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Local scattering ultrasound 
imaging
Alexander Velichko*, Eduardo Lopez Villaverde & Anthony J. Croxford

Ultrasonic imaging is a widely used tool for detection, localisation and characterisation of material 
inhomogeneities with important applications in many fields. This task is particularly challenging when 
imaging in a complex medium, where the ultrasonic wave is scattered by the material microstructure, 
preventing detection and characterisation of weak targets. Fundamentally, the maximum information 
that can be experimentally obtained from each material region consists of a set of reflected signals for 
different incident waves. However, these data are not directly accessible from the raw measurements, 
which represent a superposition of reflections from all scatterers in the medium. Here we show, that 
a complete set of transmitter–receiver data encodes sufficient information in order to achieve full 
spatio–temporal separation of transmitter–receiver data, corresponding to different local scattering 
areas. We show that access to the local scattering data can provide valuable benefits for many 
applications. More importantly, this technique enables fundamentally new approaches, exploiting 
the angular distribution of the scattering amplitude and phase of each local scattering region. Here 
we demonstrate how the local scattering directivity can be used to build the local scattering image, 
releasing the full potential and richness of the transmit–receive data. As a proof of concept, we 
demonstrate the detection of small inclusions in various highly scattering materials using numerical 
and experimental examples. The described principles are very general and can be applied to any 
research field where the phased array technology is employed.

Ultrasonic imaging and the associated detection inside a random scattering medium is an indispensable tool in 
many practical applications across a broad range of fields, for example, in utero monitoring or weld inspection. 
However, this is a fundamentally challenging task because of coherent scattering noise, which is induced by the 
material’s microstructure and small material changes on the ultrasonic propagation path, resulting in low con-
trast. Recent advances in ultrasonic imaging have been based on the use of phased arrays. The ability to control 
the phase of each array element makes it possible to physically focus the incident wave at an arbitrary location 
inside the material. Alternatively, the transmit–receive array data can be collected using unfocused excitations, 
and then an image can be formed in post-processing by applying an imaging algorithm to the measured data. 
Two most common data acquisition schemes correspond to firing each array element  individually1,2 (this process 
is also known as the Full Matrix Capture (FMC) in the field of non-destructive testing), or to firing all array 
elements with appropriate time-delays in order to generate a plane incident  wave3–5 (plane wave imaging, PWI).

The ultimate goal of imaging is to obtain the maximum possible information about each local region inside 
the medium. This includes detection, localisation and characterisation (for example, estimation of the size and 
material properties of the local feature). Recently, several methods based on the full transmitter–receiver data 
have been proposed, aiming to improve imaging and characterisation of scattering  materials6–21. However, these 
techniques make use of only some specific properties of the measured response and do not exploit the full infor-
mation contained in the transmitter–receiver dataset. On the other hand, multi-element array measurements 
essentially represent the transmitter–receiver datasets corresponding to each local scattering area. Importantly, 
the local array data contains information about the angular distribution of the scattering amplitude and phase. 
Access to these local scattering characteristics could provide significant benefits for many applications in a 
diverse range of fields, including detection of weak targets and material  characterisation14–17,22. However, in a 
scattering material the transmitter–receiver response at each time instance contains a superposition of signals 
from all scatterers in the material, so the local transmit–receive dataset is not directly available from the raw 
array data (Fig. 1a).

Spatial selectivity can be achieved by performing dynamic focusing in transmission and reception, which 
transforms the measured array data into a reconstruction image where the scatterers can be spatially localised. 
Among many different imaging methods, delay-and-sum (DAS) is the most common approach being used for 
medical imaging and non-destructive testing applications, because of its low complexity, robustness and real-
time imaging capability. The image value at each pixel is given by the summation of all transmitter–receiver 
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signals with appropriate time-delays, and the image amplitude provides an estimation of the average reflectivity 
of the scatterers. However, the information about phase and amplitude distribution for each local scattering 
area is lost in this irreversible image formation process. In other words, it is generally impossible to convert a 
conventional image (for example, 2D delay-and-sum image obtained using 1D linear phased array) back into 
transmitter–receiver array data without making some specific assumptions about the scattering mechanism. For 
example, a common approach is to consider each image pixel as an omni-directional point scatterer with the 
reflectivity equal to the image amplitude.

The reversible imaging  concept23 allows this problem to be overcome and is illustrated in Fig. 1. Firstly, the 
complete transmit–receive array data is mapped from the raw (xT , xR , t) domain (here xT , xR are positions of 
transmitter and receiver array elements and t is time) into the imaging domain, (xT , xR, z) , with independent 
transmit and receive focusing points xT , xR at each depth z (Fig. 1b). The obtained image is referred to as a gen-
eralised image, because it contains much more information, than is available from the conventional reflectivity 
image. Indeed, the conventional image corresponds to the main diagonal of the generalised image, xT = xR . 
However, the off-diagonal part is crucial for the inverse imaging operation. Moreover, by using the off-diagonal 
data it is possible to estimate the multiple-scattering  rate24,25, and the focusing quality of the  image25. In this paper 
we use the back-propagation of angular spectrum imaging  algorithm23,26, where all data processing steps are 
performed using Fourier transforms and, therefore, are fully reversible. Note, that the back-propagation and the 
inverse imaging methods can also be represented in the delay-and-sum form with some weighting  coefficients27 
(also see Supplementary Information). In the second step, the generalised image area corresponding to the local 
region-of-interest is spatially filtered from the whole image and converted back into the raw array data domain 
by applying inverse imaging operations (Fig. 1c). The resulting local array data corresponds to the geometry 
where only one local scattering area is present in the otherwise homogeneous material, and, therefore, provides 
full spatio-temporal separation of responses from different scatterers in the medium (Fig. 1d).

The described principle is very general and can be applied to any field where phased array technology is used 
or available. One immediate benefit is the possibility of using existing signal processing methods, which were 
developed under the assumption of a limited number of scatterers inside the observed medium. For example, 
it was shown that localisation of scatterers with resolution better than the classical diffraction limit (super-
resolution) is achievable using multiple signal classification (MUSIC) and decomposition of the time-reversal 
operator (DORT)  techniques28,29, but only when the number of scatterers is smaller than the number of array 
elements. However, these methods become less effective or fail if applied to the complete transmit–receive data, 
corresponding to the whole imaging region.

More importantly, access to the local transmit–receive data makes it possible to apply fundamentally new 
imaging approaches, one of which is the main subject of this paper. The extracted local array data can be pro-
cessed further in order to obtain specific properties of the local scattering region. In this paper, the local array data 
is converted into the far-field scattering amplitude (see Supplementary Fig. 1), which is also called the scattering 

Figure 1.  Reversible imaging concept. (a) Transmit–receive array data are collected by firing each array element 
and using all elements on reception. The data represents superposition of reflections from multiple scatterers in 
the material. (b) Transmit–receive data is converted into the generalised image with independent transmit and 
receive focusing points xT and xR . The data corresponding to each scattering area is localised in the vicinity of 
the main diagonal xT = xR . (c) A spatial filter is applied to the generalised image in order to isolate responses 
from the local scattering area. (d) The filtered generalised image is then converted back into array data, 
providing isolated transmit–receive signals for the local scattering area.
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matrix, and has been extensively used for the characterisation of small (order of wavelength)  scatterers22,30–32. In 
general, the scattering amplitude is a complex valued function of incident angle, scattered angle and frequency. 
The advantage of this step is that effects related to the measurement system, such as array element directivity and 
geometrical beam-spreading, are separated from the local scattering amplitude. Therefore, contrary to the image 
or the local array data, the scattering matrix represents the fundamental characteristic of the local scattering 
area alone and does not depend on the parameters of the array. As such this represents the fullest description of 
a material region and this paper explores how the extra information may be leveraged.

The scattering amplitude extraction can be performed for every location in the material, complementing the 
delay-and-sum image. It fully exploits the richness of the transmit–receive array data allowing access to infor-
mation about the local physical properties beyond that available from conventional images. Here we show how 
to use this information to build a local scattering image and to improve detectability of weak inclusions. Both 
simulations and experimental results verify the superior performance of the proposed method and demonstrate 
its power over conventional image based detection approaches.

This paper is organized as follows. In the “Methods” section the general principle of the proposed local scat-
tering imaging method is introduced and illustrated on the simulated example of a weak inclusion in highly scat-
tering material. Then the performance of the method is evaluated on experimental data obtained from fabricated 
scattering samples with various imbedded inclusions in the “Results” section. The limitations and important 
implementation details of the local scattering method are considered in the “Discussion” section. The paper is 
complemented by the Supplementary information, which contains detailed mathematical formulations of the 
scattering matrix extraction algorithm and applied statistical data analysis.

Methods
Imaging algorithm and scattering matrix extraction. The fundamental concept of the proposed 
imaging method is to use the vast amount of information encoded in the scattering matrix for detection of weak 
inhomogeneities inside scattering media. In this context our goal is to obtain a quantitative measure of probabil-
ity that the scattering behaviour of the local area can be explained by the background material microstructure. 
The approach is illustrated using simulated data in Fig. 2. A finite-element (FE) 2D model was implemented in 
the Pogo software  package33. The material properties were chosen close to those of copper with the longitudinal 
sound speed of 4690 m/s and a mean grain size of 100 µm . These values were selected due to the highly scatter-
ing nature of such a material, enabling exploration of the basic approach. The backscattered signals in this case 
are generated by ultrasonic scattering at the grain boundaries. The full matrix capture data were generated for a 
2.5 MHz 64-element linear array (0.5 mm pitch) in the direct contact configuration (as shown in Supplementary 
Fig. 1a) and the imaging was performed in the area (x, z) ∈ [−15, 15] × [10, 30]mm directly below the array, 
where the centre of the array is at the origin.

The forward and inverse imaging operators were based on the back and forward propagation of the angular 
spectrum of transmit–receive array data. One efficient numerical implementation was to compute images in 
the Fourier domain using the fast Fourier transform  algorithm23,34,35. Alternatively, we used the equivalent 
delay-and-sum representation (see Supplementary Information). This approach was implemented on a graphics 
processing unit (GPU) with the CUDA programming model and run on MATLAB (The MathWorks Inc., Mas-
sachusetts, USA). The computer was a standard desktop with Intel Core i7-6700 CPU @3.4GHz (16 GB RAM) 
and an NVIDIA GPU GeForce GTX 1060 (6 GB RAM). This implementation enabled a high extraction rate of 
30 local scattering amplitudes per second for a 64-element array, significantly reducing the computation time.

A 2 mm diameter inclusion (with the same elastic constants as the background material, but increased density, 
so the longitudinal velocity decreased by 21% relative to the velocity in the background material) was placed at 
a depth of 20 mm directly below the array centre. Scattering matrices, S(r) , were extracted at 1 MHz from each 
location, r , of the image with 2 mm steps using a 7 mm× 7 mm× 7 mm cubic window (7 mm = 1.5 wavelengths 
at 1 MHz) in the generalised image domain (Fig. 2a). The choice of frequency and spatial sampling window 
size is very important and is based on the requirement to operate predominantly in the single scattering regime 
(see “Discussion” and Supplementary Information for more details). In all cases, we used real and imaginary 
parts of the extracted complex valued scattering amplitude, therefore taking into account both its magnitude 
and phase. Finally, the scattering amplitudes were normalised by the average image speckle intensity at each 
 depth36, compensating for the effect of material attenuation (see Supplementary Information and Supplementary 
Fig. 2). Technical details of the scattering matrix extraction method are given in Supplementary information 
(Supplementary sections 1, 2, 3 and 4).

Statistical analysis. A probability value, p(S(r)|H0) , was assigned according to how likely the measured 
scattering matrix S(r) is to occur under the null hypothesis, H0 , that there are no inclusions in the material 
distinct from the random variations of the background microstructure. This is the p-value of the scattering 
matrix, which can be expressed as p(r) = 1− Pcdf (r, S) for the one-tailed test, where Pcdf (r, S) is the cumulative 
distribution function of background scattering matrices at the location r (Fig. 2b). In order to estimate the prob-
ability distribution Pcdf (r, S) , array datasets for 250 different grain structure realisations without inclusions were 
simulated. The statistical distribution of scattering matrices is convenient to study in the principal component 
space, which is defined by applying principal component analysis to the database of the background scattering 
 matrices22.

The normalised distance, dpc , in the principal component space was defined as
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Figure 2.  Local scattering imaging: principle and numerical example. (a) Local transmitter–receiver data is extracted 
from every location of reference samples and converted into local scattering matrices. Only absolute values of complex 
scattering matrices are shown. (b) Scattering matrices are converted into the principal component space and its distribution is 
characterised by the normalised distance dpc . The gray sphere in the principal component space corresponds to the value of 3 
standard deviations, sn/σn = 3 . The cumulative distribution function is estimated, and p-value is assigned to each scattering 
matrix. Finally, p-values are mapped into the standard normal distribution. Blue markers correspond to the scattering matrix, 
extracted from the test sample with the inclusion. (c) Local scattering amplitudes are extracted from every location of the test 
sample (shown by the green dots), converted into the local principal component space and then into the standard normal 
distribution (z-scores) using mapping shown in Fig.2b. The resulting local scattering image represents a Gaussian random 
field. (d) The same principle can be applied to any imaging parameter, including delay-and-sum image amplitude. This allows 
the display of different images (delay-and-sum and local scattering image) on the same scale and defined global false alarm 
rate (shown as the second colorbar).
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and was used as the statistical parameter of the distribution (see Fig. 2b). In this expression sn and σn are the n-th 
principal component coefficient of the scattering matrix S and its standard deviation, respectively. The number 
of principal components used, N, was determined according to the condition σn/max

n
(σn) ≤ 0.1.

The cumulative distribution function, Pcdf (r, dpc) , was estimated at each location from the reference data-
set, and p-images p(r) were calculated. Note, that the Pcdf  was determined experimentally up to an amplitude 
threshold, corresponding to Pcdf = 0.9 . The tail of the distribution, which is the most important for the prob-
ability of false alarms analysis, was approximated by fitting the Weibull distribution function to the top 10% of 
samples in the  database37.

Global false alarm rate. The detection criterion is based on the threshold (significance) level for the 
p-value. Note, that p(r) gives the local probability of false alarms (the false positives rate) at the point r . However, 
the detection is performed on the whole image, so it is more appropriate to use a global threshold (global prob-
ability of false alarms) for the entire image. The global false alarm rate represents a probability that at least one 
pixel in the image exceeds a given threshold. This is the problem of multiple comparisons. The difficulty in this 
case lies in the fact, that neighbouring pixels in the image are not independent due to the finite size of the point 
spread function, so the conventional Bonferroni correction is too conservative. One alternative is to experimen-
tally estimate the global false alarm rate as a function of threshold from the reference array data. However, in 
practice this is not always possible, especially for small false alarm probabilities, because of the relatively small 
number of reference samples. Instead, p-values were mapped into the standard normal distribution by the fol-
lowing operator, giving the z-score image zS(r) (see Fig. 2b):

where Pcdf ,N(0,1)(x) = 0.5
[

1+ erf(x/
√
2)
]

 is the cumulative distribution function of the standard normal dis-
tribution, and erf(x) is the error function.

The main benefit of this transformation is that the image zS(r) represents the Gaussian random field. For the 
Gaussian random field an analytical expression for the global probability of false alarms, pz(zS(r)) , was derived by 
Worsley et al.38, which parametrically depends on the number of the resolution elements, or resels, in the imag-
ing area. The resel size can be approximated as the full-width at half-maximum of the point spread  function38. 
Alternatively, we estimated the false alarm rate using images obtained from all reference datasets. However, 
this approach could not be used to reliably define the threshold for low probabilities of false calls because of 
the small number of reference images. We then determined the resel size by fitting the analytical expression to 
the estimated probability of false alarm curve (Supplementary Fig. 4 and Supplementary Table 1). After that, 
the threshold for any value of the global probability of false alarm ppfa was calculated as the inverse mapping 
zS = p−1

z (ppfa) (see Supplementary Fig. 4a).

Local scattering image. The image obtained using the described procedure provides quantitative infor-
mation about local scattering properties of the material, and, therefore, is referred to as a local scattering image, 
or S-image (Fig. 2c). Note that the z-score can also be interpreted as the Contrast-to-Noise ratio (CNR). Indeed, 
the Contrast-to-Noise ratio can be defined as a ratio of the difference between the signal and average noise and 
the standard deviation of the noise. For the standard normal distribution the mean is zero and the standard 
deviation is one, so the Contrast-to-Noise ratio in this case equals the signal, or the z-score.

The described approach is very flexible and can be applied to any imaging parameter, including the image 
amplitude. This allows definition of the global false alarm rate for delay-and-sum images, and display of delay-
and-sum and local scattering images on the same scale, providing a direct quantitative comparison of the newly 
developed approach to current best practise. Fig. 2d shows the resulting delay-and-sum and local scattering 
images for the considered case of the inclusion in grainy material. It can be seen that the inclusion is totally 
undetectable in the conventional image. On the contrary, the local scattering image provides enough sensitivity 
to clearly detect the inclusion. The superior performance of the local scattering method is further highlighted by 
the peak image value of 4.1, which corresponds to a global false alarm rate of 0.3% . In contrast, the peak value 
of the normalised delay-and-sum image is 2.3, which corresponds to a global false alarm rate of nearly 100% 
(Supplementary Fig. 4a). Therefore, the improvement in the local scattering image in this case is more than two 
orders of magnitude in terms of the false alarm rate.

In order to study statistical performance of the local scattering imaging method, 10 different inclusion types 
with various sound speeds and 100 different realisations of grain structure for each inclusion type were modelled. 
The results are presented in Supplementary Fig. 5.

Results
For the experimental measurements we fabricated samples using two-component (base plus curative) mold rub-
ber systems (Smooth-on, Inc., Pennsylvania, USA). As the first experimental demonstration we performed meas-
urements on a cast silicone-rubber sample (Ecoflex 00-50 series, cure time 3 hours) of 90 mm × 90 mm× 30 mm 
size, uniformly mixed with fine sand (0.5 mm average grain size). In mixing sand into the component it was 
possible to control the level of scattering to recreate noisy materials, while being able to reliably embed inclusions 
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(something historically challenging with engineering parts). The density and the sound velocity of the solidi-
fied rubber were 1.3 g/cm3 and 1025 m/s, respectively. The density of the sand in the fabricated samples was 
10−2 g/cm3 , which corresponded to 1 g of sand per 100 ml of the liquid silicone-rubber solution. The sample 
contained two rows of 4 inclusions, which were fixed on steel pins of 0.55 mm diameter at 10, 15, 20 and 25 mm 
depths. All inclusions were 3 mm diameter and were cut from the same material, but with 3 times higher sand 
density, resulting in different scattering at the inclusions. The full dataset of transmitter–receiver signals was 
collected using a 64 element 2.5 MHz linear array with 0.5 mm pitch, 0.15 mm inter element spacing, 15 mm 
element elevation (Imasonic, Besancon, France) and 10 MHz sampling frequency. All measurements were per-
formed in a direct contact configuration with ultrasonic gel as a couplant.

Reference data were collected by scanning the array over the part of the sample without inclusions. The array 
was scanned along the sample, then rotated by 90◦ and scanned again with a 5 mm step. In total 75 reference 
datasets were acquired.

The local scattering data were extracted from the imaging area −15 mm ≤ x ≤ 15 mm , 5 mm ≤ z ≤ 25 mm 
with a 0.5 mm step. The local scattering images were then interpolated into a finer grid with 0.1 mm step using 
sinc interpolation. An angular filter of 30◦ was applied to the array data and the scattering amplitudes were 
extracted in the angular range of ±30◦ . This filtering helped to suppress noise and aliasing artifacts related to the 
array elements undersampling (with the arrays not being designed for this material so being incorrectly sampled) 
but had relatively small effect on the image  resolution39.

A Gaussian frequency filter with center frequencies of f = 1.2, 1.5, 1.8 MHz and a 100% fractional bandwidth 
was applied to the measured data, and local scattering and delay-and-sum images were constructed using the 
procedure described in the previous section, and illustrated in Fig. 2, at each frequency. Then the images at differ-
ent frequencies were fused together by taking the maximum image amplitude (z-score) at each pixel, equivalent 
to taking the minimum p-value. Fused images were again converted into z-scores by evaluating the cumulative 
distribution function, and the global probability of false alarm as a function of the amplitude threshold was deter-
mined in each case (see Supplementary Fig. 4b). The results of this experiment are summarised in Figs. 3 and 4. 

Figure 3.  Experimental example of local scattering imaging: silicone-rubber sample. Examples of local 
scattering and delay-and-sum images of inclusions located at different depths inside the silicone-rubber sample. 
Blue circles indicate the nominal position of inclusions. The global false alarm rate is shown as the second 
colorbar. Image cross-sections correspond to depth positions indicated by white dashed lines.
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Figure 3 presents images with the array positioned directly above inclusions. It clearly shows, that delay-and-sum 
images mostly fail to detect inclusions, in contrast to local scattering images, which provide sensitivity 1-2 orders 
of magnitude higher in terms of the probability of false calls. The array was also scanned above one row of inclu-
sions with a 2 mm step as illustrated in Fig. 4b (see Supplementary video 1). Figure 4a shows the combined image 
from this scan, where the value of each pixel is equal to the maximum over all scanning positions. The detection 
rate was evaluated using the receiver operating characteristic (ROC) curve, which displays the probability of 
detection as a function of probability of false alarms. Figure 4c shows ROC curves, which give information about 
the statistical performance of the imaging methods over all scanning positions. In this case each inclusion was 
considered as detected if the image amplitude was above the threshold in the area 5 mm × 5 mm around the 
nominal center of the inclusion (taking into account possible inaccuracy of the nominal location and size of 
inclusions). Note, that the probability of false alarms corresponding to each threshold value was calculated using 
a theoretical expression (see Supplementary section 6). These results demonstrate, that the local scattering image 
allowed detection of inclusions at almost all scanning positions, in contrast to the delay-and-sum method, where 
detection was possible at only a small number of specific array locations relative to inclusions.

The second set of experimental measurements were performed on a similar specimen, but fabricated using 
urethane-rubber (Vytaflex 50 series, cure time 16 hours). The material density in this case was 2 g/cm3 , the 
sound speed was 1500 m/s and the sand density was the same as in the previous case. The size of the sample was 
143 mm × 35 mm × 30 mm . Inclusions of the same type as for the silicone rubber sample (inclusions were cut 
from the silicone-rubber sample as in the previous example, so in this case they differed from the background 
material by the sand concentration as well as material properties) were placed at 15, 20 and 25 mm depths. In 
order to collect reference data the array was scanned along the part of the sample without inclusions with a 
2.5 mm step, resulting in 38 datasets.

The local scattering data were extracted from the imaging area −15 mm ≤ x ≤ 15 mm , 5 mm ≤ z ≤ 30 mm 
with 0.5 mm step. The imaging was performed at 1.2, 1.5 and 2 MHz and final images were obtained by fusing 
the images at different frequencies. The array was scanned over inclusions with a 2 mm step (Fig. 6b, Supplemen-
tary video 2) and examples of the local scattering and delay-and-sum images are presented in Fig. 5. Figure 6a 
shows the images combined for all array positions with the maximum image amplitude value at each location, 
complemented by ROC curves in Fig. 6c. The significant enhancement in sensitivity, given by the local scattering 
approach is clearly demonstrated. Interestingly, in some cases, the local scattering image is sensitive enough to 

Figure 4.  Experimental example of local scattering imaging: scanning along the silicone-rubber sample. (a) 
Local scattering and delay-and-sum images, the value of each pixel equals to the maximum over all scanning 
array positions. Blue circles indicate the nominal position of inclusions. The global false alarm rate is shown as 
the second colorbar. (b) Diagram illustrating the geometry of the sample. (c) Receiver operating characteristic 
(ROC) curve, summarising the detection statistics over all scanning positions for all inclusions.
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show indications of the steel pin, which supports the inclusion, and also the fixing clay layer at the bottom of the 
images, used to fix the pin to the bottom of the moulding container.

Discussion
The local ultrasonic scattering data encode significant information about material properties. This provides 
the basis for the proposed method, which extracts the local scattering data from the array measurements and 
then uses the angular distribution of the scattering amplitude and phase to greatly enhance the sensitivity of the 
image. It is well known that the physical nature of scattered signals is determined by the size of microstructural 
inhomogeneities relative to the wavelength, and, as a result, strongly depends on the frequency of the incident 
wave. When the frequency increases, the multiple-scattering contribution in the image also increases, con-
taminating the extracted local scattering amplitudes. Therefore, it is crucial to choose the imaging frequency 
in the predominantly single-scattering regime. The proportion of the multiple scattering in the image can be 
directly obtained from the generalised image  data24,25. Based on the simulations and experimental examples 
we estimated, that the local scattering method is applicable when the multiple scattering rate is approximately 
smaller than 25% of the total image intensity (see Supplementary Fig. 3). Note that for the experimental samples 
another limiting factor affecting the imaging frequency was array element under-sampling and high absorp-
tion at higher frequencies. The requirement for single scattering means we are likely operating in domains with 

Figure 5.  Experimental example of local scattering imaging: urethane-rubber sample. Examples of local 
scattering and delay-and-sum images of inclusions located at different depths inside the urethane-rubber 
sample. Blue circles indicate the nominal position of inclusions. The global false alarm rate is shown as the 
second colorbar.
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good propagation performance allowing decent measurement range in difficult materials. It was shown that the 
reliability of ultrasonic images is directly related to the multiple scattering  rate24, so the ability to estimate the 
appropriate measurement range in itself is a valuable factor in practical applications.

Another important imaging parameter is the size of the spatial filter in the generalised imaging domain for 
extraction of the local array data. This filter should be as small as possible in order to improve the resolution 
of the local scattering image, but at the same time large enough in order to contain all information about the 
local area. These requirements result in the size of the extraction window approximately equal to the size of the 
point spread function. For experimental examples considered in this paper we estimated that the optimal size 
of the spatial filter corresponds to 3 � , where � is the wavelength at the imaging frequency. Note, that the single 
scattering contribution is concentrated in the vicinity of the main diagonal of the generalised image, xT = xR , 
and off-diagonal values are more sensitive to the multiple scattering  contribution24. Therefore, the spatial filter 
was additionally restricted in the off-diagonal region of the generalised image by the condition |xT − xR| ≤ 2�.

As mentioned, the scattering matrix represents the fundamental scattering characteristic of the local mate-
rial area alone and, contrary to the image, does not depend on the parameters of the array. However, there are 
two main factors, related to the array geometry, which need to be considered. Firstly, the angular range of the 
extracted scattering matrix is determined by the array aperture. Secondly, the shape of the spatial filter in the 
generalised imaging domain might be affected by the array element pitch. In this paper it is implicitly assumed 
that the array element pitch satisfies the Nyquist sampling  criterion39, ensuring the grating lobe level is negligible 
everywhere in the generalised image. On the other hand, in many fields, including medical ultrasonic imaging it 
is common to use under sampled arrays with �-pitch. In this case grating lobes appear in the generalised imaging 
 domain40, and the size of the spatial filter must be specifically chosen to suppress them.

The improvement in the sensitivity of the local scattering image comes at a price of reduced spatial resolu-
tion, as determined by the size of the extraction window. This is common to all statistical parametric imaging 
approaches, constructed using a sliding window, for example, Nakagami  images41. The image resolution can 
be characterised by the size of the resolution element, or resel (see Methods and Supplementary Information). 

Figure 6.  Experimental example of local scattering imaging: scanning along the urethane-rubber sample. (a) 
Local scattering and delay-and-sum images, the value of each pixel equals to the maximum over all scanning 
array positions. Blue circles indicate the nominal position of inclusions. The global false alarm rate is shown as 
the second colorbar. (b) Diagram illustrating the geometry of the sample. (c) Receiver operating characteristic 
(ROC) curve, summarising the detection statistics over all scanning positions for all inclusions.
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From the values, presented in Supplementary Table 1, it follows that the resolution of the local scattering images 
is approximately half that of conventional images. This represents a significant advance over other statistical 
parametric approaches. For example, for Nakagami imaging the typical window size, required to obtain enough 
independent image pixel values for the statistical analysis, is three times the pulse length of the incident  wave41. 
On the contrary, in our method the window size was about one pulse length.

The final comment is related to the data acquisition scheme. In this paper the measured array dataset rep-
resented signals from all transmitter–receiver combinations. However, the method is applicable to any data 
collection strategy, where the reversible imaging operation is possible. For example, it has been recently shown 
that local scattering information can be extracted from plane wave  data40. This opens up the possibility of 
combining the enhanced sensitivity of the local scattering imaging with the high frame rate using plane wave 
 illuminations3,4,15,16.

Conclusion
In this paper, we have introduced a new general approach for imaging in complex scattering medium. The key 
idea is to take advantage of all the information measured by an array of sensors about each local material area. 
This contrasts with most ultrasonic array imaging approaches which typically rely on averages of recorded 
information. The complete information represents a set of transmitter–receiver signals as if only one local scat-
tering area was present in otherwise homogeneous material, and we have shown how it can be extracted from a 
complete measurement dataset. This is significant because access to the local scattering data provides information 
about the local physical properties beyond that available from conventional images and, therefore, can be highly 
beneficial for many applications. Most importantly, it allows fundamentally new methods to be developed for 
detection, localisation, and characterisation of targets in scattering materials or materials with low contrast. As 
a proof of concept, we have experimentally demonstrated one such approach to the detection of small inclusions 
in various highly scattering materials, which are invisible using conventional imaging techniques. The described 
methodology is very general and can be applied to any research field, where phased array technology is employed 
and may also potentially be expanded to other imaging modalities.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.
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