread of epidemics, including the basic num-
ber of infections R0(t) and exponential growth rate Ex(t) . And error rate of predicting the number of COVID-19 
infections in a single day is within 5%. In general, the measurement of these parameters is of great significance 
for understanding the spread of COVID-19 and guiding the designation of control strategies and measures.

In addition, many countries have a second wave of COVID-19 infections from September 2020 into the 
autumn and winter season. From our analysis of outbreak data in Italy from July to October 2020, we found that 
the TW-SIR model can be adapted to the second peak of COVID-19. In terms of the parameters we measure, 
China and South Korea have maintained low R0 and exponential growth rates, while Italy, Spain, Brazil, Germany 
and France are mostly still on the rise. This means that the epidemic prevention and control measures need to 
be more stringent to ensure that the epidemic does not get out of control.

Last but not least, the TW-SIR model can also be applied in different epidemics such as SARS based on the 
experimental results. Although we lack the knowledge on the data of asymptomatic infection cases, our research 
results will provide some advice for the follow-up epidemic prevention and control.

Data availability
Publicly available datasets can be found here: https ://githu b.com/CSSEG ISand Data/COVID -19. SARS data in 
Beijing is Available at: https ://web.archi ve.org/web/20030 80108 3745/http://www.moh.gov.cn/zhgl/yqfb/index 
.htm. And our code and experimental data is publicly available at: https ://githu b.com/Rambo 55555 /TW-SIR.
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