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A comparative study to evaluate 
CT‑based semantic and radiomic 
features in preoperative 
diagnosis of invasive pulmonary 
adenocarcinomas manifesting as 
subsolid nodules
Yun‑Ju Wu1,8, Yung‑Chi Liu2,8, Chien‑Yang Liao1,8, En‑Kuei Tang3,4 & Fu‑Zong Wu1,4,5,6,7*

This study aims to predict the histological invasiveness of pulmonary adenocarcinoma spectrum 
manifesting with subsolid nodules ≦ 3 cm using the preoperative CT‑based radiomic approach. A 
total of 186 patients with 203 SSNs confirmed with surgically pathologic proof were retrospectively 
reviewed from February 2016 to March 2020 for training cohort modeling. The validation cohort 
included 50 subjects with 57 SSNs confirmed with surgically pathologic proof from April 2020 to 
August 2020. CT‑based radiomic features were extracted using an open‑source software with 3D 
nodular volume segmentation manually. The association between CT‑based conventional features/
selected radiomic features and histological invasiveness of pulmonary adenocarcinoma status 
were analyzed. Diagnostic models were built using conventional CT features, selected radiomic CT 
features and experienced radiologists. In addition, we compared diagnostic performance between 
radiomic CT feature, conventional CT features and experienced radiologists. In the training cohort 
of 203 SSNs, there were 106 invasive lesions and 97 pre‑invasive lesions. Logistic analysis identified 
that a selected radiomic feature named GLCM_Entropy_log10 was the predictor for histological 
invasiveness of pulmonary adenocarcinoma spectrum (OR: 38.081, 95% CI 2.735–530.309, p = 0.007). 
The sensitivity and specificity for predicting histological invasiveness of pulmonary adenocarcinoma 
spectrum using the cutoff value of CT‑based radiomic parameter (GLCM_Entropy_log10) were 
84.8% and 79.2% respectively (area under curve, 0.878). The diagnostic model of CT‑based radiomic 
feature was compared to those of conventional CT feature (morphologic and quantitative) and three 
experienced radiologists. The diagnostic performance of radiomic feature was similar to those of 
the quantitative CT feature (nodular size and solid component, both lung and mediastinal window) 
in prediction invasive pulmonary adenocarcinoma (IPA). The AUC value of CT radiomic feature was 
higher than those of conventional CT morphologic feature and three experienced radiologists. The 
c‑statistic of the training cohort model was 0.878 (95% CI 0.831–0.925) and 0.923 (0.854–0.991) in 
the validation cohort. Calibration was good in both cohorts. The diagnostic performance of CT‑based 
radiomic feature is not inferior to solid component (lung and mediastinal window) and nodular size 
for predicting invasiveness. CT‑based radiomic feature and nomogram could help to differentiate 
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IPA lesions from preinvasive lesions in the both independent training and validation cohorts. The 
nomogram may help clinicians with decision making in the management of subsolid nodules.

With the introduction of low-dose lung computed tomography for lung cancer screening worldwide in more 
recent years, there is an increasing number of non-smoking related lung cancer manifesting with subsolid 
nodules in Asian  population1–6. In 2011, the International Association for the Study of Lung Cancer (IASLC), 
the American Thoracic Society, and the European Respiratory Society introduced a novel classification system 
for lung adenocarcinoma spectrum lesions, dividing into pre-invasive lesions including atypical adenomatous 
hyperplasia (AAH) and adenocarcinoma in situ (AIS), minimally invasive (MIA) and invasive pulmonary adeno-
carcinoma (IPA)7,8. In recent years, several studies have investigated that generally adenocarcinoma spectrum 
lesions manifested as subsolid nodules (SSNs) have more indolent natural course, especially groundglass nodules 
(GGNs)9–11. However, the clinical behavior of these SSNs can be  diverse12. Therefore it is important to correctly 
diagnose these indolent lesions from invasive pulmonary adenocarcinomas preoperatively.

The present study aims at investigating the diagnostic performance of clinical characteristics, conventional 
CT features, and radiomic CT feature to differentiate invasive lesions from preinvasive lesions in subjects with 
SSNs. In addition, we compared diagnostic performance between radiomic CT feature and experienced radiolo-
gists. Validation and calibration were conducted to evaluate the performance of the CT-based radiomic model 
in the training and validation cohorts.

Material and method
Study cohort. The study population consisted of 186 subjects with 203 SSN pathologically proved and clas-
sified as pulmonary adenocarcinoma spectrum lesions according to the IASLC/ATS/ERS classification from 
February 2016 to March 2020 for training cohort modeling. The validation cohort included 50 subjects with 57 
SSNs confirmed with surgically pathologic proof from April 2020 to August 2020. The flowchart summarizes 
the study design and diagnostic performance by each approach shown in Fig. 1. The inclusion criteria were as 
follows: (1) patients with SSNs ≦ 30 mm in diameter; (2) patients who did not receive preoperative treatment 
prior to surgery; (3) patients who underwent surgical resection within 3 months of CT; and (4) the pre-operative 
chest CT scan with thin-slice thickness before surgical intervention (≦ 2.5 mm). The protocol of this study was 
approved by the Institutional Review Board (IRB) of Kaohsiung Veterans General Hospital, and the study was 
followed the guidelines of the Helsinki Declaration. All methods were performed in accordance with the relevant 
guidelines and regulations. Written informed consent was waived due to the retrospective study design by the 
IRB of Kaohsiung Veterans General Hospital (No. VGHKS19-CT6-19).

CT imaging protocol and acquisition. All preoperative chest CT scans were performed with a 16-slice 
CT (Somatom Sensation 16, Siemens Healthcare, Erlangen, Germany), a 64-slice CT (Aquilion 64; Toshiba Med-
ical Systems), and 256-slice CT (Revolution CT, GE Healthcare, Milwaukee, USA) from the lung apex to the base 
without contrast enhancement as described in the previous  study13. CT scans were acquired at full inspiration 
without contrast medium. The details of the scanning parameters using similar protocol for different vendors 
are listed as follows (Supplementary Table 1): Tube voltage, 120 kVp; body mass index (BMI)- dependent tube 
current 220  mAs to 350 mAs according to the BMI. Images were reconstructed with a section thickness of 
1–2.5 mm using soft tissue kernel algorithm (different CT protocols in detail shown in Supplementary Table 1).

Conventional CT features (qualitative and quantitative). The assessments of radiologic character-
istics were reviewed independently by two radiologists, who were blinded to the pathologic reports. Disagree-
ments were solved in consensus. The CT-based features were based the following qualitative and quantitative 
data. Qualitative features were as the followings: (1) nodular type according to Fleischer classification (GGNs 
manifest as haziness opacity in the lung that does not obliterate the bronchovascular bundle; part-solid nodules 
consist of both ground-glass opacity and solid components)14,15; (2) novel nodular type according to the novel 
classification (classification into pure GGN, heterogeneous GGN (partly consolidated on lung windows), and 
part-solid nodules (with a mediastinal window solid component) according to the previous prospective study 
proposed by Kakinuma et al.)10; (3) abnormal cystic-like space change (an example shown in Fig. 2); (4) Air-
bronchogram (an example shown in Fig. 3); (5) shape (smooth, lobulated or spiculated border); (6) round (oval 
or irregular). CT-based qualitative imaging features were recorded in consensus using long-axis diameter. Quan-
titative features were as the followings: (1) nodular size; (2) solid component in a mediastinal window; (3) solid 
component in a lung window. In addition, three readers were asked in the interpretation of each SSN according 
to 2 levels: preinvasive lesions or invasive lesions. A diagnostic performance comparison was conducted between 
radiomic CT feature and the three radiologists in the classification between preinvasive lesions and invasive 
lesions in the training cohort. 

Quantitative radiomic CT feature. Radiomic features of these 203 SSNs were extracted using the LifeX 
package (LifeX, version 5.10, Orsay, France, http://www.lifex soft.org) for nodule segmentation with volume of 
interest (VOI) of at least 64 voxels for training cohort  modeling16. The contours of these SSNs were delineated 
manually by an experienced thoracic radiologist. Regions of interest (ROI) were delineated around the nodule 
boundary for each section. A total of 41 features were derived from CT images and group according to intensity, 
shape, and second and higher-order features (Supplementary Table 2). For the histogram of the gray level dis-
tribution, the following features were extraction: the minimum, maximum, mean, and standard deviation of the 
Hounsfield units (HU) distribution. For first-order metrics extracted from the histogram, the following features 

http://www.lifexsoft.org
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Figure 1.  Overall study design flowchart for the training and validation cohorts and diagnostic performance by 
each approach.
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were extraction: SkewnessH, KurtosisH, EntropyH and EnergyH. For second order metrics calculated from co-
occurrence matrices: the following features were extraction: homogeneity, energy, contrast, correlation, entropy 
and dissimilarity. For higher-order metrics extracted from the grey-level histogram, the parameters included 
features of grey-level co-occurrence matrix (GLCM), neighborhood grey-level dependence matrix (NGLDM), 
grey-level run length matrix (GLRLM), and grey-level zone length matrix (GLZLM).

Pathologic evaluation. All surgical resected specimens were fixed in 10% formalin and embedded in par-
affin with haematoxylin and eosin staining for pathological diagnosis. The surgically resected SSNs specimens 
were histopathologically analyzed by two senior pathologists experienced in lung pathology classified as AAH, 
AIS, MIA, and IPA.

Figure 2.  A typical example case of subsolid nodule with abnormal cystic-like airspace in LUL. A 65-year-old 
man had a 2.1 cm part-solid nodule with spiculated border in LUL. The (A) axial and (B) coronal CT images 
showed an abnormally dilated cystic-like airspace inside the lesion. The patient underwent video-thoracoscopic 
lobectomy of LUL. Further pathologic report demonstrated invasive pulmonary adenocarcinoma in LUL, Stage 
T1cN0M0. LUL left upper lobe.

Figure 3.  A typical example case of subsolid nodule with an air bronchogram sign in LUL. A 61-year-old 
woman had a 1.4 cm part-solid nodule in LUL. The (A) axial and (B) coronal images showed an internal air 
bronchogram inside the lesion. The patient underwent video-thoracoscopic wedge resection of LUL. Further 
pathologic report demonstrated invasive pulmonary adenocarcinoma in LUL, Stage T1bN0M0. LUL left upper 
lobe.
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According to the revised lung adenocarcinoma (IASLC/ATS/ERS) classification of  20117,8. The discordant 
cases were subsequently discussed in a consensus meeting until a consensus was obtained. All SSNs were divided 
into two groups: a preinvasive lesions group (AAH, AIS and MIA lesions) and invasive lesions group (invasive 
adenocarcinoma lesions) according to the revised lung adenocarcinoma (IASLC/ATS/ERS) classification.

Interobserver agreement. To calculate the interobserver agreement of conventional CT feature, radiomic 
CT feature and radiologists, a random sample of 40 SSNs was investigated. The intraclass correlation coefficient 
(ICC) was used, and the ICC values were graded as follows: 0.0–0.20, slight; 0.21–0.40, fair; 0.41–0.60, moderate; 
0.61–0.80, substantial; 0.81–1.00, almost perfect agreement.

Statistical analyses. All statistical analyses were performed using SPSS 22.0 for Windows (SPSS Inc, Chi-
cago, IL) and Stata version 13.1 (StataCorp, College Station, Texas 77845 USA). Because all the continuous vari-
ables are normally distributed, Student’s t-test was used to test the differences between two groups. Continuous 
variables are presented as mean ± standard deviation (SD). Categorical variables were summarized as frequen-
cies and percentages and compared using the chi-square or Fisher exact test to examine differences in demo-
graphic characteristics. Univariate and multivariate logistic regression were used to determine these parameters 
for differentiating IPA lesions from preinvasive lesions. The results were expressed as an odds ratio (OR) with 
a 95% confidence interval (CI). Receiver operating characteristic (ROC) curve for the model was constructed, 
and the area under the curve (AUC) was calculated to compare the diagnostic performance of conventional CT 
features, radiomic CT feature and three experienced radiologists. In addition, sensitivity, specificity, PPV, NPV, 
positive LR (LR+) and negative LR (LR−) were calculated to measure the overall accuracy of the multiple tests. 
Calibration was assessed by the Hosmer–Lemeshow goodness-of-fit statistic and by calibration graphs plotting 
predicted IPA against the observed rates in deciles of predicted risk. A nomogram was established based on the 
radiomic parameter in the training cohort. The statistical significance for all tests was set at P < 0.05.

Result
Demographics and clinical characteristics. We retrospectively review thin-slice thickness images of 
203 SSNs in 186 subjects who had subsolid nodule(s) preoperatively and subsequently underwent surgical resec-
tion with pathologically confirmed adenocarcinoma spectrum lesions at our hospital within the three-month 
interval for the training cohort modeling. Of the 203 SSNs, 97 SSNs had pre-invasive lesions and 106 SSNs had 
invasive lesions.

Table 1 summarizes the patients’ characteristics in the training and validation cohorts.
For clinical characteristics, there were no significant differences in the percentage of sex ratio, smoking his-

tory, lesion location, cystic change, airbronchogram, shape, and round between these two groups. Compared 
with the validation cohort, there were no differences in age, nodular size, solid component_lung_window, and 
solid component_mediastinal_window in the training cohort shown in Table 1.

In the selected 12 features in this study cohort, there were no significant differences in the training cohort and 
validation cohort in terms of CONVENTIONAL_HUmean, CONVENTIONAL_HUstd, CONVENTIONAL_
HUQ2, CONVENTIONAL_HUQ3, HISTO_Entropy_log10, HISTO_Entropy_log2, GLCM_Entropy_log10, 
GLCM_Entropy_log2 (= Joint entropy), GLRLM_HGRE, GLRLM_SRHGE, GLZLM_HGZE, GLZLM_SZHGE 
shown in Table 2. Univariate and multiple logistic regression analyses of conventional CT characteristics and 
radiomic texture features in prediction of invasive lesions are shown in Table 3. The results of the univariate 
logistic regression model suggested that all conventional CT characteristics and radiomic texture features had 
significant association on the prediction of invasive lesions. Based on multiple logistic regression analyses, 
GLCM_Entropy_log10 was the only one independently important predictor for invasive lesions.

Table 4 shows the sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), 
likelihood ratio (LR) (+), and LR (−) values based on conventional CT features and radiomic features for invasive 
lesions prediction with SSNs. A comparison of diagnostic performance of conventional CT feature, radiomic 
texture features and three radiologists in prediction of invasive lesions are summarized in Table 5. Diagnostic 
performance showed that GLCM_Entropy_log10 was the best predictor for differentiating preinvasive lesions 
from invasive lesions. The optimal cut-off value for GLCM_Entropy_log10 in differentiating preinvasive lesions 
from invasive lesions was with a sensitivity of 84.80% and a specificity of 79.20% (PPV = 81.66%; NPV = 82.66%). 
In model 1, GLCM_Entropy_log10 had the largest AUC value of 0.878, which was significantly higher than those 
of the conventional CT morphologic characteristics (abnormal cystic-like space change: 0.542; air-bronchogram: 
0.764; shape: 0.823; round: 0.798). In the model 2, GLCM_Entropy_log10 had the similar diagnostic perfor-
mance with conventional quantitative CT features. Among these potential quantitative CT features predictive 
parameters, nodule size was the most sensitive sign. However, the solid components (mediastinal and lung 
window) were the two parameters with optimal balance between the sensitivity and specificity. To compare with 
diagnostic performance of radiomic features versus subsolid nodule’s classification system (Fleischer and novel 
classification system), the model 3 showed that GLCM_Entropy_log10 had the similar diagnostic performance 
with the novel SSN classification system. However, GLCM_Entropy_log10 had superior diagnostic performance 
over the Fleischer classification system in invasion lesion’s prediction.

In the model 4, GLCM_Entropy_log10 had the highest AUC value of 0.878, which was significantly higher 
than the AUC of the three experienced radiologists (radiologist 1: 0.692; radiologist 2: 0.806; radiologist 3: 0.759).

Validation and calibration of the GLCM‑based model and nomogram. The GLCM-based 
(GLCM_Entropy_log10) radiomic model was then evaluated in the training and validation cohorts to assess the 
performance of discrimination and calibration with the Hosmer–Lemeshow goodness-of-fit test. A nomogram 
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was constructed based on the regression model by the modeling strategies package in the Stata 13.1 software. We 
finally selected the GLCM-based feature (GLCM_Entropy_log10) to develop the radiomic nomogram in pre-
dicting IPA shown in Fig. 4. A GLCM-based (GLCM_Entropy_log10) radiomic nomogram showed good dis-
crimination and goodness‐of‐fit for the training cohort (area under the receiver operating characteristic curve: 
0.878 [95% CI, 0.831–0.925]; Hosmer–Lemeshow test, P = 0.202; calibration plot Fig. 5) and validation cohort 
(area under the receiver operating characteristic curve: 0.923 [95% CI, 0.854–0.991]; Hosmer‐Lemeshow test, 
P = 0.917; calibration plot Fig. 6).

Interobserver agreement. The ICC was as follows: for 12 selected radiomic features, the range of ICC of 
all parameters was 0.978–0.994. For qualitative CT feature, the range of ICC of all parameters was 0.660–0.765. 
For quantitative CT feature, the range of ICC of all parameters was 0.903–0.959. For pulmonary adenocarci-
noma spectrum classification, the range of ICC of three readers was 0.729–0.803.

Discussion
The heterogeneous behaviors of persistent subsolid nodules are most frequently encountered diagnostic and 
management dilemmas in the Asian lung cancer screening program with high prevalence of non-smoking 
related lung  cancers3,4,13,17,18. In addition, discrepancies in subsolid nodule categorization caused by disagree-
ment on presence of a solid component, which may lead to different clinical decision and  management19–21. In 

Table 1.  Patients’ demographic and clinical characteristics in the training and validation cohorts. GGN 
groundglass nodule, PSN part-solid nodule.

Training cohort (n = 203) Validation cohort (n = 57) P

Gender (n, %) 0.107

Male 58 (28.6%) 10 (17.9%)

Female 145 (71.4%) 46 (82.1%)

Age (year, n, %) 59.33 ± 9.45 60.54 ± 10.09 0.399

Smoking history (n, %) 0.511

No 177 (87.2%) 8 (80.0%)

Yes 26 (12.8%) 2 (20.0%)

Lesion location (n, %) 0.966

Right upper lobe 67 (33.0%) 20 (35.1%)

Right middle lobe 13 (6.4%) 4 (7.0%)

Right lower lobe 41 (20.2%) 13 (22.8%)

Left upper lobe 55 (27.1%) 13 (22.8%)

Left lower lobe 27 (13.3%) 7 (12.3%)

Nodular type (Fleischer classification, n, %) 0.124

GGN 68 (33.5%) 13 (22.8%)

PSN 135 (66.5%) 44 (77.2%)

Nodular type (Novel classification, n, %) 0.063

GGN 68 (33.5%) 13 (22.8%)

Heterogeneous GGN 19 (9.4%) 2 (3.5%)

PSN 116 (57.1%) 42 (73.7%)

Nodular size 1.639 ± 1.029 1.629 ± 1.048 0.950

Solid part_lung_window 0.728 ± 0.838 0.874 ± 0.827 0.289

Solid part_mediastinal_window 0.559 ± 0.849 0.683 ± 0.921 0.340

Cystic change (n, %) 0.098

0 187 (92.1%) 56 (98.2%)

1 16 (7.9%) 1 (1.8%)

Airbronchogram (n, %) 0.402

0 112 (55.2%) 35 (61.4%)

1 91 (44.8%) 22 (38.6%)

Shape (n, %) 0.868

Smooth 61 (30.0%) 19 (33.3%)

Lobulated 98 (48.3%) 27 (47.4%)

Spiculated 44 (21.7%) 11 (19.3%)

Round (n, %) 0.130

Oval 84 (41.4%) 30 (52.6%)

Irregular 119 (58.6%) 27 (47.4%)



7

Vol.:(0123456789)

Scientific Reports |           (2021) 11:66  | https://doi.org/10.1038/s41598-020-79690-4

www.nature.com/scientificreports/

this context, the texture analysis of subsolid nodules has been recognized in differentiating invasive pulmo-
nary adenocarcinomas from preinvasive lesions by quantitative assessment. To distinguish invasive pulmonary 
adenocarcinomas from preinvasive lesions is important in clinical decision making for lung cancer screening 
and subsolid nodule’s  management13,22,23. In this study, our study results demonstrated that GLCM-based feature 
(GLCM_Entropy_log10) was the independent predictor for invasive pulmonary adenocarcinomas prediction.

We built a nomogram based on the GLCM-based feature (GLCM_Entropy_log10) to predict IPA, and it 
showed good discrimination and goodness-of-fit.

Furthermore, our study results demonstrate the superior performance of the GLCM-based feature (GLCM_
Entropy_log10) over CT-based morphologic features in the study. The GLCM-based feature (GLCM_Entropy_
log10) yielded a significantly higher AUC for prediction of invasive pulmonary adenocarcinomas when compared 
to the CT-based morphologic features. Previous studies have demonstrated that the solid component is the 
major determinant in prediction of invasive degree of the lung adenocarcinoma spectrum  lesions24–26. These 
results are in line with our above findings. In addition, our study result demonstrated that GLCM-based feature 
(GLCM_Entropy_log10) has similar diagnostic performance to solid component (mediastinal window or lung 
window) in prediction of invasive lesions. In contrast to computer-aid texture quantitative analysis, CT-based 
quantitative and qualitative features perceived by naked eye will lead to a large inter-observer variability depended 
on  radiologists27. In addition, imaging interpretation by the visual process through the naked eye could not fully 
understand the underlying biological heterogeneity of subsolid nodules. These findings suggest that texture 
analysis as a non-invasive, mathematical quantitative method of assessing that biological heterogeneity within 
the subsolid nodules might be of clinical relevance in predicting the pathologic invasiveness of the lesions of the 
pulmonary adenocarcinoma spectrums.

Table 2.  Selected radiomic features of the study population with SSNs in the training and validation cohorts. 
HU hounsfield unit, GLCM gray-level co-occurrence matrix, GLRLM grey-level run length matrix, HGRE high 
grey-level run emphasis; SRHGE: short-run high grey-level emphasis, GLZLM grey-level zone length matrix, 
HGZE high grey-level zone emphasis, SZHGE short-zone high grey-level emphasis.

Training cohort (n = 203) Validation cohort (n = 57) P

CONVENTIONAL_HUmean  − 510.667 ± 163.021  − 484.854 ± 158.844 0.290

CONVENTIONAL_HUstd 175.195 ± 67.379 180.957 ± 64.327 0.565

CONVENTIONAL_HUQ2  − 521.009 ± 176.907  − 492.524 ± 182.305 0.287

CONVENTIONAL_HUQ3  − 385.738 ± 217.710  − 355.428 ± 210.364 0.351

HISTO_Entropy_log10 1.757 ± 0.187 1.775 ± 0.159 0.516

HISTO_Entropy_log2 5.837 ± 0.621 5.895 ± 0.529 0.516

GLCM_Entropy_log10 2.974 ± 0.436 2.997 ± 0.423 0.727

GLCM_Entropy_log2 (= Joint entropy) 9.880 ± 1.450 9.956 ± 1.404 0.727

GLRLM_HGRE 3047.072 ± 1936.843 3302.469 ± 1898.093 0.378

GLRLM_SRHGE 2960.436 ± 1832.796 3208.952 ± 1825.607 0.367

GLZLM_HGZE 2909.645 ± 1736.698 3146.723 ± 1668.209 0.360

GLZLM_SZHGE 2312.917 ± 1352.563 2502.086 ± 1393.449 0.355

Table 3.  Univariate and multivariate logistic regression model to differentiate invasive lesions from 
preinvasive lesions. HU hounsfield unit, GLCM gray-level co-occurrence matrix, OR odds ratio, GLZLM grey-
level zone length matrix, SZHGE short-zone high grey-level emphasis.

Characteristic

Univariate logistic regression Multivariate logistic regression

OR (95% CI) P OR (95% CI) P

CONVENTIONAL_HUmean 1.016 (1.012–1.021) < 0.001 0.998 (0.984–1.013) 0.835

GLCM_Entropy_log10 127.825 (33.639–485.725) < 0.001 38.081 (2.735–530.309) 0.007

GLZLM_SZHGE 1.002 (1.002–1.003) < 0.001 1.002 (1.000–1.004) 0.061

Nodular size 5.119 (3.039–8.623) < 0.001 1.017 (0.330–3.134) 0.977

Solid component_lung_window 28.368 (11.126–72.328) < 0.001 1.474 (0.159–13.688) 0.733

Solid component_mediastinal_window 452.340 (56.553–3618.028) < 0.001 0.925 (0.126–6.764) 0.938

Nodular type (Fleischer classification) 29.524 (11.740–74.244) < 0.001 1.928 (0.309–12.008) 0.482

Nodular type (Novel classification) 11.233 (5.896–21.400) < 0.001 0.826 (0.281–2.433) 0.729

Abnormal cystic-like space change 4.380 (1.208–15.875) 0.025 0.840 (0.088–8.034) 0.880

Air-bronchogram 10.882 (5.581–21.220) < 0.001 0.588 (0.161–2.143) 0.421

Shape 11.918 (5.896–24.091) < 0.001 0.823 (0.202–3.363) 0.787

Round 17.037 (8.322–34.877) < 0.001 3.068 (0.765–12.307) 0.114
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Previous studies have utilized different models of radiomic score to distinguish invasive pulmonary adeno-
carcinomas from preinvasive lesions that present as subsolid nodules ≦ 3 cm28–32. However different models 
with several different extracted radiomic features are  utilized33–35. Therefore, the verification of research results 
is difficult to apply in the real world due to complex radio-score models. In the present study, we use a single 
simplified approach of the radiomic feature parameter in identifying the pathologic invasiveness of lung adeno-
carcinoma lesions and comparison with the performance of the conventional CT morphologic features and 
experienced radiologists. To the authors’ knowledge, no published studies have comprehensively investigated the 

Table 4.  The diagnostic performance based on conventional CT features and radiomic features for invasive 
lesions prediction with SSNs. SSN subsolid nodule, AUC  area under curve, HU hounsfield unit, GLCM 
gray-level co-occurrence matrix, GLZLM grey-level zone length matrix, SZHGE short-zone high grey-level 
emphasis, PSN part-solid nodule.

Algorithm model Cut-off AUC (95% CI) Sensitivity Specificity Positive LR Negative LR PPV % NPV %

CONVENTIONAL_
HUmean − 519.7558 0.910 (0.862–0.946) 75.2 89.6 7.22 0.28 88.76 76.78

GLCM_Entropy_
log10 2.963 0.878 (0.831–0.925) 84.8 79.2 4.07 0.19 81.66 82.66

GLZLM_SZHGE 2186.5562 0.922 (0.876–0.955) 80.0 89.6 7.68 0.22 89.37 80.39

Nodular size 1.04 0.852 (0.796–0.898) 94.3 64.9 2.69 0.087 74.59 91.25

Solid component_
lung_window 0.4 0.900 (0.851–0.938) 90.6 84.5 5.86 0.11 86.46 89.16

Solid component_
mediastinal_window 0.09 0.916 (0.869–0.950) 89.6 84.5 5.80 0.12 86.33 88.15

Nodular type (Fleis-
cher classification) PSN 0.791 (0.729–0.845) 94.3 63.9 2.61 0.089 74.05 91.12

Nodular type (Novel 
classification) PSN 0.854 (0.798–0.900) 91.5 77.3 4.03 0.11 81.49 89.28

Abnormal cystic-like 
space change (+) 0.546 (0.475–0.616) 12.3 96.9 3.97 0.91 81.25 50.28

Air-bronchogram (+) 0.761 (0.697–0.818) 69.8 82.5 3.98 0.37 81.33 71.43

Shape spiculated 0.823 (0.763–0.873) 92.5 54.6 39.35 0.60 69.00 86.95

Round Irregular 0.795 (0.733–0.848) 86.8 72.2 3.12 0.18 77.33 83.35

Table 5.  Comparison of ROC curves for radiomic feature, conventional CT feature and radiologists in 
differential diagnosis of invasive lesions versus preinvasive lesions. ROC receiver operating characteristic, AUC  
area under curve, GLCM gray-level co-occurrence matrix.

AUC (%) Sensitivity (%) Specificity (%) P

Model 1: Conventional CT morphologic feature

GLCM_Entropy_log10 (reference) 0.878 84.8 79.2

Abnormal cystic-like space change 0.542 12.3 96.9  < 0.001

Air-bronchogram 0.764 69.8 82.5  < 0.001

Shape 0.823 92.5 54.6 0.049

Round 0.798 86.8 72.2 0.008

Model 2 Conventional quantitative CT feature

GLCM_Entropy_log10 (reference) 0.878 84.8 79.2

Nodular size 0.855 94.3 64.9 0.319

Solid component_lung_window 0.899 90.6 84.5 0.385

Solid component_mediastinal_window 0.915 89.6 84.5 0.104

Model 3 Nodular classification

GLCM_Entropy_log10 (reference) 0.878 84.8 79.2

Nodular type (Fleischer classification) 0.789 94.3 63.9 0.002

Nodular type (Novel classification) 0.853 91.5 77.3 0.318

Model 4 Radiologist performance

GLCM_Entropy_log10 (reference)

Reader 1 0.692 41.0 97.9  < 0.001

Reader 2 0.806 78.3 82.5  < 0.001

Reader 3 0.759 52.8 98.9  < 0.001

All readers 0.753 57.4 93.1  < 0.001
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difference of the diagnostic performance between the simplified radiomic parameter, conventional CT features 
and radiologists. In this model established with only one simplified texture feature generated for this study, the 
sensitivity, specificity, and AUC were 84.8%, 79.2% and 0.878 (95% CI 0.831–0.925), respectively. There was 
significant difference (abnormal cystic-like space change, p < 0.001; air-bronchogram, p < 0.001; shape, p = 0.049; 
round, p = 0.008) in the AUC between the models based on only one simplified texture feature and conventional 
CT morphologic features. In addition, the diagnostic performance of our model with only one simplified texture 
feature was higher than those of all three radiologists (all three readers, p < 0.001). In this study, our study result 
is in line with high intra-tumor heterogeneity associated with high entropy, suggestive of progression and inva-
siveness degree of adenocarcinoma spectrum lesions. Previous studies have demonstrated that histogram-based 
75th–90th percentile CT numbers and entropy were best predictors to distinguish between IPA and AIS-MIA36. 
In addition, we identify only one simplified second-order GLCM-based quantitative statistical texture parameter 
which represents the whole-tumor texture feature to significantly differentiate invasive lesions from preinvasive 
lesions. In this study, the manual segmentation of SSNs usually takes 3 min delineated in a dozen of slices.

Figure 4.  Nomogram to predict the possibility of invasive pulmonary adenocarcinoma lesions based on 
GLCM-based feature (GLCM_Entropy_log10). To use the nomogram, an individual participant’s value is 
located on each variable axis, and a line is drawn upward to determine the number of points received for each 
variable value. The sum of these numbers is located on the total points axis to determine the possibility of 
invasive pulmonary adenocarcinoma lesions.

Figure 5.  Calibration curves of the nomogram for predicting invasive pulmonary adenocarcinoma lesions from 
the training cohort. The Hosmer–Lemeshow test had a p value of 0.202 in the training cohort.
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In the future, a deep-learning based automatic nodule segmentation can be used to extract this specific 
GLCM-based feature, and therefore to develop a computer-aided detection system to assist clinical decision-
making in differentiation IPA lesions from preinvasive lesions.

The main strength of this study is that we established a simplified radiomic signature based on only one-
second order statistical radiomic feature, which showed better diagnostic performance in differentiation of IPA 
from pre-invasive lesions compared with those of conventional CT morphologic model or experienced three 
radiologists.

In addition, GLCM-based feature (GLCM_Entropy_log10) has similar diagnostic performance to solid 
component (mediastinal window or lung window) in prediction of invasive lesions. However, our study has 
several limitations. First, there as a potential of patient selection bias due to the retrospective single-site study. 
Further validation of these results in prospective multi-center studies is warranted. Second, nodule segmenta-
tion was performed manually by experienced radiologists, which may significantly contribute to interobserver 
 variability27. However, the results of interobserver variability was very low according to our preliminary report 
based on 40 cases. Third, different CT vendors with lack of standardization of scanning parameters would limit 
the external validity and generalizability of study results in the real-world  practice37–40. However, all the study 
subjects in our study were performed with thin slice thickness of ≦ 2.5 mm that had met ACR accreditation for 
LDCT imaging protocols.

Conclusion
In conclusion, a simplified radiomic signature and nomogram based on GLCM-based feature (GLCM_Entropy_
log10) could help to differentiate invasive lesions from pre-invasive lesions groups. For invasive lesion’s predic-
tion, the value of GLCM-based feature (GLCM_Entropy_log10) higher than 2.963 yielded the optimal discrimi-
nation between invasive and preinvasive lesions groups, with a sensitivity and specificity of 84.8% and 79.2%, 
respectively. In addition, radiomic feature may provide superior diagnostic performance compared with those 
of morphologic CT features and radiologists. The nomogram may help clinicians with decision making in the 
management of subsolid nodules.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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