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Topological data analysis (TDA) 
enhances bispectral EEG (BSEEG) 
algorithm for detection of delirium
Takehiko Yamanashi1,2, Mari Kajitani3, Masaaki Iwata2, Kaitlyn J. Crutchley1, Pedro Marra1, 
Johnny R. Malicoat1, Jessica C. Williams1, Lydia R. Leyden1, Hailey Long1, Duachee Lo1, 
Cassidy J. Schacher1, Kazuaki Hiraoka3, Tomoyuki Tsunoda3, Ken Kobayashi3, Yoshiaki Ikai3, 
Koichi Kaneko2, Yuhei Umeda3, Yoshimasa Kadooka4 & Gen Shinozaki1,5,6,7,8*

Current methods for screening and detecting delirium are not practical in clinical settings. We 
previously showed that a simplified EEG with bispectral electroencephalography (BSEEG) algorithm 
can detect delirium in elderly inpatients. In this study, we performed a post-hoc BSEEG data analysis 
using larger sample size and performed topological data analysis to improve the BSEEG method. 
Data from 274 subjects included in the previous study were analyzed as a 1st cohort. Subjects were 
enrolled at the University of Iowa Hospitals and Clinics (UIHC) between January 30, 2016, and October 
30, 2017. A second cohort with 265 subjects was recruited between January 16, 2019, and August 19, 
2019. The BSEEG score was calculated as a power ratio between low frequency to high frequency using 
our newly developed algorithm. Additionally, Topological data analysis (TDA) score was calculated 
by applying TDA to our EEG data. The BSEEG score and TDA score were compared between those 
patients with delirium and without delirium. Among the 274 subjects from the first cohort, 102 were 
categorized as delirious. Among the 206 subjects from the second cohort, 42 were categorized as 
delirious. The areas under the curve (AUCs) based on BSEEG score were 0.72 (1st cohort, Fp1-A1), 0.76 
(1st cohort, Fp2-A2), and 0.67 (2nd cohort). AUCs from TDA were much higher at 0.82 (1st cohort, 
Fp1-A1), 0.84 (1st cohort, Fp2-A2), and 0.78 (2nd cohort). When sensitivity was set to be 0.80, the TDA 
drastically improved specificity to 0.66 (1st cohort, Fp1-A1), 0.72 (1st cohort, Fp2-A2), and 0.62 (2nd 
cohort), compared to 0.48 (1st cohort, Fp1-A1), 0.54 (1st cohort, Fp2-A2), and 0.46 (2nd cohort) with 
BSEEG. BSEEG has the potential to detect delirium, and TDA is helpful to improve the performance.

Delirium among elderly inpatients is very common, expensive, and  dangerous1–3. Delirium is also difficult to be 
diagnosed and therefore less likely to be  treated4–6. Delirium is prevalent in older adult inpatients, occurring in 
up to 50% of patients admitted to general internal medicine floors, 15–53% who are undergoing post-operative 
recovery, and 70–87% who are in intensive care units (ICU)1,7, which translates to a minimum of around three 
million cases of delirium annually in the U.S. alone. Delirium is especially common among elderly patients 
with dementia, and it strongly predicts poor patient outcomes, such as increased rates of  mortality4,8–11, length 
of stay in the hospital, and institutionalization after  discharge1–3. Even when these patients survive, their risk 
of long-term cognitive impairment is  high12 and progression of baseline dementia is  accelerated2,13. If unde-
tected, delirium can cost more than $60,000 per patient every year, i.e., > $150 billion in added healthcare costs 
in the U.S.  alone3,5. The burden for families taking care of patients with delirium is also significant and can be 
 traumatic14. Thus, undiagnosed or untreated delirium has widespread effects on individual patients and the 
healthcare system as a whole.

It has been shown that low-technology interventions can prevent occurrence of delirium  cases3,15–17, and in 
1990 the Confusion Assessment Method (CAM) was introduced as a method for delirium  detection18. This led 
to extensive efforts to identify useful tools for screening and detecting delirium using various questionnaire-style 
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instruments, including the Confusion Assessment Method for Intensive Care Unit (CAM-ICU)19,20 and the 
Delirium Rating Scale-Revised-98 (DRS)21. Despite these instruments being effective when rigorously imple-
mented, delirium remains seriously underdiagnosed and  undertreated4–6, in part because these methods are often 
challenging to apply in a hospital setting because they involve extensive questionnaires administered multiple 
times daily by busy hospital personnel. Also, their subjective nature makes it difficult to monitor change over the 
course of a hospital stay, particularly when they are used by different staff members. Because of the challenges, 
it has been shown that these tools have suboptimal sensitivity (38–47%) when used in busy clinical settings 
including the  ICU22,23. Another important limitation is that these approaches detect delirium only after it has 
developed. These situations make it clear there is a critical need for more objective and effective detection of 
delirium followed by timely intervention in order to reduce the healthcare costs related to the increased morbidity 
and mortality in patients with this disorder.

Electroencephalography (EEG) is useful for detecting brain wave signals that are characteristic of  delirium24–28. 
However, there are several obstacles that prevent its regular utilization for screening of many hospitalized patients. 
First, a traditional standard multiple-lead EEG instrument is usually heavy, large and not portable; it is cumber-
some to transport and expensive to purchase, thus access to such machines is limited for most patients who may 
not exhibit obvious indication for EEG. Second, a well-trained technician must work for a significant amount 
of time to correctly position the numerous EEG electrodes on a patient’s scalp, and a neurologist specialized in 
electrophysiology must interpret the data and report the findings in the record. This results in significant delay 
in starting treatment for patients with abnormal brain signals suggestive of delirium. These limitations associ-
ated with the current resources have prevented widespread adoption of traditional EEG use for mass screening 
of delirium, even though the use of such analysis could improve detection and diagnosis, ultimately lowering 
the quality and cost of care.

Electrophysiological signals that are characteristic of delirium are commonly described as “diffuse slowing” in 
traditional EEG recordings. The term diffuse slowing indicates that in individuals experiencing delirium, the activ-
ity across most or all of the 20 electrodes (diffuse) is of low frequency (slowing). The emergence of low-frequency 
waves is an indication that a patient has global brain dysfunction commonly seen in delirium. The fact that all 20 
leads detect the same slowness in frequency indicates that fewer leads are sufficient to obtain the relevant data. 
Thus, we developed a novel bispectral EEG (BSEEG) system that utilizes only two EEG channels, and these can 
be easily applied by non-experts. In addition, no special expertise is needed for interpretation of the data with 
appropriate signal processing. We conducted a study using this novel BSEEG method for the detection of slowing 
brain waves that are characteristic of delirium. Our published study showed that the BSEEG method is useful 
in detecting delirium among elderly  inpatients29,30. Although our published data on BSEEG and other literature 
about EEG support the notion that such approaches are useful for detecting  delirium29–32, challenges existed in 
accuracy of performance, and no large-scale study has been conducted to see whether improvement of perfor-
mance through advanced signal analysis technology in detecting delirium using the BSEEG method is possible.

Topological data analysis (TDA) provides a relatively new, emergent general framework for the analysis of data 
that has the advantages of being able to capture global information from complex and large volume of data and to 
provide stability against noise. TDA uses mathematical approaches in algebraic topology to provide quantitative 
information for the analysis of the "shape" of  data33. A prominent branch of TDA is persistent homology, which 
analyzes the dynamics of the topological features of a data set in the form of holes. The basic idea of persistent 
homology is to construct a figure that changes according to the parameters of the real number of parameters 
from the point cloud data sampled in the Euclidean space, and then extract information about the original point 
cloud in the form of changes in the homology of the figure according to the changes in the parameters, that is, 
changes in the connected components and the number of  holes33. For time series data including EEG, it extracts 
global features such as waveform dynamics. In recent years Topological Persistent homology has been successfully 
applied to a range of applications, for example,  image34,  neuron35,  action36,  aircraft37, heart-beat  data38, and so on.

In the present study, we aimed to determine whether detection of delirium among elderly patients using the 
BSEEG method can be improved with advanced signal analysis technology, especially TDA. To validate our 
findings, we used two independent cohorts with two different EEG devices.

Results
Participant demographics. The average patient age from the first cohort was 73.5 yo (SD = 9.6), 53.6% of 
subjects were female, and 98.9% were non-Hispanic white (NHW) per self report. In the 1st cohort, among the 
274 subjects, 102 were categorized as delirious, and 172 were judged not to have delirium at the time of assess-
ment (Table 1). The average patient age from the second cohort was 70.9 yo (SD = 9.8), 46.6% of subjects were 
female, and 92.7% were non-Hispanic white (NHW) per self report. In the 2nd cohort, among the 206 subjects, 
42 were categorized as delirious, and 164 were judged not to have delirium at the time of assessment (Table 1). 
Age, sex, or race were not significantly different between the delirious and control groups for both cohorts 
except age for the 2nd cohort. DRS, the Delirium Observation Screening Scale (DOSS) and the Montreal Cogni-
tive Assessment (MoCA) were significantly different between groups for both cohorts. Charlson Commobidity 
Index (CCI) for 1st cohort, but not 2nd cohort, was significantly higher in the delirious group than in control 
group. The Clinical Dementia Rating (CDR) score for the 2nd cohort was significantly higher in the delirious 
group than in the control group (Table 1). Flow of participants through the study is shown in Fig. 1.

Signal pre-processing. After pre-processing, around half of the cases remained suitable for analysis by 
TDA for both cohorts. Detailed numbers of each subjects from both channels (Fp1-A1 and Fp2-A2) from 1st 
cohort, as well as 2nd cohort are shown (Supplementary Table). Examples of EEG signals before and after pre-
processing show significant reduction of artifacts from raw siganls (Supplementary Fig. S1). Also, representative 
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EEG signals and their corresponding BSEEG scores, as well as TDA scores, are shown (Fig. 2). Examples include 
(1) delirium patient with slowing in brain wave and high (positive) scores with both BSEEG and TDA (Fig. 2A), 
(2) non-delirium control with clear normal brain wave and low (negative) scores with both BSEEG and TDA 
(Fig. 2B), and (3) delirium patient with unclear brain wave with low (negative) BSEEG score, but with high (posi-
tive) TDA score (Fig. 2C).

Delirium detection performance. 1st Cohort. The BEEG scores, TDA scores, and delirium status cat-
egories are listed in the Supplementary Table. The area under the curve (AUC) from the receiver operating 
characteristic (ROC) curve analysis is shown in Fig. 3A,B for Fp1-A1 and Fp1-A2, respectively. AUCs based on 
BSEEG score obtained for day 1 after enrollment to the study were 0.72 (Fp1-A1: 95% CI 0.63–0.81) and 0.76 
(Fp2-A2: 95% CI 0.67–0.84) . In contrast, AUCs from TDA were much higher at 0.82 (Fp1-A1: 95% CI 0.74–
0.89) and 0.84 (Fp2-A2: 95% CI 0.76–0.91). AUCs from TDA were significantlly higher than AUCs from BSEEG 
(Fp1-A1: p = 0.006, Fp2-A2: p = 0.015). When sensitivity was set to be 0.80, TDA drastically improved specificity 
to 0.66 (Fp1-A1: 95% CI 0.55–0.76) and 0.72 (Fp2-A2: 95% CI 0.63–0.81) compared to 0.48 (Fp1-A1: 95% CI 
0.37–0.59) and 0.54 (Fp2-A2: 95% CI 0.44–0.64)) with BSEEG (Fig. 3A,B). BSEEG and TDA result distributions 
are shown in Supplementary Fig. S2.

2nd Cohort. The BEEG scores, TDA scores, and delirium status categories are listed in the Supplementary 
Table. The AUC from the ROC curve analysis is shown in Fig. 3C. AUCs based on BSEEG score obtained for day 
1 after enrollment in the study were 0.67 (95% CI 0.56–0.79). In contrast, AUCs from TDA were much higher at 
0.78 (95% CI 0.68–0.88). AUC from TDA were significantlly higher than AUC from BSEEG (p = 0.014). When 
sensitivity was set to be 0.80, TDA drastically improved specificity to 0.62 (95% CI 0.54–0.70) compared to 0.46 
(95% CI 0.37–0.54) with BSEEG (Fig. 3C). BSEEG and TDA result distributions are shown in Supplementary 
Fig. S2.

Adverse events. No adverse events from performing EEG data collection or evaluating clinical data were 
reported.

Discussion
This is the first study to apply TDA for EEG signals obtained by BSEEG to detect delirium. BSEEG methods were 
developed to bring the merit of early detection of delirium to clinical practice. TDA was shown to improve the 
detection accuracy of BSEEG methods, further making this approach more reliable. The results were replicated 
with two independent cohorts, by two different portable EEG devices. As shown in Fig. 2, there are several situ-
ations observed with EEG recordings. In typical slowing waves obvious to the human eye (Fig. 2A), both BSEEG 
and TDA correctly identified those with high scores in delirium patients. In normal brain waves, both BSEEG 
and TDA correctly analyzed those with low scores in non-delirium controls (Fig. 2B). The benefit of TDA over 
BSEEG was also shown in the case of EEG signals not clear with slowing and BSEEG showed low score, altough 
TDA correctly calculated high score to capture delirium case (Fig. 2C). Although BSEEG was simple and effective 

Table 1.  Patient characteristics. CCI Charlson commobidity index, DRS delirium rating scale-revised-98, 
DOSS Delirium observation screening scale, MoCA Montreal Cognitive assessment, CDR clinical dementia 
rating.

Classification

1st Cohort 2nd Cohort

Clinical categories

Statistical test p-value

Clinical categories

Statistical test p-value
Delirious 
(N = 102)

Control 
(N = 172)

Delirious 
(N = 42)

Control 
(N = 164)

Mean age—
year 73.8 73.3 t = 0.34 0.37 78.0 69.1 t = − 5.60  < 0.01

SD 9.4 9.8 8.0 9.4

Female sex (n) 52 95 χ2 = 0.47 0.50 17 79 χ2 = 0.80 0.37

% 51.0% 55.2% 40.5% 48.2%

Race χ2 = 0.65 0.42 χ2 = 1.67 0.20

White (n) 101 168 37 154

% 99.0% 97.7% 88.1% 93.9%

Other (n) 1 4 5 10

% 1.0% 2.3% 11.9% 6.1%

Mean CCI 4.2 3.4 t = 2.13  < 0.05 4.3 3.7 t = − 1.15 0.25

Mean DRS 16.9 6.6 t = 14.07  < 0.01 12.4 5.5 t = − 13.85  < 0.01

Mean DOSS 6.3 0.2 t = 10.41  < 0.01 5.7 0.7 t = − 10.04  < 0.01

Mean MoCA 14.4 23.4 t = − 9.36  < 0.01 11.5 22.8 t = 13.95  < 0.01

Mean CDR NA NA NA NA 0.63 0.28 t = − 4.78  < 0.01
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Figure 1.  Flow of participants through the study. (A) cohort 1, (B) cohort 2.



5

Vol.:(0123456789)

Scientific Reports |          (2021) 11:304  | https://doi.org/10.1038/s41598-020-79391-y

www.nature.com/scientificreports/

to capture most of the slow EEG waves from this point-of-care device, TDA showed superior performance in 
capturing challenging cases to improve better accuracy.

The merit of BSEEG and TDA is its objectiveness compared to currently available questionare-style screening 
instruments. Also, this method does not require a large EEG machine, which is not suitable for large-volume mass 
screening in the hospital. A specialized technician for multiple electrode placement is not necessary, and expert 
interpretation is not required. It is easy to use by busy hospital staff, with minimal training and interpretation 
required. However, the challenge of the previous algorithm was the relatively limited accuracy for detection of 
delirium in the range of AUC of 0.67–0.7629. However in this report, we show that an additional signal processing 
analysis method, TDA, can overcome the challenge of limited accuracy and enhance the reliability of the BSEEG 
approach by increasing specificity by 16%-18%.

The current analysis has challenges and limitations. First, obtained raw EEG data are inevitably contaminated 
with multiple sources of potential artifacts including EMG (Supplementary Fig. S1). It has been reported that 

Figure 2.  Examples of EEG signals in case of (A) obvious slowing where both BSEEG and TDA show positive 
scores, (B) obvious normal signals where both BSEEG and TDA show negative scores, and (C) not obvious 
slowing where BSEEG show negative scores, but TDA show positive scores.

Figure 3.  (A) ROC based on signals obtained from Fp1-A1 from the first cohort (58 delirium cases and 79 
controls), (B) ROC based on signals obtained from Fp2-A2 from the first cohort (53 delirium cases and 92 
controls), and (C) ROC based on signals obtained from Fp1-A1 from the second cohort (30 delirium cases and 
131 controls). AUCs, DeLong’s test results, and specificities when sensitivities were set for 0.80 are shown.
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since EEG frequency bands and EMG frequency bands overlap it is difficult to remove EMG from EEG by band 
pass filter  alone39. We need to improve EEG device hardware and to advance the algorithmic approach to over-
come this problem. However, our previous and present data showed that BSEEG or TDA score analyzed from 
the potable devices have a promising potential to be useful to detect delirium and to predict poor outcomes, even 
with the limitation mentioned above. Second, as described above, pre-processing to select EEG signals suitable 
for TDA limited available samples to 60 ~ 80% of original samples. Part of this drastic decrease is due to our 
rigorous criteria for acceptance of EEG signals to verify that they are suitable for TDA. However, such a stringent 
approach excluded many samples for the analysis, which is not optimal for future application in clinical practice. 
To overcome this challenge, we are actively working towards finding a good balance between restricting poor-
quality signals versus including them with improved signal processing (both pre- and post-filtering). Another 
challenge is that for this TDA analysis, several parameters were adjusted to achieve the best performance. It is 
not yet proven that those specific parameters would be the best for data from additional independent samples. 
For example, with our two independent cohorts with two different EEG devices, TDA parameters needed to be 
fine tuned to show similar improvement of detection performance. However, we tested the same TDA analysis 
parameters for two different datasets from Fp1-A1 and Fp2-A2 and both data showed consistent benefit. Another 
limitation is that this data is from a single institution in the Midwest region of the U.S, and generalizability 
needs to be tested in different institutions with more diverse ethnic backgrounds, as our study participants were 
mainly NHW. Lastly, TDA is a computationally intensive algorithm at this point. Therefore, we obtained EEG 
data at the bedside, and then we analyze EEG data using a PC in the laboratory. Thus, we could not tell whether 
we could obtain TDA data at the bedside. We should be able to avoid missing data if we can analyze EEG data 
at the bedside, as we can potentially repeat measurements until we obtain good quality signals suitable for TDA 
analysis. Currently we are working to enhance the speed of the algorithm so that it can be implemented into a 
handheld device; we envision this approach will be used at the bedside. Although there are several limitations, 
our data presented here showed the promise of TDA applied to BSEEG to enhance more accurate and objective 
detection of delirium with this novel approach.

Once early detection of brain dysfunction associated with poor outcomes such as mortality is made, it is 
possible to identify reversible causes, followed by early intervention and close monitoring to avoid preventable 
complications. Such an approach may shorten hospital stay, increase a patient’s chance to go home, decrease 
mortality, and suppress financial loss for hospitals.

Conclusion
In summary, delirium is a dangerous condition and early detection is vital for better outcomes, but current 
methods are suboptimal and not practical. We showed that a simplified EEG with BSEEG algorithm has the 
potential to detect delirium, and TDA is helpful to drastically improve the performance. We validated our results 
using two independent cohorts with two different portable EEG devices. This approach is easy to use in busy 
hospital settings and would potentially benefit patients, physicians, hospitals, and the economy of health care.

Methods
Study design. This is a post-hoc analysis of data obtained through a prospective, cohort study invesitgating 
the role of BSEEG to detect delirium and predict patient  outcomes40. We also used a second independent cohort 
for replication using a different EEG device. The protocol of this study was approved by the University of Iowa 
(UI) Institutional Review Board. This study conforms to the provisions of the Declaration of Helsinki.

Setting and participants. For this report, first, we analyzed data from 274 subjects included in the previ-
ous study enrolled at the UI Hospitals and Clinics (UIHC) between January 30, 2016, and October 30, 2017 (1st 
cohort)40. Second, we collected and analyzed data from an additional 206 subjects recruited at UIHC between 
January 16, 2019, and August 19, 2019 (2nd sohort). A detailed description of the recruitment process has been 
reported  previously40. Eligibility criteria was 1) subjects who were admitted to the general medicine floor, the 
orthopedics floor, or the emergency department; 2) subjects whose age were 55-years or more. Potentially eligi-
ble subjects were identified through reviewing the electronic medical record.

We assessed the eligibility of patients for their capacity to consent and participate. When the subjects displayed 
the capacity to provide consent, they consented on their own. If the subject was delirious and it was determined 
they did not have the capacity to consent, their legally authorized representative signed the consent on their 
behalf. We obtained written informed consent from participants or their legally authorized representative after 
providing a complete description of the study. Study subjects were recruited from a convenience series of eligible 
patients.

Clinical data collection and case definition. Details of clinical data collection methods and case defi-
nitions have been described  previously40. Briefly, medical history, as well as demographic characteristics and 
CDR score, were obtained from chart review and interviews. CCI was calculated based on subject’s medical 
 record41. CAM-ICU19,20,  DRS21,  DOSS42 and  MoCA43 were administered for clinical assessment. We defined a 
case of delirium by a positive score, or beyond the cut-off score on any of the questionnaires (CAM-ICU posi-
tive, DRS ≥ 19, or DOSS ≥ 3) or clinical documentation of evidence of delirium at the time of initial assessment 
as previously  described40. A psychiatrist board-certified in consultation-liaison psychiatry (G.S.) reviewed each 
case in question for final determination for case definition. The clinical raters were blind for the EEG scoring as 
the EEG data was analyzed after clinical evaluation later in the laboratory.
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BSEEG data collection and score calculation. We obtained EEG data on the day of recruitment. In our 
previous study, a portable EEG device (CMS2100, CONTEC, Qinhuangdao, Hebei, China) was utilized to collect 
brain signals. Sampling rate of the EEG is 500 Hz. For our second cohort, a different EEG device (ZA, ProAs-
sist, Osaka, Japan) was used and the sampling rate of this device was 128 Hz. We applied our newly developed 
algorithm of BSEEG from EEG signals obtained from the forehead of the study  participants29,30,40,44. Signals were 
obtained from Fp1-A1 and Fp2-A2 from the 1st cohort. Signals were obtained from Fp1-A1 only from the 2nd 
cohort. The BSEEG score was calculated as a power spectral density (PSD) ratio between low frequency (3 Hz) 
to high frequency (10 Hz) as described  previously29,40,44. In other words, PSD of low frequency (3 Hz) divided by 
PSD of high frequency (10 Hz) was BSEEG score. In addition to BSEEG score, this time we introduced TDA to 
enhance our algorithm. To apply TDA to the raw signals, rigorous pre-processing methods were employed. Raw 
signals were processed by low-pass and high-pass band filtering to capture signals between 0.5 Hz and 20 Hz, 
as well as removal of noises and artifacts such as signals from the echocardiogram. Also, we included signals for 
analysis if they contained EEG signals suitable for analysis over more than 30 s. The EEG data analyzers were 
blind for clinical data.

TDA scoring. TDA score was calculated as the evaluation criteria for detecting delirium using TDA. TDA 
is a powerful tool for analyzing complex datasets. Our TDA processing pipeline applies persistent homology to 
time-delay embeddings that capture the underlying system dynamics from which time series data is acquired. 
TDA score was calculated as the area of a 1-dimensional Betti curve, one of the outputs from persistent homol-
ogy, that represents irregularity of the time series. A full description of data processing is described in the sup-
plementary material. Then we performed signal windowing, whereby we extracted each channel of data and sub-
sequently divided each channel into 2-s windows and 4-s windows. Next, window filtering was performed, with 
each window of data being interrogated for excessive noise, and those windows with interference being removed 
from further analysis. Then we processed each remaining window for extraction of the following two signal fea-
tures. First is the power spectral density ratio (PSDR) obtained via fast Fourier transformation of remaining 4-s 
windows as BSEEG score. Second is the result applying TDA processing pipeline to 2-s windows as TDA score. 
More specific details of the calculation process for TDA are described in the Supplementary Methods.

Statistical analysis. Sample size of the 1st cohort was same as our previous  study40, and the one of the 
2nd cohort was determined based on the 1st cohort to be consistent with the original cohort. Demographics 
were compared using unpaired t-test for continuous variables or chi-square test for categorical variables. We 
used ROC curves and AUCs to analyze the relationship between delirium-positive cases and BSEEG or TDA. 
We performed DeLong’s test to compare the AUC from BSEEG and the one from  TDA45. P-values < 0.05 were 
considered statistically significant. Missing and indeterminate BSEEG and TDA results were removed from the 
analyses (Fig. 1).

Data availability
Raw data are shown in Supplementary Table.
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