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Modelling normal age‑related 
changes in individual retinal layers 
using location‑specific OCT analysis
Matt Trinh1,2, Vincent Khou1,2, Barbara Zangerl1,2, Michael Kalloniatis1,2 & 
Lisa Nivison‑Smith1,2*

Current descriptions of retinal thickness across normal age cohorts are mostly limited to global 
analyses, thus overlooking spatial variation across the retina and limiting spatial analyses of retinal 
and optic nerve disease. This retrospective cross‑sectional study uses location‑specific cluster analysis 
of 8 × 8 macular average grid‑wise thicknesses to quantify topographical patterns and rates of normal, 
age‑related changes in all individual retinal layers of 253 eyes of 253 participants across various age 
cohorts (n = 23–69 eyes per decade). Most retinal layers had concentric spatial cluster patterns except 
the retinal nerve fibre layer (RNFL) which displayed a nasal, asymmetric radial pattern. Age‑related 
thickness decline mostly occurred after the late 4th decade, described by quadratic regression models. 
The ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer nuclear 
layer + Henle’s fibre layer  (ONL+HFL) were significantly associated with age (p < 0.0001 to < 0.05), 
demonstrating similar rates of thickness decline (mean pooled slope =  − 0.07 µm/year), while the IS/
OS had lesser mean pooled thickness slopes for all clusters (− 0.04 µm/year). The RNFL, OPL, and RPE 
exhibited no significant age‑related thickness change, and the RNFL were significantly associated 
with sex. Analysis using spatial clusters compared to the ETDRS sectors revealed more extensive 
spatial definition and less variability in the former method. These spatially defined, clustered 
normative data and age‑correction functions provide an accessible method of retinal thickness 
analysis with more spatial detail and less variability than the ETDRS sectors, potentially aiding the 
diagnosis and monitoring of retinal and optic nerve disease.

Normal ageing sees the loss of retinal neurons such as photoreceptors, bipolar cells, and ganglion  cells1–4. As such, 
a persistent issue in retinal disease biology is accurately differentiating retinal thickness changes due to disease 
versus the normal ageing process. Several studies have attempted to develop normative age-related databases 
for individual retinal layers using  OCT5–14, however, the majority of these databases are limited by a combina-
tion of several factors. Firstly, the small sample sizes in some studies mean that they do not adequately account 
for demographic characteristics such as sex and age, which can lead to significant variability in OCT thickness 
 measurements15. Secondly, if spatial variation in retinal layer thickness is considered at all, spatial localisation 
is then defined over arbitrary spatial maps such as the Early Treatment Diabetic Retinopathy Study (ETDRS) 
sectors which assume a symmetric, concentric topography of ageing changes. Finally, linear regression models 
have been applied in an assumptive manner to  data5–13 which has otherwise shown non-linear decline in other 
studies, e.g. in the GCL and rod bipolar cells of the  INL2,3,16. These assumptions may then contribute to the vari-
able rates of change that have been reported, including conflicting trends of thickening and thinning that have 
emerged in the photoreceptor  layer10–14,17.

To overcome the discussed limitations, our research group has recently developed a method of OCT analysis 
with high-density sampling as compared to the ETDRS sectors, applied to a large cohort (to mitigate inter-
individual variability) to quantify the topographical patterns and rates of normal, age-related thickness changes. 
Specifically, we have shown that in the macula GCL, the topography and subsequent non-linear age-correction 
functions for normal eyes’ retinal layer thicknesses can be derived from the ‘clustering’ of locations within the 
macula that demonstrate statistically similar thicknesses and age-related  changes16,18. Spatial clustering provides 
a less arbitrary definition of retinal topography due to its post-hoc analysis. The subsequent non-linear regres-
sion models derived from these clusters have demonstrated statistical superiority over linear  models16,18 and 
also more accurately reflect physiological decline in retinal  ageing2,3,16. Comparisons between clustered macula 
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structure–function models have also demonstrated superior prediction over traditional point-wise macula 
structure–function  models16. This methodology has been further verified against diseased eyes, in applications 
such as being able to differentiate RNFL thickness changes between severity stages of normal tension glaucoma 
 eyes19, the automated analysis of pathological intra-retinal  cavities20, differentiating GCL thickness changes in 
AMD versus normal  eyes21, and the detection of greater visual field defects in AMD eyes using cluster analysis 
as opposed to point-wise  analysis22.

Beyond the RNFL and  GCL16,23,24, spatial clustering has not been applied to other retinal layers. Development 
of an OCT thickness normative database that includes cluster-based spatial localisation for all retinal layers 
would provide an accessible method of intra- and inter-retinal layer comparisons in vivo, as well as enable future 
development of clustered macula structure–function models in order to aid the diagnosis and monitoring of a 
number of retinal and optic nerve diseases. This database would also enable the development of age-correction 
functions, which have been previously applied to GCL thickness data of diseased and normal eyes, demonstrating 
that age-corrected analyses were on par with age-matched  analyses21. Further validation in all retinal layers may 
then be useful in future studies where cohorts are heterogenous or under-sampled, or in clinical practice where 
the expected output normative age may be calculated from the input retinal layer thickness.

Thus, in this retrospective cross-sectional study, we apply the high-density sampling method of OCT macular 
data to a large cohort of normal eyes for each individual retinal layer. From this, we quantify the topographical 
patterns and rates of normal, age-related thickness changes in each retinal layer and corroborate previous retinal 
clustering  methods16,23,24. We also aim to develop age-correction functions for each retinal layer’s clustered data, 
providing an accessible tool to eventually compare to diseased eyes.

Methods
Study population. A total of 253 participants across various age cohorts were included in the study, previ-
ously identified by Tong et al.16 All participants and their data were obtained through retrospective analysis of 
records from 05/25/2012 to 02/28/2017 of patients attending the Centre for Eye Health (CFEH) Sydney, Aus-
tralia. CFEH is a referral-only clinic providing advanced diagnostic eye testing and disease management by 
specially trained optometrists and  ophthalmologists25. All patients had given prior written informed consent 
to use their de-identified data for research in accordance with the Declaration of Helsinki and approved by the 
Biomedical Human Research Ethics Advisory Panel of the University of New South Wales.

Complete characteristics of the cohort are described in Tong et al.16 Briefly, all participants met inclusion 
criteria, defined as: visual acuity better than 20/25 (logMAR < 0.1) for participants under 60 years old, or 20/32 
(logMAR < 0.2) for participants over 60 years old, intraocular pressure < 22 mmHg in both eyes, spherical equiva-
lent refractive error between + 3.00 and − 6.00 dioptres and astigmatism < 3.00  dioptres26, and no evidence of 
ocular disease including but not limited to glaucoma, diabetic retinopathy, AMD, or signs of significant sub-
retinal or intra-retinal deposits, fluid, pigment, or vascular changes at the  macula27.

Image acquisition and data extraction. OCT macular cube scans (61 B-scans covering an area of 
8600 µm × 7167 µm or 30° × 25°) were acquired with Spectralis SD-OCT (Heidelberg Engineering, Heidelberg, 
Germany) as previously  described16,18. The preset scan pattern were selected for commercial accessibility and 
includes the second highest number of retinal B-scans available as a preset option on the Spectralis SD-OCT, 
with the same or denser spacing (120 µm) as compared to other normative databases using the Spectralis SD-
OCT28–32. Note, the preset scan pattern with the highest number of B-scans produces a much lower automatic 
real time mean function and significantly lower image quality, and hence was not used. The difference in hori-
zontal versus vertical B-scan resolution has been shown not to have a significant impact on thickness  outcomes33. 
Scans with significant artefacts or signal strength of lower than 15 dB were excluded. If multiple scans were avail-
able for each participant, the earliest scan meeting image quality criteria was selected. Scans were corrected for 
ocular tilt, and automatically segmented into each individual retinal layer using the HRA/Spectralis Viewing 
Module 6.9.5.0 (Heidelberg Engineering, Heidelberg, Germany; www.Heide lberg Engin eerin g.com). The RNFL, 
IPL, INL, OPL,  ONL+HFL, IS/OS, and RPE were reviewed (Fig. 1A) in all scans and corrected where necessary. 
Data regarding the GCL were obtained from Tong et al. and included in this study for  completeness16. Manual 
correction of the OCT segmentation were performed in approximately 50% of all B-scans and adjustments 
were mostly minor corrections of segmentation lines that had erroneously shifted due to overlying blood vessel 
shadowing or ambiguity at Henle’s fibre layer. Agreement between authors MT and VK regarding manual cor-
rection were selected as the ‘ground-truth’ in concordance with other studies that have used manual correction 
as the benchmark against automated OCT segmentation  protocol34. No B-scan segmentation were unresolvable 
between MT and VK.

The ELM and IS/OS segmentation lines were adjusted to fit into the middle, rather than the inner or outer 
borders. For scans where manual correction was not possible, grid locations were excluded from the analysis. If 
an eye had more than 10% of grid locations missing, the eye was excluded from the  analysis18. The total of 253 
participants that were included had satisfied this criterion, as previously identified by Tong et al.16.

Individual retinal layer thicknesses were then extracted from across the macula cube area (8600 µm × 7167 µm 
or 30° × 25°) as 64 measurements within an 8 × 8 grid (6880 µm × 6880 µm or 24° × 24°) centred on the fovea (each 
grid location covering 0.74 mm2 [approximately 860 µm × 860 µm or 3° × 3°]; Fig. 1B). 8 × 8 grids were selected 
for commercial availability, facilitating future comparisons against our normative data without the need for cus-
tomised extraction tools. The central 4 grids of the GCL, IPL, INL, and OPL systematically underestimate true 
foveal thicknesses due to cellular displacement secondary to Henle’s fibres. As such, GCL thickness measurements 
were averaged across an additional 4 locations within a 1-degree surrounding area as described by Tong et al. and 
Yoshioka et al.16,18 Similar adjustments for the IPL, INL, and OPL were unreliable and not yet  validated11,13, as 
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Figure 1.  (A) Retinal layers segmented within the HRA/Spectralis Viewing module – manual correction was 
performed when necessary. (B) Individual retinal layer thicknesses across each group (i.e. variables that were 
significantly associated with average retinal layer thickness, such as age or sex). The Spectralis 8 × 8 grids are 
centred on the fovea with each grid location covering 0.74  mm2 (approximately 3° × 3°). Values presented are a 
sample of GCL thicknesses in µm. For each group, averaged thickness were then determined at each grid location 
(middle). (C) Values were then clustered by statistically similar thicknesses based on applied criterion of at least 
2SD separation (d′ ≥ 2) between cluster means. The resultant spatial cluster topography is generated by the various 
pseudo-colours. Note all images are in right eye format, demonstrated by the location of the optic nerve. Scale bar 
is provided in the bottom left. (D) A visual and numerical break-down of the individual clusters, demonstrating 
a concentric pattern. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer 
plexiform layer;  ONL+HFL, outer nuclear layer + Henle’s fibre layer; IS, photoreceptor inner segment layer; OS, 
photoreceptor outer segment layer; RPE, retinal pigment epithelium.  C1…6 = Clusters 1…6.
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previous studies that have included this area demonstrate retinal thickness values that are disparate to all other 
intra-retinal-layer  areas10,12,14. To ensure that this systematic under-estimation did not produce unreliable nor-
mative data, we chose to exclude the foveal region of the IPL, INL, and  OPL11,13. Thus, the total number of grids 
analysed for each eye was 64 in the RNFL, GCL,  ONL+HFL, IS/OS, and RPE, and 60 in the IPL, INL, and OPL.

Definitions of the retinal layers. All retinal layers were segmented according to typical reflectance pro-
files as seen in other OCT  studies10–14. While maintaining anatomical accuracy is ideal, there are some important 
discrepancies that accompany the use of OCT regarding the anatomical segmentation of retinal layers compared 
to histological studies:

• In the RNFL, the major retinal arterioles and venules are routinely included as part of the layer’s segmenta-
tion, and thus true cellular thickness may be slightly misrepresented.

• In the OPL and ONL, inconsistent reflectivity of Henle’s fibre layer (HFL) on OCT may lead to ambiguities 
in segmentation. Commonly, HFL is segmented as part of the ONL—criteria which we have also adopted in 
this study for consistency (Fig. 1A, ‘ONL+HFL’)—despite technically being part of the OPL.

Spatial clustering. Multi-variable linear regression analysis were performed to determine which demo-
graphic variable(s), i.e. age, sex, ethnicity, spherical equivalent refraction, and/or best corrected visual acuity 
(BCVA), were significantly associated with average retinal thickness for each retinal layer. Grid locations for 
each individual retinal layer were then grouped by significant variables into spatial clusters of statistically simi-
lar thicknesses. For example: if age were considered to be a significant variable with regards to average GCL 
thickness, then grid-wise GCL thickness were clustered across 5- or 10-yearly age interval cohorts (Fig. 1B,C); 
similarly, if sex were considered to be a significant variable, then grid-wise thickness were clustered across female 
and male cohorts.

Previously, spatial clusters have been established to be robust for GCL and perimetric analysis regarding 
 normal16,18 and diseased  eyes22,35,36. In this study, hierarchical clustering was initially performed using within-
groups linkage and squared Euclidean distance via SPSS Statistics Version 25.0 (IBM Corporation, Armonk, NY, 
USA), to determine the maximum number of clusters for each retinal layer. This number was then applied to 
k-means clustering for each retinal layer. For each resultant pattern in this study, statistically significant separa-
bility of clusters was verified by d′ = |x1−x2|

√

0.5×
(

σ
2
1
+σ

2
2

)

 , whereby any cluster with d′ < 2 (indicating separation of cluster 

means by less than two-standard deviation (SD)) were merged until all cluster patterns were separated by d′ ≥ 2 
(Fig. 1C,D)36. To relate our findings to a more commonly used retinal spatial template, we also compared our 
grid-wise clusters to the ETDRS sectors.

Age regression analysis. Regression analysis comparing cluster thicknesses to age (represented by 5- or 
10-yearly age interval cohorts) were then performed to explore location-specific age-related thickness changes 
for each retinal layer. For layers where age was not significantly associated with average retinal thickness, these 
analyses were not performed. Linear and quadratic functions were processed using GraphPad Prism Ver-
sion 8.0 (San Diego, CA, USA). Bi-linear functions have also been considered previously, however, the abrupt 
decline following a ‘critical point’ was counterintuitive when considering the gradual nature of ageing in ocular 
 processes37,38. Hence, quadratic functions were preferentially selected over bi-linear models, due to the former’s 
gradual approach towards the critical point which seemed more physiologically  appropriate16. In cases where 
there were no significant differences between quadratic and linear fit, a quadratic fit was applied to maintain 
consistency with previous  studies16, and to more accurately represent previous histological data regarding retinal 
cellular density changes with  age2,3,16. Quadratic functions that infinitely approached linearity were considered to 
be linear. Vertex points for quadratic regression functions were derived from the equation x = − b

2a
.

Selection of final cluster patterns. Spatial clustering for each retinal layer resulted in multiple cluster 
patterns due to the two methods applied (hierarchical and k-means). Selection of the final cluster pattern for 
each retinal layer were based on the optimal age-related regression fit, i.e. the highest mean  R2, lowest mean 
sum-of-squares, and/or lowest SD-of-residuals, or the lowest coefficient of variation in cases where age-related 
regression analysis did not apply. If comparisons were tied in statistical significance or resulted in no significant 
differences of p < 0.05, the more optimal fit or lower coefficient of variation were selected.

Statistical analysis. Statistical analyses were performed using GraphPad Prism Version 8.0 and SPSS Sta-
tistics Version 25, with significance considered as p < 0.05. Multi-variable linear regression analysis were per-
formed with backward step-wise elimination (i.e. removing non-significant variables from the regression model 
in a step-wise manner)39. Categorical variables were encoded as dichotomous values, e.g. females set as 1, males 
set as 0; Asian ethnicity set as 1, White ethnicity set as 0, where necessary. Multiple inter-group comparisons 
between clusters, e.g. females versus males, were performed using Mann Whitney U-tests with Bonferroni 
adjustment. For age regression analysis, comparisons within cluster patterns were performed using Kruskal–
Wallis test with post-hoc Dunn’s multiple comparisons tests. Comparison of slopes within cluster patterns were 
performed using the equivalent of an ANCOVA test, and between cluster patterns using Brown-Forsythe test 
with post-hoc Dunnett’s multiple comparisons tests. Comparison of slopes to a hypothetical zero slope were 
performed using an F-test.
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Results
Subject demographics. Two-hundred-and-fifty-three healthy, normal eyes from 253 participants were 
included in this study, with participant demographics provided in Table  1. Multi-variable linear regression 
accounting for age, sex, ethnicity, spherical equivalent refraction, and BCVA showed that age were significantly 
associated with average retinal thickness in the GCL (p < 0.01), IPL (p < 0.01), INL (p < 0.0001), ONL (p < 0.01), 
and IS/OS (p < 0.001), but not the RNFL, OPL, nor RPE (Table 2). There were no other co-variables significantly 
associated with average retinal thicknesses except for sex with regards to average RNFL thickness (p < 0.01).

Spatial topography and age regression analysis. Grid-wise thickness data for each retinal layer were 
grouped by significant variable into spatial clusters of statistically similar thickness profiles. Specifically from the 
multi-variable linear regression analysis above: the RNFL were grouped by sex; the GCL, IPL, INL, ONL, and 
IS/OS were grouped by age (represented by 5- or 10-yearly age interval cohorts); and the OPL and RPE were 
singularly grouped using the whole cohort. Two different clustering methods were applied (hierarchical and 
k-means), with resultant cluster patterns and their characteristics for each retinal layer seen in (Supplementary 
Tables  1–8).Overall, clustering for each retinal layer produced similar topographical patterns with a similar 
number of clusters, and in some cases identical patterns were noted. Comparison of goodness-of-fit or coef-
ficient of variation characteristics were then used to select the final cluster pattern for each retinal layer. In all 
comparisons of 5- and 10-yearly age interval cohort data, the latter showed better regression fit. Both clustering 
methods (hierarchical and k-means) were viable for each retinal layer, and there was no consistent superior 
method with regards to optimal goodness-of-fit or coefficient of variation.

In applying quadratic functions to age-related regression analysis, this implied an initial increase in thickness 
before the vertex age, whereby a decline in thickness followed. The mean increase in thickness for all clusters 
fit with a quadratic function across all retinal layers was 0.39 µm equivalent to an annual increase of 0.03 µm/
year, suggesting minimal marked increase before the vertex age. Further analysis of all slopes before the vertex 
age revealed no statistically significant differences from a zero slope (F-test, p > 0.07 to 0.98 for all comparisons).

RNFL and GCL. Cluster analysis of the RNFL led to macula grid locations being assigned into eight different 
clusters that formed an asymmetric pattern, decreasing in thickness profile outwards from the optic nerve head 
at the nasal retina. Greater superior and inferior thicknesses were also observed (more so in the inferior clus-
ters) compared to temporal thicknesses (Fig. 2A). As the RNFL were not significantly associated with age, this 
suggested no age-related change in RNFL thickness. However, as the RNFL were significantly associated with 
sex, clusters were instead analysed by sex. All clusters  (C1–C7) except for  C8 showed greater RNFL thicknesss in 

Table 1.  Participant demographics based on 10-yearly age interval cohorts. Values are expressed as 
mean ± standard deviation (SD). Description of demographic characteristics of the study population for 
5-yearly age intervals were previously reported by Tong et al.16. W, White; A, Asian; O, Other; Rx, refraction; 
BCVA, best corrected visual acuity.

Cohort n
Age ± SD
(range)

Sex
M:F Ethnicity

Spherical equivalent Rx
 ± SD

BCVA logMAR
 ± SD

All participants 253 50.26 ± 14.4
(20.21–84.91) 108:145 154 W, 93A, 5O  − 0.48 ± 1.73 0.01 ± 0.1

20–29 29 25.5 ± 2.99 11:18 13 W, 16A  − 1.45 ± 1.71  − 0.04 ± 0.06

30–39 26 34.15 ± 2.97 9:17 9 W, 17A  − 1.42 ± 1.72  − 0.02 ± 0.1

40–49 69 45.84 ± 2.77 25:44 39 W, 28A, 2O  − 0.73 ± 1.54  − 0.01 ± 0.08

50–59 66 54.8 ± 2.84 30:36 42 W, 20A, 3O  − 0.16 ± 1.43 0 ± 0.07

60–69 40 64.02 ± 2.89 19:21 32 W, 8A  − 0.03 ± 2.07 0.04 ± 0.1

70+ 23 75.95 ± 4.43 14:9 19 W, 4A 0.83 ± 1.2 0.1 ± 0.1

Table 2.  Multi-variable regression characteristics of participant demographics versus average retinal 
thicknesses. The coefficients (95% CI) below represent final significant values included in each multi-variable 
model for each layer, based on backward step-wise elimination of co-variables.

Age (β) p-value Sex (β) p-value

RNFL – – 1.82 (0.59, 3.05) < 0.01

GCL  − 0.05 (− 0.07, − 0.03)  < 0.0001 – –

IPL  − 0.02 (− 0.04, 0)  < 0.05 – –

INL  − 0.04 (− 0.06, − 0.02)  < 0.0001 – –

OPL – – – –

ONL+HFL − 0.06 (− 0.1, − 0.01) < 0.01 – –

IS/OS  − 0.02 (− 0.04, − 0.01) < 0.001 – –

RPE – – – –
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females compared to males (Fig. 2B), however these differences were not statistically significant (Mann Whitney 
U-tests; adjusted p = 0.04 to 0.97).

Analysis of the GCL led to six different clusters which formed a concentric pattern, with a slightly higher 
thickness profile superiorly  (C4,  C5) and nasally  (C1,  C3,  C4) compared to inferiorly  (C4–C6) and temporally 
 (C2–C5), respectively (Fig. 2C). All clusters  C1–C6 were fitted with downward quadratic functions, with decline 
in GCL thickness beginning between 37.7 to 40.8 years of age (Fig. 2D,E). The rate of age-related GCL thickness 
loss was not significantly different between all clusters (p = 0.16), thus the pooled thickness loss was calculated 
as − 0.11 µm/year.

IPL, INL, and OPL. For the IPL, INL, and OPL, all clustering patterns followed a relatively concentric 
arrangement, similar to the GCL (Fig. 3A,D,G). In the IPL, seven different clusters were identified with a slightly 
higher thickness profile superiorly  (C4–C6) compared to inferiorly  (C5–C7) (Fig. 3A). All IPL clusters were fitted 
with downward quadratic functions, with estimated IPL thickness loss beginning between 36.5 and 55 years of 
age (Fig. 3B,C) at a pooled loss of − 0.1 µm/year (based on no significant difference between all clusters, p = 0.88).

In the INL, five different clusters were identified with a slightly horizontal elongation of cluster topography 
(Fig. 3D). All clusters  C1–C5 were fitted with downward quadratic functions, with decline beginning between 
25.2 and 44.6 years of age (Fig. 3E,F). The rate of INL age-related thickness loss was not significantly different 
between all clusters (p = 0.53), and the pooled loss was calculated as − 0.05 µm/year.

Finally, for the OPL, clustering analyses identified seven statistically separable clusters, with a slightly higher 
thickness profile superiorly  (C1–C3) and nasally  (C1 and  C2) versus inferiorly  (C2–C4) and temporally  (C2 and 
 C3), respectively (Fig. 3G,H). As the OPL were not significantly associated with any variables including age, this 
suggested no age-related change in OPL thickness. This was confirmed in age regression analysis of all OPL 
cluster thicknesses (data not shown).

ONL+HFL, IS/OS, and RPE. Analyses of the outer retina led to relatively concentric cluster patterns with a 
thickness bias towards the superior retina. Specifically, for the  ONL+HFL, grid locations were assigned into five 
different clusters, with a slightly higher thickness profile superiorly  (C1–C4) than inferiorly  (C2–C5; Fig. 4A). All 
clusters were fitted with downward quadratic functions.  CF and  C1 showed decline to begin at 40.6 and 25.8 years 
of age, respectively. However, slopes for  C2–C4 suggested decline to begin outside of the ages within this study 
population (Fig. 4B,C). The rate of  ONL+HFL loss with age was not significantly different between all clusters 
(p = 0.92), and the pooled loss was calculated as − 0.06 µm/year.

Clustering analyses of the IS/OS led to assignment of three different clusters (Fig. 4D), with a slightly higher 
thickness profile superiorly  (C1) compared to inferiorly  (C2). All clusters were fitted with quadratic functions 
(Fig. 4E). Post-hoc analysis indicated that the rate of age-related IS/OS loss did not significantly differ between 
clusters (p = 0.28), and the pooled loss was − 0.04 µm/year; Fig. 4F).

Finally, for the RPE, seven different clusters were identified with a slightly higher thickness profile superiorly 
 (C1–C5) and nasally  (C1–C5) versus inferiorly  (C2–C6) and temporally  (C2–C5), respectively (Fig. 4G,H). As the 
RPE were not significantly associated with any variables including age, this suggested no age-related change in 
OPL thickness. This was confirmed in age regression analysis of all RPE cluster thicknesses (data not shown).

Inter‑layer comparisons. The comparison of slopes between the retinal layers showed no significant dif-
ferences for the GCL, IPL, INL, and  ONL+HFL (p = 0.07, pooled loss =  − 0.07 µm/year). However, the IS/OS had 
a significantly lesser mean pooled slope (− 0.045 µm/year). Furthermore, the ages at which thickness began to 
decline was not significantly different between the GCL, IPL, INL, and  ONL+HFL (one-way ANOVA, p = 0.12; 
mean ± SD = 37.65 ± 6.79 years).

Comparison between grid‑wise clusters and ETDRS sectors. To demonstrate the advantage of reti-
nal thickness analysis using grid-wise clusters over a more commonly used retinal spatial template, we overlayed 
the ETDRS sectors on spatial cluster topographies for each retinal layer (Fig. 5). In each retinal layer, almost 
every ETDRS sector contained multiple different clusters, and hence multiple different average thicknesses and 
rates of age-related change. Spatial discrepancies between the clusters and ETDRS sectors were particularly pro-
nounced in the RNFL where the topography was not concentric.

To further demonstrate the improved accuracy of spatial clustering compared to ETDRS sector averaging, 
we provide quantitative examples whereby the averaged GCL outer-ring nasal and  ONL+HFL inner-ring inferior 
ETDRS sector thicknesses for each 10-yearly cohort interval were extracted (GCL, 10-yearly age interval cohorts 
from 20–29 to 70 + years, 38.79 ± 2.46, 38.85 ± 4.39, 38.86 ± 2.89, 37.83 ± 3.15, 36.68 ± 4.16, 34.17 ± 3.66 µm, respec-
tively;  ONL+HFL, 68.17 ± 9.82, 66.85 ± 11.91, 72.04 ± 7.87, 69.89 ± 9.19, 70.98 ± 10.17, 70.09 ± 8.62). These ETDRS 
sectors were selected as examples due to the dissimilar cluster composition, whereby the former contained four 
clusters  (C1,  C3,  C4, and  C5) and the latter contained only two clusters  (CF,  C2). The calculated coefficients of 
variation were then compared between the ETDRS sectors and the corresponding grid-wise clusters (Table 3). 
Subsequently, the combined grid-wise clusters demonstrated lower coefficients of variation compared to the 
ETDRS sectors (Mann–Whitney U test; GCL, clusters 0.05 ± 0.02, ETDRS sector 0.09 ± 0.02, p < 0.0001;  ONL+HFL, 
clusters 0.03 ± 0.01, ETDRS sector 0.14 ± 0.02, p < 0.001). 

Discussion
Using location-specific cluster analysis of the Spectralis OCT 8 × 8 macular thickness grid, this study provides 
the spatial topography of each retinal layer. We found all layers exhibited concentric clusters surrounding the 
fovea except the RNFL which demonstrated an asymmetric radial pattern from the nasal retina. Our results 
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Figure 2.  Spatial topography and age-related regression analysis where relevant in the (A,B) retinal nerve fibre 
layer (RNFL) and (C–E) ganglion cell layer (GCL), using location-specific cluster analysis. For each layer, the 
(A,C) spatial cluster patterns (in right eye format), (B,D) corresponding plots of cluster thickness versus groups, 
i.e. sex or age interval cohorts (cyan crosses denote vertex age), and (E) corresponding age-correction regression 
functions, vertex ages (if within the limits of this study’s cohort), and slopes as derived after the vertex age are 
presented. All slopes were significantly different from zero (p < 0.05). Central black circle in the GCL represents 
the excluded central four grids containing the fovea. Regression characteristics are in the forms y = ax2 + bx + c 
(quadratic) or y = mx + c (linear), where x = age, y = thickness (µm). ‘a’, ‘b’, and ‘m’ are co-efficients, and ‘c’ is a 
constant. Peak thicknesses were based off the vertex age for quadratic models, or y-intercept for linear models or 
cases where the vertex age was beyond the age limits of this study. In cases where post-vertex age included less 
than three averaged data points, the nearest neighbouring data points up to three averaged totals were included 
to minimise variability. Mean thickness ± SD of all plotted values are provided in (Supplementary Table 9).
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Figure 3.  Spatial topography and age-related regression analysis where relevant in the (A–C) inner plexiform 
layer (IPL), (D–F) inner nuclear layer (INL), and (G,H) outer plexiform layer (OPL), using location-specific 
cluster analysis. For each layer, the (A,D,G) spatial cluster patterns, (B,E,H) corresponding plots of cluster 
thickness versus groups, i.e. age interval cohorts or singular grouping using the whole cohort, and (C,F) 
corresponding age-correction regression functions, vertex ages and slopes as derived after the vertex age are 
presented. All slopes were significantly different from zero (p < 0.05). Presentation as in Fig. 2.
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validate previous spatial cluster methodologies used for the  GCL16 and  RNFL23,24 and demonstrate that these 
methodologies can be applied to other retinal layers. From these spatial clusters, we described non-linear rates of 
thickness decline in the majority of retinal layers, with similar rates of loss in the GCL, IPL, INL, and  ONL+HFL, 
and lesser rates of thickness decline in the IS/OS. There were no age-related change in the RNFL, OPL, or RPE, 
and the RNFL were significantly associated with sex. These spatially defined normative data and regression func-
tions provide an alternate and accessible method of retinal thickness analysis with more spatial detail and less 
variability compared to the ETDRS sectors, enabling more localised comparisons to structural and functional 
data of retinal and optic nerve disease.

Spatial cluster topographies correspond to histological studies. Histological studies of the RNFL 
have consistently reported two spatial trends: greater thickness in the superior and inferior RNFL compared to 
the nasal and temporal RNFL; and decreasing RNFL thickness relative to distance from the optic nerve  head40–46. 
These same trends were also evident in our cluster analysis, including a slight asymmetry whereby inferior clus-
ters were slightly thicker than the superior clusters corresponding to some histological  data44.

In the GCL, our study re-analysed data from Tong et al.16 using a different criterion and found similar 
clustering patterns, supporting the robustness of the spatial clustering approach. Previous histological studies 
have described a generally concentric ganglion cell density distribution decreasing towards the periphery, with 
a slight asymmetry between superior and nasal eccentricities compared to inferior and temporal eccentricities, 
 respectively47. These trends were also seen in the GCL spatial cluster pattern in this study, with a slightly greater 
thickness profile in GCL clusters superiorly  (C4,  C5) and nasally  (C1,  C3,  C4) compared to inferiorly  (C4–C6) and 
temporally  (C2–C5), respectively.

Validating the spatial clusters in other retinal layers is more challenging due to the scarcity of histological 
studies in humans. To our knowledge, only a single human study exists relating to INL topography, specifically 
focussed on bipolar cells. This study found a peak density along the temporal, horizontal meridian at 2–4 mm 
(7°–14°) from the fovea, with a subsequent decline towards the  periphery48. Studies of primate eyes have sug-
gested similar distributions for horizontal, amacrine, and Müller cells within the INL, with a central peak around 
1 mm (5°)49,50 eccentricity and a slightly decreasing peripheral  gradient51. The range of these peak densities are 
in agreement with our spatial cluster patterns for the INL and adjacent synaptic layers (the IPL and OPL), with 
peak thicknesses occurring at approximately 6° eccentricity in our study.

Finally, for the outer retina, histological studies have described cone peak density towards the foveal centre, 
which decreases rapidly to less than half at approximately 1.5 mm (5°) eccentricity (between the first and second 
concentrically arranged grids in our study)52,53. Similarly, rod peak density has been described around 4–5 mm 
(14°–17°) eccentricity, which decreases towards the  periphery48,54,55. Some studies have also reported slightly 
higher rod peak density and S-cone density superiorly than  inferiorly55–57. All the aforementioned studies would 
be in concordance with our  ONL+HFL and IS/OS spatial cluster patterns, showing peak thickness at the fovea with 
a decreasing peripheral gradient, particularly towards the inferior clusters. Meanwhile, our RPE spatial cluster 
pattern is also in agreement with studies that describe longer, more complex RPE microvilli/cone outer segment 
sheaths at the fovea, which then decrease in length and complexity as the population of cones decreases rapidly 
away from the  fovea58–60, accompanied by a gradual peripheral decline in RPE cell density as  well61.

Rates of age‑related thickness change from cluster analysis aligns with other studies. In the 
RNFL, we found no age-related change similar to other studies that have reported minimal to no age-related 
change in the macula  RNFL10–14. It is important to note that while the RNFL does undergo an appreciable age-
related decline as seen via histological and in vivo OCT studies, these studies are alternatively focussed on the 
peripapillary  RNFL5–9,45,62–65.

In histological and OCT studies of the GCL, other studies have reported similar rates of age-related decline 
(− 0.05 to − 0.1 µm/year)1,10–14,66,67 in comparison to our study (− 0.03 to − 0.16 µm/year). Further discussions 
of the GCL spatial rates of change has already been expounded upon in Tong et al., whence the GCL data were 
 obtained16.

Figure 3.  (continued)
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Figure 4.  Spatial topography and age-related regression analysis where relevant in the (A–C) outer nuclear 
layer with Henle’s fibre layer  (ONL+HFL), (D–F) photoreceptor inner-segment and outer-segment layer (IS/OS), 
and (G–I) retinal pigment epithelium (RPE), using location-specific cluster analysis. For each layer, the (A,D,G) 
spatial cluster patterns (in right eye format), (B,E,H) corresponding plots of cluster thickness versus groups, 
i.e. age interval cohorts or singular grouping using the whole cohort, and (C,F) corresponding age-correction 
regression functions, vertex ages), and slopes as derived after the vertex age are presented. All slopes were 
significantly different from zero (p < 0.05). Presentation as in Fig. 2.
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Meanwhile, studies of the INL and the adjacent synaptic layers are scarce due to the complex arrangement of 
multiple distinct cellular components. Aggarwal et al.2 demonstrated an approximately − 0.7%/year decline in rod 
bipolar cells after 35 years of age, however, this value was derived from only four histological human samples and 
is incomparable to our figures, as our OCT analysis of the INL is indiscriminant of cell type. Another histological 
study of primate eyes has also demonstrated an age-related decline in rod bipolar, horizontal, and amacrine cell 
populations, although exact values were not  provided68. Age-related decline of the IPL, INL, and OPL has been 
quantified more so in OCT studies, with similar rates of IPL and INL thinning (IPL − 0.03 to − 0.07 µm/year; 
INL − 0.03 to − 0.04 µm/year) , and relatively stable OPL thickness with age as compared to our study (pooled 
slopes for the IPL and INL, − 0.1 µm/year and − 0.05 µm/year; and no age-related change in OPL thickness)10–14,17.

Finally, regarding the outer retina, the  ONL+HFL and IS/OS in our study showed similar trends of age-related 
decline (pooled slopes for the  ONL+HFL and IS/OS, − 0.06 µm/year and − 0.04 µm/year, respectively) when com-
pared to both histological and OCT studies reporting significant rod  loss3,4,10,12,14,17,69, and minimal cone loss 
with  age3,4,67. In our study, this was highlighted by the lesser change at the central foveal cluster of the  ONL+HFL, 
which contains a significantly higher proportion of cones to rods than elsewhere. In the RPE, histological studies 
have demonstrated age-related decline up to approximately − 0.3%/year61,67. In this study, we however observed 
no significant age-related change in RPE thickness. Other OCT studies have reported conflicting  trends10–12,14. 
These discrepancies are likely due to OCT’s inability to distinguish the reflectance profiles of RPE cells, melanin, 

Figure 4.  (continued)

Figure 5.  An illustrative comparison between spatial cluster topographies (in right eye format) and the ETDRS 
sectors. Note how there are multiple different clusters and hence multiple different average thicknesses and 
rates of age-related change within each ETDRS sector. Dotted markings highlight the GCL outer-ring nasal and 
 ONL+HFL inner-ring inferior ETDRS sectors, used for the quantitative examples below.
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lipofuscin, and adjacent structures such as basal deposits that may ‘fill in’ space with  age10–12,14,60,70, potentially 
masking RPE thickness decline using OCT.

Retinal layers display inter‑connected rates of age‑related decline. Across individual retinal lay-
ers, age-related thickness changes were variable when considered in raw units, i.e. µm. However, further com-
parison of these values to their location-specific peak thickness (at the vertex point) resulted in similarities 
within and between most individual retinal layers. The majority of regression models suggested preservation of 
the thickness of these layers until approximately the late 4th decade of age, followed by a steady decline. This is 
consistent with previous studies that also demonstrate relative preservation of the ganglion cells, bipolar cells, 
and photoreceptor cell bodies until a similar  age2,3,16,71.

The exception to this was the RNFL, OPL, IS/OS, and RPE. The RNFL demonstrated significant association 
between sex and thickness, but no significant association with age were found. Greater RNFL thickness in females 
compared to males as we found (albeit not reaching statistical significance for location-specific cluster analysis) 
were in accordance with other  studies12,72–75, explained by the potential neuroprotective effects of  estrogen76–78.

For the OPL, there were also no significant age-related change. This was surprising considering the other syn-
aptic layer—the IPL—demonstrated similar trends of decline to its adjacent neuronal layers. Lack of histological 
topographical studies regarding the synaptic layers in human retina make it difficult to determine the reason for 
these effects, but it is possible that the displacement of nuclei from the adjacent ONL, which increases consider-
ably after age  forty79, offsets the otherwise expected decrease in thickness around the same age. Another pos-
sibility is that in ageing, horizontal and rod-bipolar cell dendrites may ‘sprout’ within the  OPL80,81, subsequently 
offsetting the expected decrease in thickness as well. Nonetheless, what truly happens to the OPL with age is 
currently speculative, as anatomical changes in the OPL may be masked or skewed by the adjacent segmentation 
of the  ONL+HFL, as defined by OCT.

In the IS/OS, age-related thickness decline was less than all other retinal layers except the OPL and RPE. 
Histological studies have shown plasticity in the ageing rod system, whereby decreasing populations of rod 
cells are compensated for by enlargement of the remaining rod inner segments, resulting in an overall similar 
area of  coverage3,4. Additionally, photoreceptor outer segments have shown increased axial thickness in OCT 
 studies13,82,83, possibly reflecting the age-related outer segment nodular swelling and disorganisation as seen in 
histological  studies71,84. These effects are thought to be associated with reduced support from a declining retinal 
pigment epithelium population in  ageing61,70.

Finally, in the RPE, there was no age-related thickness decline. As aforementioned, this may be an artefact of 
the OCT technology’s inability to differentiate RPE cells, melanin, lipofuscin, and other adjacent structures that 
contribute to its reflectance pattern. Or, it may reflect the increase in size and disorganisation of RPE cells with 
age, as well as the migration of more peripheral RPE cells to compensate for macula RPE cell death, offsetting 
OCT thickness decline to an  extent85.

Table 3.  ETDRS sectors versus corresponding grid-wise clusters. Values expressed are the coefficients of 
variation. Totals are expressed as mean ± standard deviation. Coefficients of variation for the grid-wise clusters 
are calculated from Supplementary Table 9. ETDRS, Early Treatment for Diabetic Retinopathy Study;  CF, 1…5, 
foveal cluster and cluster 1 to 5.

Cohort ETDRS sector C1 C3 C4 C5

GCL outer-ring nasal

20–29 0.06 0.01 0.05 0.05 0.07

30–39 0.11 0.02 0.05 0.05 0.06

40–49 0.07 0.01 0.04 0.05 0.06

50–59 0.08 0.02 0.05 0.05 0.06

60–69 0.11 0.01 0.05 0.07 0.06

70+ 0.11 0.04 0.05 0.05 0.07

Total 0.09 ± 0.02 0.05 ± 0.02

Comparison p < 0.0001

Cohort ETDRS sector CF C2

ONL+HFL inner-ring inferior

20–29 0.14 0.02 0.03

30–39 0.18 0.02 0.03

40–49 0.11 0.02 0.04

50–59 0.13 0.02 0.04

60–69 0.14 0.03 0.04

70+ 0.12 0.02 0.04

Total 0.14 ± 0.02 0.03 ± 0.01

Comparison p < 0.001



13

Vol.:(0123456789)

Scientific Reports |          (2021) 11:558  | https://doi.org/10.1038/s41598-020-79424-6

www.nature.com/scientificreports/

Clustering of grid‑wise thickness data compared to ETDRS sector averaging. In all individual 
retinal layers, we demonstrated that multiple clusters (and hence multiple different average thicknesses and 
rates of age-related change) exist within each ETDRS sector. This suggests that the averaging of thickness data 
based on ETDRS sectors may produce inaccurate outcomes, particularly when attempting to compare more 
localised lesions to normative data. We confirmed this in our quantitative examples, whereby the grid-wise 
cluster approach demonstrated reduced variability and hence improved ability to identify localised thickness 
differences compared to the ETDRS sectoral approach. Use of the grid-wise cluster approach is even more valu-
able when considering that a previous study of diseased eyes revealed disparate changes (i.e. GCL thinning and 
thickening) between clusters of the GCL which otherwise has not previously been reported via  OCT21, likely 
due to the relatively large spatial averaging of the ETDRS sectors. Overall, while our grid-wise cluster approach 
shows superiority over the currently used ETDRS sectoral approach, it may be possible to develop OCT thick-
ness spatial analyses with even greater detail using customised data extraction methods. Of course, this method 
is not easily accessible compared to the commercially available 8 × 8 grid or ETDRS sectors in the Spectralis 
SD-OCT. However, it would more clearly delineate junctional zones between the spatial cluster patterns that we 
have presented, as well as define areas at the foveal slope which we could not accurately quantify due to the high 
variability of thicknesses. Current work is underway to validate the higher-density sampling method of OCT 
thickness spatial  analysis86.

Limitations
This study was associated with some limitations. Firstly, due to the extensive range of ages included in our 
study, we measured retinal age-related thickness changes using cross-sectional, rather than longitudinal data. 
Our use of strict inclusion criteria, large sample size, and the clustering of grid-wise data, however, helped to 
mitigate potential confounding co-variables and inter-individual variabilities that may be more prevalent in 
cross-sectional data. In addition, our regression functions enable the potential age-correction of individual 
retinal layer thickness data, thus improving statistical power of future studies that may also use cross-sectional 
cohorts instead of longitudinal cohorts as well. This method has been previously validated in analysis of GCL 
thickness in diseased and normal eyes, and current work to validate the use of age-correction functions in other 
retinal layers is  underway21.

Secondly, as this was a retrospective, cross-sectional study, age-related changes were sourced from cohorts 
of 23–69 eyes per decade from the total cohort of 253 eyes. Cross-sectional data by design may present with 
confounding factors between unpaired groups that are less easily controlled for than longitudinal data with 
paired groups. However, our initial multi-variable analysis demonstrated that only age and sex were significant 
variables affecting outcome thicknesses in certain layers, which were then accounted for by grouping our cohort 
by age and sex in the appropriate layers. Additionally, our study still fulfils definitions for establishing normative 
 data87 including: (1) precise characterisation of the study population via multi-variable analysis to determine 
variables associated with thickness outcomes; (2) clear definition and measurement of phenomena, i.e. spatial 
topography and rates of age-related thickness change for each retinal layer; and (3) appropriate interpretion and 
generalisation of results in the context of other OCT and histological studies. Additionally, our sample size is 
similar, if not higher compared to many other recent normative databases for the Spectralis SD-OCT ranging 
from n = 50–29728–32.

Finally, as OCT is essentially an analysis of reflectance profiles, changes in retinal thickness do not confer 
information about which specific cellular structures are affected. This limitation was significant in the RNFL, 
as the main retinal arterioles and venules cause significant variability in thickness  measurements88 and may 
explain why we, along with another histological study, found the RNFL to be thickest  inferiorly44 as opposed 
to other studies which found the RNFL to be thickest  superiorly40–43. The ambiguity of reflectance profiles in 
OCT is also evident in analysis of Henle’s fibre layer which we kept as part of the ONL segmentation to maintain 
consistency with other studies and OCT auto-segmentation protocol, despite anatomically being part of the 
OPL. Furthermore, the inability to separate the photoreceptor IS from the OS with the current HRA/Spectralis 
Viewing Module limits interpretation of changes in these layers. Current work is underway to collate vascular 
parameters and retinal layer thickness changes in normal ageing, via OCT-angiography and OCT respectively. 
Future software updates could also rectify OCT segmentation limitations.

Conclusion
Individual retinal layer thicknesses demonstrate specific topographical patterns and similar rates of normal, age-
related change. Specifically, RNFL thickness displayed an outwards, radial pattern from the nasal retina, while 
all other layers from the GCL to the RPE displayed concentric patterns of thickness decreasing from the fovea. 
Similar rates of age-related thickness change were observed in the GCL, IPL, INL, and  ONL+HFL, while the IS/
OS demonstrated lesser rates of thickness decline. There were no age-related change in the RNFL, OPL, or RPE, 
and the RNFL were significantly associated with sex. From these grid-wise clustered data, we have established a 
spatially defined normative database alongside age-correction functions. These provide an accessible method of 
retinal thickness analysis with more spatial detail and less variability than the ETDRS sectors, to aid the diagnosis 
and monitoring of retinal and optic nerve disease.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author upon reasonable request.
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