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Prognostic gene expression 
signatures of breast cancer are 
lacking a sensible biological 
meaning
Kalifa Manjang1, Shailesh Tripathi1, Olli Yli‑Harja2,3,7, Matthias Dehmer4,5,6, Galina Glazko7 & 
Frank Emmert‑Streib1,8*

The identification of prognostic biomarkers for predicting cancer progression is an important 
problem for two reasons. First, such biomarkers find practical application in a clinical context for the 
treatment of patients. Second, interrogation of the biomarkers themselves is assumed to lead to novel 
insights of disease mechanisms and the underlying molecular processes that cause the pathological 
behavior. For breast cancer, many signatures based on gene expression values have been reported 
to be associated with overall survival. Consequently, such signatures have been used for suggesting 
biological explanations of breast cancer and drug mechanisms. In this paper, we demonstrate for 
a large number of breast cancer signatures that such an implication is not justified. Our approach 
eliminates systematically all traces of biological meaning of signature genes and shows that among 
the remaining genes, surrogate gene sets can be formed with indistinguishable prognostic prediction 
capabilities and opposite biological meaning. Hence, our results demonstrate that none of the studied 
signatures has a sensible biological interpretation or meaning with respect to disease etiology. 
Overall, this shows that prognostic signatures are black-box models with sensible predictions of breast 
cancer outcome but no value for revealing causal connections. Furthermore, we show that the number 
of such surrogate gene sets is not small but very large.

Since the inception of high-throughput technologies the goal has been to utilize such experimental devices not 
only for obtaining a better elucidation of biology but to translate this knowledge into the clinical practice1,2. One 
particular example for such an application are prognostic studies based on gene expression data3–5. In general, 
the goal of such studies is to select a, preferably small, number of genes as features, called a signature, and to 
utilize these for predicting the course of a disease or outcome of patients represented by gene expression profiles. 
The prognostic value of such predictions is quantitatively assessed via a survival analysis allowing to perform 
a statistical test for detecting differences in different patient groups with respect to ’time to event’ information. 
Due to the generality of ’event’, which cannot only be death but also relapse or development of metastasis or 
organ rejection, prognostic studies are relevant for nearly all patient-related medical investigations. Due to the 
importance of prognostic studies for clinical applications and their general complexity, statistical aspects of this 
problem have attracted much attention in the literature. For instance, in6 the authors addressed the stability of 
the selection of prognostic predictors for various cancer types. They found that the size of the training data and 
the patients in it has a crucial effect on this. The same problem has been studied for breast cancer in7 and the 
authors found that thousands of patient samples are needed for achieving an overlap of 50% between two predic-
tive sets of genes. Such problems have been confirmed in many comparative investigations of feature selection 
mechanisms, see, e.g.,8–10.
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For breast cancer, an early study of a prognostic gene expression signature is from11. The authors used a 
70-gene signature to distinguish good prognosis from bad prognosis groups of patients with stage I or II breast 
cancer. The outcome of this influential paper sparked many follow-up investigations. For instance, in12 a 76-gene 
signature was used predicting development of distant metastases within 5 years of lymph-node-negative pri-
mary breast cancer or in13 an invasiveness signature of a 186-gene signature was used for predicting overall and 
metastasis-free survival. It is important to note that for all such studies not only the predictive outcome is of value 
but also the interpretational biological meaning of the used signatures14. Specifically, it has been stated in7 that 
“A reliable set of predictive genes also will contribute to a better understanding of the biological mechanism of 
metastasis”. This assumption is not limited to the above problem but widely believed to be true in the genomics 
and translational medicine community. The main purpose of this paper is to refute this assumption.

Our study is different from the above mentioned ones with respect to the following aspects. First, we do not 
introduce a new procedure for selecting signature genes. Instead, we provide an analysis of previously intro-
duced signatures with respect to their biological meaning. Second, we do not introduce a new validation method 
because all studied signatures have been previously validated, although we are using an independent validation 
data set for our study. Third, we do not aim to improve the quality of different prognostic signatures, although 
we utilize a more stringent statistical assessment, including conservative multiple testing corrections, compared 
to previous studies. Fourth, we do also not establish a connection between a prognostic signature and disease 
etiology shedding light on the underlying molecular and cell biological mechanisms. Instead, we investigate 
the prognostic benefit of random gene sets having a constrained biological meaning. The main purpose of this 
paper is to systematically demonstrate that sensible prognostic signatures of breast cancer outcome do not have 
a sensible biological meaning with respect to disease etiology. This is accomplished via constrained-sampling, a 
restricted resampling procedure for constructing random gene sets, which we introduce in this paper.

A central aspect of our constrained-sampling analysis is based on the definition of biological meaning of a 
set of genes. For this, we are using two different commonly utilized approaches. The first is centered around the 
meaning of individual ‘genes’ and the second is based on ‘biological processes’. For the gene-based definition of 
biological meaning, we follow a Mendelian-view whereas for the biological process-based definition representing 
a systems-view15, we utilize Gene Ontology (GO)16 and its underlying hierarchically organized GO-terms in the 
form of a directed acyclic graph (DAG).

This paper is organized as follows. In the next section, we describe the underlying methodology and the 
used data. Then we present our results and discuss our findings. This paper finishes with concluding remarks.

Methods
In this section, we provide information about the data and methods used for our analysis.

Gene expression data and BM signatures.  Our analysis makes use of two sources of data—gene expres-
sion data and sets of breast cancer gene signatures from 48 published studies. For the gene expression data we 
use two different data sets publicly available. The first gene expression dataset (in the following called NKI breast 
cancer) is accessible from17 and it contains 295 breast cancer samples from the Netherlands Cancer institute 
(a.k.a NKI) cohort. The data were generated by11. The gene expression dataset consists of 13108 genes and each 
sample corresponds to one patient. All patients had stage I or II breast cancer. The dataset is complemented by 
information about the development of metastases which has been used to indicate an ’event’ for survival analysis. 
The second gene expression dataset (in the following called SWE breast cancer) is from Gene Expression Omni-
bus (GSE96058)18. It contains 30865 genes and samples of the subtypes Basal (360), Her2 (348), LumA (1709), 
LumB (767) and Normal (225). The data were FPKM normalized and log transformed. The 48 biomarker (BM) 
signatures we use for our analysis were compiled in17. The number of genes in each signature varies, but all the 
biomarkers together contain 8106 genes. For the NKI gene expression data 5350 genes are present and for the 
SWE data 5060 genes.

Outcome association.  For assessing the prognostic value of gene sets, we perform a survival analysis. Spe-
cifically, we perform Kaplan Meier estimates of survival curves and compare these with a Mantel–Haenszel test19. 
Hence, each comparison is characterized by a p-value resulting from such a hypothesis test. The categorization 
of patients is achieved by the PC1 method, described below. This method separates the patients according to 
specified gene set. This means that the resulting survival analysis is a function of the gene set used to categorize 
patients. In Fig. 1, we show an overview of the individual steps involved in our analysis. Overall, our analysis 
consists of three main steps. First, selection/construction of a random gene set, second, classification of patient 
samples and, third, performing a survival analysis.

In the next two sections, we specify two different gene removal procedures (GRP) for constructing random 
gene sets. These procedures implement a constrained-sampling for two different views on biology, a Mendelian-
view based on genes (GRP 1) and a systems-view based on biological processes (GRP 2 and GRP 2*).

Gene removal procedure 1.  For this analysis, we investigate the prediction capabilities of random gene sets, 
RGSi , whereas the genes in RGSi are randomly sampled from the set G′

i = G \ BMi . Here G corresponds to the 
total number of genes in our breast cancer data set and BMi is the BM signature of study i, for i ∈ {1, . . . , 48} . 
The number of genes sampled per random signature is the same as in BMi , i.e., |RGSi| = |BMi| . We repeat this 
sampling 1000 times for each study with and without a Bonferroni correction. From numerical analyses we 
found that increasing the number of repeats does not lead to different results. In total we study 96, 000 random 
gene sets that have been constructed in this way. Details of this gene removal process are described as follows: 
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1.	 G : total number of genes in our breast cancer dataset.
2.	 BMi : {g1, . . . , gm} . BMi is the gene signature i (i range from 1 to 48) and g1, . . . , gm are the genes in the cor-

responding signature.
3.	 For each biomarker set i: 

(a)	 Removing biomarker genes in signature BMi from G. This gives a new set of genes G′
i with G′

i = G \ BMi

.
(b)	 From G′ , we sample new sets of biomarker genes of size |BMi| and perform the prognostic task. This 

is repeated 1000 times for each study i.
(c)	 Application of a Bonferroni correction to the p-values.
(d)	 Assessing the performance for a significance level of α.

Overall, gene removal procedure 1 constructs random gene sets by removal of BM signatures. If a random gene 
set has a significant p-value, we call it a surrogate gene set because it has the same prognostic prediction capabili-
ties as a BM signature and hence it is a surrogate for this.

Gene removal procedure 2.  For this analysis, we do not only remove BM signatures, but we remove also genes 
that belong to the same biological processes as the genes in the BM signatures. Due to the fact that according to 
the gene ontology (GO) database16 the biological processes are hierarchically organized, we approach this analy-
sis iteratively by removing successively genes of biological processes on the same hierarchy level20. Details of this 
gene removal process are described as follows:

Figure 1.   (A) Shown is a flowchart of all steps involved in our analysis. (B) Visualization of the underlying 
ideas of GRP 1 and GRP 2. The resulting gene sets G′ and G′′ are used for sampling random gene sets.
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1. G : total number of genes in our breast cancer dataset.
2. BMi : {g1, . . . , gm} . BMi is the gene signature i (i range from 1 to 48) and g1, . . . , gm are the genes in the 
corresponding signature.
3. Removing biomarker genes in signature BMi from G. This gives a new set of genes G′

i with G′
i = G \ BMi.

3∗ Optional step: Removing proliferation genes in PG from G. This gives a new set of genes G′∗
i  with G′∗

i  = 
G′
i \ PG.

4. Mapping of the genes in BMi to GO-terms and the corresponding hierarchy levels. This gives: 

 Note, each gene can be connected to more than one GO-term. For this reason m ≤ t.
5. Ranking of the GO-terms in descending order with respect to the hierarchy levels.
6. For each biomarker set i: Loop-over the hierarchy levels l in descending order, i.e., for 
l ∈ {Lmax(i), . . . , Lmin(i)} . Here Lmax(i) is the highest hierarchy level of biomarker set i and Lmin(i) is the 
lowest hierarchy level. 

(a)	 Delete all the genes associated with GO-terms on level l. This results in a new gene set given by G′′ = 
G′ \ D , where D is the set of genes having GO-terms on level l.

(b)	 From G′′ , we sample new sets of biomarker genes of size |BMi| and perform the prognostic task. This 
is repeated 1000 times for each hierarchy level l.

(c)	 Application of a Bonferroni correction to the p-values.
(d)	 Assessing the performance for a significance level of α.
(e)	 Set G′ = G′′ . Stop if l = Lmin(i) or |G′′| < |BMi|.

In the above procedure, the set PG is the gene set consisting of genes related to proliferation. The genes in PG 
have been defined in21 and consist of the signature genes of Whitfield22 and meta-PCNA17. In total PG contains 
664 genes. Step 3* is an optional step that removes additionally proliferation genes. When step 3* is used, we call 
the procedure GRP 2*, whereas when step 3* is not used, we call the procedure GRP 2.

Put simply, procedure GRP 2 removes first all biomarker genes (see step 3) and then iteratively removes genes 
belonging to the same biological processes as the signature genes (see step 6) from the highest hierarchy level 
Lmax to the lowest hierarchy level Lmin . That means at the end a set of genes G′′ is obtained that contains neither 
signature genes nor genes the belong to the same biological processes as the signature genes regardless of the 
hierarchy level. Results for G′′ for intermediate hierarchy levels l contain a certain overlap with biological pro-
cesses as indicated by l. All sets G′′ are treated in a similar way, i.e., the prognostic task is performed and assessed.

We assess the prediction results again by the p-values from the survival analysis. In addition, we determine the 
accuracy of predictions by declaring significant p-values as true positives (TPs) and non-significant results as false 
negatives (FNs). This allows the estimation of accuracy values, i.e., Acc = (TP + TN)/(TP + TN + FP + FN) 
by Acc = TP/FN23. These evaluations are obtained for each hierarchy level.

Overall, gene removal procedure 2 constructs random gene sets by removal of BM signatures and biological 
process related genes. Also here a random gene set with a significant p-value is call a surrogate gene set. In Fig. 1 
B, a visualization of GRP 1, GRP 2 and GRP 2 ∗ is shown.

Categorize patient samples.  For categorizing the samples of the patients, the PC1 stratification method 
is used. This method is based on a principal component analysis (PCA). The principal component analysis is a 
dimensionality reduction technique (this involves reducing the size of the data set). The goal is to transform large 
data set into smaller ones. This method trades a little accuracy for simplicity, thus achieving interpretability as 
well as minimal loss of information. Using the “prcomp” function available in R, the first principal component 
(PC1) of the signature is derived. The patients are then divided into two groups according to the median of the 
PC1. Specifically, a sample is categorized as group −1 if the PC1 is below the median value and as group +1 if the 
PC1 is above the median value.

For this analysis, a gene expression matrix of the form X ∈ R
m × R

n is used whereas m is the number of genes 
and n is the number of samples. Importantly, m corresponds to a particular gene set and not all genes available. 
Above, we described two different procedures for constructing such gene sets. Other sets we use for our analysis 
are the BM signatures themselves.

Survival analysis.  For assessing the prognostic value of gene sets, we perform a survival analysis. Specifi-
cally, we perform Kaplan Meier estimates of survival curves and compare these with a Mantel–Haenszel test19. 
Hence, each comparison is characterized by a p-value resulting from such a hypothesis test. The categorization 
of patients is achieved by the PC1 method, described above. This method separates the patients according to a 
specified gene set. Therefore, the resulting survival analysis depends on this gene set.

Definition: biological meaning.  In this paper we use the term ‘biological meaning’ in a well-defined way. 
This definition is based on gene ontology (GO)16. Specifically, the biological meaning of a gene is given by the 
GO-terms this gene is associated with as provided by GO. Similarly, the biological meaning of a set of genes is 
provided by the union of the sets of GO-terms of the individual genes.

(1)BMi = {g1, . . . , gm} → {(GO1, L1), . . . , (GOt , Lt)}.



5

Vol.:(0123456789)

Scientific Reports |          (2021) 11:156  | https://doi.org/10.1038/s41598-020-79375-y

www.nature.com/scientificreports/

Results
Our analysis is structured into three main parts. In the first part, we study characteristics of the 48 BM signa-
tures individually and comparatively. In the second and third part, we study prognostic prediction capabilities 
of random gene sets, systematically constructed with two different procedures.

Biomarker set sizes and GO‑term in signatures.  In Fig. 2A, we show an overview of the total number 
of genes in each signature. The name of the signatures are on the y-axis and the x-axis provides information 
about the size of the BM signatures.

From this figure, one can see that the signature by Adorno and Pei contains the least number of genes (2) 
whereas Hua has the largest number (1345 genes). That means the size of the signatures varies considerably 
among the studies and the average size of a signature is 168.9 genes.

In Fig. 2B and C, we show information about associated GO-terms with the genes in the signatures for the 
categories: Biological process (BP), molecular function (MF), and cellular component (CC). Currently, there 
are in total 29, 699 GO-terms from BP, 4202 GO-terms from CC and 11, 148 GO-terms from MF. In Fig. 2B, 
we show the absolute number of GO-terms in each study with respect to BP (green), MF (red) and CC (blue) 
whereas Figure 2C shows the corresponding percentage with respect to the total number of GO-terms for each 
category (i.e., BP, MF and CC).

Overall, from Fig. 2 B one can see that the present GO-terms in the signatures is considerably different from 
each other. This variation is particularly large for GO-terms of BP (green). Interestingly, if one considers the 
percentage of present GO-terms (see Fig. 2C) then the differences between the three GO categories (i.e., BP, MF 
and CC) become much smaller, although, also on this scale the differences between studies are considerable. The 
average number of GO-terms is 996.7 for BP, 277.9 for MF and 204 for CC and the average percentage is 0.034 
for BP, 0.025 for MF and 0.049 for CC.

Using a Spearman rank correlation test, we investigate if the order of the size of biomarker sets (see Fig. 2A) 
is conserved by the number of GO-terms (see Fig. 2B). As a result, we find p-values of 1.311469e − 28 for BP 
(green), 3.44238e − 35 for MF (red) and 2.96905e − 29 for CC (blue). Due to the fact that the percentage of 
GO-terms shown in Fig. 2C has the same order as for the number of GO-terms in Fig. 2B, a comparison of these 
results leads to the exact same p-values. Overall, the above p-values indicate that the order of all comparisons is 
highly statistically significant for any sensible significance level α . Therefore, the ranking of the biomarker sets 
with respect to their size is similar to the ranking according to their number of GO-terms, which implies that 
larger BM signatures contain more GO-terms.

Pairwise similarity of signatures.  For our next analysis, we perform a pairwise comparison of the BM 
signatures. That means, we study the overlap of common genes and GO-terms among different signatures. In 
Fig. 3A and B, the results from these pairwise comparisons are shown in form of heat maps. Formally, we define 
the overlap as follows. Let Si and Sj be two signature sets consisting either of genes or GO-terms corresponding 
to these genes. Then we find the percentage zi of common elements in Si that are also present in Sj by

Here zi can assume values between zero and one. We would like to remark that the way we find the overlap 
is asymmetric, i.e., zi  = zi if |Si| �= |Sj| . That means the percentage overlap is taken with respect to the first sig-
nature set Si.

From comparing the gene overlap (see Fig. 3A), the signature of Pei is the only one that is completely included 
in two other signatures namely Ben-porath-prc2 and Sotiriou-93. Interestingly, there is no unique signature, 
which means that each signature has some overlap with at least one other signature. The signature with the least 
commonality with other signatures is from Welm, which has only genes in common with the signatures of Taube 
and Reuter. Also the signature from Adorno has only a gene overlap with 4 other signatures. The signatures with 
the largest number of overlaps are Hua, Reuter and Sotiriou-93. These three signatures are sharing genes with 
42 other signatures. This means that the overlap with other signatures varies considerably from 2 to 42. These 
numbers are added to Fig. 3A in the last column of the heat map.

In contrast to this, the overlap of GO-terms among signatures is shown in Fig. 3B. Also here the overlap 
among the signatures varies considerably. For instance, the signatures of Hua and Reuter share the highest overlap 
of 2614 GO-terms, whereas Adorno and He, Adorno and Welm have the lowest overlap of 1 GO-term. However, 
the most important result is that all signatures share at least some GO-terms with every other signature (see last 
column). Hence, all signatures have a non-zero overlap in their biological meaning as measured by GO-terms. 
This is different to the gene-overlap shown in Fig. 3A.

Hierarchy levels of GO‑terms.  For our last analysis of the signatures, we are mapping the GO-terms to 
structural features of a GO-DAG. Specifically, we obtain information about the hierarchy levels of the GO-terms.

In Fig. 3, we show the distributions for the hierarchy levels of the GO-terms of BP. This means that for each 
signature, the levels of the GO-terms of BP are obtained and a boxplot of the distribution is shown. Interestingly, 
a large number of signatures exhibit a similar distribution for the levels, and most of the signatures have the 
same median value of 7 (except for Wong-proteas, Tavazoie, Pei, Mori, Hu, Buffa, Ben-Porath-Prc2 and Adorno). 
Furthermore, all signatures, besides Wong-proteas, Welm, Tavazoie, Ivshina, Hu, and Glinsky, are symmetric. 

(2)xi = Si ∩ Sj

(3)zi =
|xi|

|Si|
.
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Figure 2.   (A) Overview of the total number of biomarker genes in each study. (B) Shown is the number of 
GO-terms in each study. The green points correspond to BP, the red points to MF and blue points to CC. (C) 
The percentage of GO-terms of BP, MF and CC used by each study. The color is the same as for B.
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Figure 3.   (A) Pairwise overlap of genes in BM signatures. (B) A: Pairwise overlap of GO-terms in BM 
signatures. (C) The distribution of GO-terms of BP hierarchy levels for each study.
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Specifically, the signatures Wong-proteas, Welm, Ivshina and Hu are skewed to the right whereas the remaining 
ones are skewed to the left. The Wong-Proteas signature also has the highest median value (9), while Adorno 
and Tavazoie have the lowest median values (6). The degree of variation for the levels remains virtually the same 
for most of the signatures with the exception of a few.

These results demonstrate that despite the size differences of the signatures (see Fig. 2A), the differences in 
the number of GO-terms (see Fig. 2B) and the sparsity in the overlap of genes of the signatures (see Fig. 3A) the 
biological specificity of the GO-terms is very similar.

Prognostic prediction capabilities of random gene sets.  In the following, we investigate the prog-
nostic prediction capabilities of BM signatures and random gene sets systematically. We start by focusing on BM 
signatures and random gene sets for which the BM signatures have been removed. Thereafter, we investigate 
random gene sets for which not only the BM signatures have been removed but also further genes that share 
common biological processes. This will lead to more stringent insights about the biological meaning of BM 
signatures.

Effect of removing individual BM signatures.  The study by17 investigated prediction capabilities of random gene 
sets, RGSi , whereas the genes in RGSi were randomly sampled from the set G′

i = G \ BMi . Here G corresponds to 
the total number of genes in our breast cancer data set and BMi is the BM signature of study i, for i ∈ {1, . . . , 48} . 
The number of genes sampled per random signature is the same as in BMi , i.e., |RGSi| = |BMi| . We repeat this 
sampling 1000 times for each study, i.e., we studied 48, 000 random gene sets that have been constructed in this 
way.

We would like to remark, that the study by17 did not apply a multiple testing correction to the obtained 
p-values despite the fact that multiple hypotheses had been tested. In order to see if these previous results are 
statistically robust, we repeated their analysis using a conservative Bonferroni correction24. Therefore, in total, 
we study 96, 000 random gene sets with and without Bonferroni correction.

The results of this analysis are shown in Fig. 4. Here the red/green points are the outcomes of the original BM 
signatures whereas dark red/dark green colors indicate non-significant values and light colors correspond to sig-
nificant results. The violet distributions correspond to results from random signatures and the shaded green bars 
correspond to the lower 3rd percentile of these distributions. Furthermore, the horizontal black lines represent 
the median values of the distribution of random signatures and the long horizontal blue line corresponds to a 
significance level of α = 0.001 . Note that for the p-values a logarithmic scale (i.e., log10 ) is used.

First, we observe from Fig. 4 that not all BM signatures (big points) lead to significant results. Specifically, 
the dark red and dark green points correspond to non-significant results whereas the light red and light green 
points correspond to significant results. This is a result from using different validation data than have been used 
by the original 48 BM studies. Still, without and with Bonferroni correction there are 39 BM signatures signifi-
cant in each case. Hence, the remaining 9 signatures do not show prognostic value for independent validation 
data and lack robustness.

Furthermore, from Fig. 4 without a Bonferroni correction (left), we find that the median p-values of 37 studies 
are significant (11 studies are not significant) while for a Bonferroni correction (right), we find only 19 significant 
studies (29 studies are not significant). Also, we find that with and without a Bonferroni correction most lower 
3% percentiles (green bars) are significant.

In order to obtain a better understanding of the total number of random gene signatures, we estimate an 
upper bound of the binomial coefficient 

(n
k

)

 . Here n is the available number of genes and k is the size of a random 
biomarker set. The meaning of this binomial coefficient is the total number of random gene sets that can be 
formed by selecting k genes from all available n genes.

For our data set the order of magnitude of n is 104 and according to Fig. 2A the average size of a BM signature 
is k = 102 . For the following estimate, only the order of magnitude of n and k are important as we will see below. 
Due to the fact that 

(10,000
100

)

 cannot be evaluated numerically, we estimate an upper bound of this by

Here e is Euler’s number. The right-hand-side of Eq. 4 can be simplified by

to obtain the order of magnitude as an exponent of 10. Overall, this leads to the following approximation of the 
binomial coefficient

for values of n = 10, 000 and k = 100 and x given in Eq. 6 (after rounding to integer numbers).
This demonstrates that the average number of random gene sets is in the order of 10243 and that one percentile 

of these correspond to 10241 different random gene sets, for each study. Hence, even for studies for which only 

(4)
(

n

k

)

≤
(n · e

k

)k
.

(5)
(n · e

k

)k
= 10x ⇒

(6)x = k · log10

(n · e

k

)

(7)
(

n

k

)

≤
(n · e

k

)k
= 10x = 10243
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about three percent of all random gene sets are significant, corresponding to the lower 3rd percentile (green bars) 
in Fig. 4, the number of such gene sets is very large. In order to distinguish such significant random gene sets from 
non-significant gene sets we call the former surrogate gene sets because they have the same prognostic predic-
tion capabilities as the BM signatures. Hence, the lower 3rd percentile corresponds to 10241 surrogate gene sets.

Effect of removing related biological processes.  In our next analysis, we go one step further. Instead of only 
removing BM signatures, we remove also genes that belong to the same biological processes as the genes in the 
BM signatures (see GRP 2 in the Methods section). Due to the fact that according to the gene ontology (GO) 
database the biological processes are hierarchically organized, we approach this analysis iteratively by removing 
successively genes of biological processes on the same hierarchy level. Details of gene removal procedure 2 are 
described in the Methods section.

We assess the prediction results again by the p-values from the survival analysis. In addition, we assess the 
accuracy of predictions by declaring significant p-values as true positives (TPs) and non-significant results as 
false negatives (FNs). This allows the estimation of accuracy values. These evaluations are obtained for each 
hierarchy level.

In Table 1, we show three representative results for the signatures of Pei (top), Chang (middle) and Wong-
Mitochon (bottom). The underlying p-values have been Bonferroni corrected. The remaining results for the 
remaining signatures can be found in the Tables 1 to 96 in the supplementary file. The first column shows the 
hierarchy level up to which the GO-terms have been removed (see GRP 2 Methods section) and columns two 
to six give further details about the involved genes and GO-terms. The accuracy (Acc) summarizes the results 

Figure 4.   Results for gene removal procedure 1 for the NKI data. Shown are prognostic prediction capabilities 
of surrogate gene sets for 48 studies after removing BM signatures. Left: Results for uncorrected p-values (as in 
the original study17). Right: Bonferroni corrected p-values.
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Table 1.   Results for GRP 2 (NKI data) for three signatures. Top: Pei. Middle: Chang. Bottom: Wong–
Mitochon. The p-values have been Bonferroni corrected.

Hierachy level Genes removed
Cum. sum of 
genes removed Genes left

GO-terms 
removed

Cum. sum 
of GO-terms 
removed Acc. (%) Sig.Acc. (%)

16 3 3 12,135 1 1 3.3 2.5

15 8 11 12,127 3 4 4.0

14 2 13 12,125 1 5 2.9

13 177 190 11,948 2 7 4.7

12 1318 1508 10,630 9 16 3.3

11 616 2124 10,014 8 24 3.7

10 432 2556 9582 10 34 3.2

9 229 2785 9353 11 45 3.4

8 190 2975 9163 13 58 3.1

7 197 3172 8966 9 67 2.8

6 533 3705 8433 24 91 2.5

5 854 4559 7579 16 107 3.2

4 837 5396 6742 4 111 4.1

3 130 5526 6612 4 115 2.5

2 250 5776 6362 3 118 3.0

1 56 5832 6306 1 119 3.2

18 17 17 11,822 1 1 87.0 88.5

17 11 28 11,811 3 4 87.9

16 3 31 11,808 2 6 89.6

15 89 120 11,719 8 14 89.2

14 203 323 11,516 24 38 89.8

13 819 1142 10,697 41 79 87.4

12 1932 3074 8765 91 170 87.1

11 1246 4320 7519 112 282 84.8

10 1216 5536 6303 153 435 84.3

9 1326 6862 4977 174 609 81.9

8 1252 8114 3725 183 792 79.6

7 1258 9372 2467 193 985 70.8

6 711 10,083 1756 165 1150 81.2

5 573 10,656 1183 97 1247 73.2

4 336 10,992 847 54 1301 88.1

3 122 11,114 725 27 1328 86.3

18 17 17 11,913 1 1 78.9 78.0

17 9 26 11,904 3 4 74.9

14 63 89 11,841 9 13 76.7

13 228 317 11,613 12 25 78.0

12 1228 1545 10,385 25 50 78.7

11 826 2371 9559 53 103 76.3

10 1054 3425 8505 60 163 75.5

9 1032 4457 7473 70 233 76.8

8 949 5406 6524 77 310 78.6

7 1754 7160 4770 89 399 69.7

6 810 7970 3960 78 477 68.6

5 868 8838 3092 67 544 63.4

4 461 9299 2631 35 579 63.6

3 339 9638 2292 24 603 65.6

2 238 9876 2054 12 615 56.0

1 30 9906 2024 3 618 56.6
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of 1000 repeats and the overall significant p-values. Finally, Sig. Acc. gives the accuracy when only the signature 
is removed.

As one can see the accuracy values can be very low (Pei: top) or very high (Chang:middle ) regardless of 
the hierarchy level, or they can decline toward higher hierarchy levels (Wong–Mitochon: bottom). However, 
despite this complicated behavior a commonality among all 48 studies is that there is always a non-vanishing 
percentage of random gene sets that make the correct predictions. Hence, the number of surrogate gene sets is 
non-zero for all signatures.

This is summarized in Fig. 5. Specifically, the shown accuracy values correspond to the minimal values 
for each study across all hierarchy levels. For instance, for Chang the minimal accuracy is 70.8% obtained for 
hierarchy level 7; see Table 1. From this figure one can see that also the resulting minimal accuracy values vary 
considerably across the studies, however, only 5 studies have values slightly smaller than 5%. All other studies 
have larger values than 5% and some are even larger than 80%, even for Bonferroni corrected p-values. Examples 
for the latter are the signatures from West, Whitfield, Ben-Porath-Prc2, Reuter and Hau.

For each hierarchy level of each study, one can investigate the resulting distribution of p-values for the ran-
dom gene sets (similar to Fig. 4). Due to the fact that for each study many hierarchy levels have been studied 
(see Table 1 or the supplementary Tables 1 to 96) there are more than 1000 such distributions for all studies. 
For instance, for Pei there are 16 such distributions corresponding to 16 hierarchy levels (see Table 1). In order 
to simplify the presentation, we show only results for the minimal accuracy values in Fig. 5. The corresponding 
results are shown in Fig. 6. Interestingly, these results are qualitatively comparable to the results shown in Fig. 4. 
However, quantitatively, the difference is that in average these p-values are slightly larger. This implies, e.g., that 
the median values of less studies are significant. Specifically, in Fig. 6 the median values of 33 (without Bonfer-
roni correction) respectively 10 (with Bonferroni correction) studies are significant.

In order to estimate the number of surrogate gene sets, we perform a similar approximation of the binomial 
coefficient as in Eq. 7, however, considering the reduced number of available genes. From the tables in the 

Figure 5.   Results for gene removal procedure 2 for the NKI data. (A), (B) Show results for the minimal 
accuracy values across all hierarchy levels, whereas A is for uncorrected p-values and B for Bonferroni corrected 
p-values. (C) Results for GRP 2* for removing all GO-terms on all hierarchy levels (Bonferroni corrected).
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Supplementary File we observe, in average, n = 1000 . Considering this, we obtain x = 143 . Therefore, the total 
number of random gene sets constructed with GRP 2 is

Also this number is very large but a factor of 10100 smaller than the number of random gene sets obtained 
in Eq. 7.

From Fig. 5 and 6 (here the 3rd percentiles are highlighted in green) one can see that also for this procedure 
a certain percentile or random gene sets lead to the correct prediction outcome. Hence, the number of surrogate 
gene sets is for GRP 2 in the order of 10141.

Finally, we repeat the above analysis for another data set from18, in order to demonstrate the robustness of 
our results. In Figs. 7 and 8 we show results for the SWE data. Specifically, in Fig. 7 (top row) we use patient 
samples for LumA, LumB and Her2, in Fig. 7 (bottom row) LumA and Her2 and in Fig. 8 LumA and LumB. As 
one can see our results for the NKI data are confirmed for the SWE data for different subtypes of cancer. Other 
combinations of the subtypes give similar results (not shown).

Discussion
In this paper, we conducted a systematic study investigating the prognostic prediction capabilities of random 
gene sets. For this, we defined two different gene removal procedures (GRP 1 and GRP 2) for a constrained-
sampling of random gene sets.

For clarity, we distinguish in our paper between three different types of genes set. The first one, called a sig-
nature, is a gene set identified in a targeted way. Typically, such genes are identified because it is assumed that 
they are biologically informative for a particular problem. In addition, if used in a prognostic prediction task 
such a signature yields statistically significant results, which evidences practically that the signature is indicative 
for the disease progression of patients. In contrast, a random gene set is obtained by randomly sampling genes 

(8)
(

n

k

)

≤ 10143.

Figure 6.   Results for gene removal procedure 2 for the NKI data. The results in (A) and (B) are for the minimal 
accuracy (see Fig. 5A,B), whereas A is for uncorrected p-values and B for Bonferroni corrected p-values. The 
results in (C) correspond to Fig. 5C where all GO-terms on all hierarchy levels have been removed and, in 
addition, all proliferation genes have been removed.
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Figure 7.   Results for gene removal procedure 2 and the SWE data similar to Fig. 6. Top row: Patient samples 
contain LumA, LumB, Basal and Her2. Bottom row: Patient samples contain LumA and Her2.
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from an available gene pool. No particular meaning or role is attributed to such genes before sampling. Lastly, 
a surrogate gene set is a random gene set that has the same prognostic prediction capabilities as a signature. In 
our case this is indicated by a significant p-value from a survival analysis.

Results from gene removal procedure 1.  The results from GRP 1 are summarized in Fig. 4. From this 
figure, one obtains the following interpretations.

Most random signatures are significantly associated with prognostic outcome: This is only correct for random 
signatures with a median value that is statistically significant, because the median corresponds to 50% of the 
population. Hence, a significant median indicates that 50% of the surrogate signatures are significant. In sum-
mary, without a Bonferroni correction this is correct for 37 (77.1%) studies and with Bonferroni correction for 
19 (39.6%) studies (see Fig. 4). Hence, this statement is signature-dependent and does not hold generally.

Many surrogate signatures are significantly associated with prognostic outcome: This statement is correct for 
surrogate signatures for which a certain percentile of the surrogate signatures is statistically significant. From 
Fig. 4 one can see that this is correct for the lower 3rd percentiles for all studies, with and without a Bonferroni 
correction.

The number of surrogate signatures which are significantly associated with prognostic outcome is very large: 
Despite the fact that not all median values for all signatures are significant, the number of surrogate signatures 
that are significant is for each study very lage. This result has been obtained from approximating the upper bound 
of the binomial coefficient 

(n
k

)

 where n is the number of available genes and k is the size of a surrogate gene set. 
As an approximation we found

for values of n = 10, 000 and k = 100.

Results from gene removal procedure 2.  The results from GRP 2 are an extension of GRP 1 in the sense 
that the genes available for random sampling are further constricted. That means instead of only removing BM 

(9)
(

n

k

)

≤ 10243

Figure 8.   Results for gene removal procedure 2 and SWE data similar to Fig. 6. Patient samples contain LumA 
and LumB.
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signatures, in addition, also genes related to the same biological processes are removed. Hence, the random gene 
sets obtained from this procedure are less biologically similar to the BM signatures.

The initial motivation for exploring GRP 2 came from the observation that the overlap of biological pro-
cesses present in random gene sets and in BM signatures is non-zero. That means whenever at least one gene in 
a random gene set belongs to a GO-term that is also present for a BM signature, possibly for a different gene, 
the random gene set and the BM signature have this GO-term in common. Numerically, we find the average 
number of common GO-terms (corresponding to BP) across all signatures is 341. We find the largest overlap 
for Hua with 2602 and the smallest for Adorno with 1 GO-term. These numbers are understandable because 
Hua contains the largest number of GO-terms (over 5000) whereas Adorno contains the smallest number (19 
GO-terms of BP); see Fig. 2.

The results from GRP 2 for the NKI data are summarized in Figs. 5 and 6 (and for the SWE data in Figs. 7 
and 8). It is interesting to note that the qualitative results are similar for GRP 2 and GRP 1. That means even 
by removing genes related to the same biological processes as the signature genes, the prognostic prediction 
capabilities of surrogate gene sets can be confirmed. Importantly, qualitatively, GRP 1 and GRP 2 are entirely 
different with respect to their biological meaning. Specifically, we designed GRP 2 in a way that the procedure 
allows the gradual removal of more and more biological meaning from random gene sets. This is accomplished 
by a ranking of GO-terms according to their hierarchy levels because it is know that GO-terms in a GO-DAG 
on higher levels contain biological information that is more specific than GO-terms on lower levels25. Due to the 
fact that GRP 2 removes genes, associated with certain GO-terms, gradually from high to low hierarchy levels, 
we were able to study this effect explicitly; see Table 1 and Tables 1 to 96 in the Supplementary File (for the NKI 
data). We would like to remark that removal of GO-terms from all hierarchy levels (corresponding to the last 
step of GRP 2) results in random gene sets with no biological similarity to the original BM signature. Hence, 
per construction, such random gene sets have a biological similarity of zero with the original BM signature.

Considering the biological differences in the meaning of random genes sets resulting from GRP 1 and GRP 2 
the results in Figs. 5 and 6 are remarkable because it means that any biological justification given for the selection 
of an original BM signature is anecdotal. Specifically, by removing genes related to the same biological processes 
as the signature genes we eliminate the possibility of accidentally selecting genes for a random gene set that share 
the same biological interpretation as the original BM signature. Hence, any biological interpretation of such a BM 
signature is meaningless because we demonstrated that one can find surrogate gene sets with the same prediction 
capability but entirely different biological interpretations due to zero overlap in the GO-terms of involved genes. 
This is also true for GRP 2* where additionally proliferation genes have been removed (see Fig. 6C).

We would like to remark that the study by17 did not allow this conclusion because BM signatures have not 
been removed nor genes from associated biological processes. This leaves the possibility of accidentally selecting 
genes for a random gene set that share the same biological interpretation as the original BM signatures because 
these genes belong to the same biological processes as indicated by common GO-terms in the domain BP.

Our study is also different to21 where the investigation by17 has been extended by removing proliferation 
genes. The problem with their design is that resulting random gene sets can still have a non-vanishing overlap of 
common GO-terms and, hence, share to a certain extend biological meaning with a signature. Instead, we aimed 
at the elimination of all common GO-terms so that the resulting random gene sets have a different biological 
meaning. Further constraining of GRP 2 by additionally removing proliferation genes, as studied in21, which we 
named GRP 2*, does not change our main result.

Taking a more specific look into some of the studies we used for our analysis allows to make this point more 
clear. For instance, the study by26 identified a BM signature by computationally investigating 42 breast cancer 
gene expression studies. After demonstrating the prognostic capability of their signature the biological impor-
tance of these genes has been discussed and their functional role has been characterized as cell cycle process 
related and response to steroid hormone stimulus. Similarly, in the studies by Carter27, Chi28, Saal29, Shipitsin30 
and West31 the biological importance of their signatures pointed to chromosomal instability, hypoxia response, 
PI3K pathway signaling, TGF-β signaling pathway and stromal response respectively. However, based on our 
results, none of these biological interpretations established a causal explanation of the underlying cancer biol-
ogy because one can always find alternative gene sets, which we called surrogate gene sets, that contain neither 
genes from their signatures nor from genes with related biological processes (nor from proliferation genes) but 
achieve the same prognostic predictions.

From these and other studies, one can derive the following general pattern that can be found in many prog-
nostic breast cancer studies. First, signature genes are identified by computational, experimental or mixed-
approaches and, second, the biological relevance of the signature genes is discussed. Our results demonstrate that 
neither step is necessary. The first step can be omitted because we showed that a constrained random sampling 
can lead to surrogate gene sets with the same prognostic prediction capabilities. Hence, any sophisticated, e.g., 
biology-driven selection process is equivalent to a random selection process. From our analysis we found that 
the probability that such a random gene set is actually a surrogate gene set is in the percentage range.

The second step can be omitted because we showed that by GRP 2 one can systematically construct surrogate 
gene sets with an entirely different biological meaning as the signature genes. Specifically, due to the fact that 
we remove systematically all genes related to any biological process of the signature genes, none of the genes in 
a surrogate gene set can belong to any of these biological processes. Formally, this can be written as follows (for 
the removal of all hierarchy levels). For any signature

consisting of m genes and corresponding GO-term set

(10)BM = {g1, . . . , gm}
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representing all GO-terms of the genes in BM and any surrogate gene set

consisting of m genes and corresponding GO-term set

representing all GO-terms of the genes in SGS, with t possibly different to t ′ , the two sets GT and GT ′ are disjoint, 
i.e.,

For our results shown in the Tables 1 to 144 (Supplementary File), including also the removal of proliferation 
genes, this holds for the last row in these tables, i.e., the highest level. Hence, due to the fact that the signature 
genes (i.e., BM) and the surrogate gene set (i.e., SGS) do not share any GO-term they have a complementary 
biological meaning. Furthermore, there is not just one surrogate gene set but in the order of 10141 different sets. 
This demonstrates that the biological discussion of BM is meaningless because one can find a huge number of 
surrogate gene sets with a plurality of biological meanings.

In contrast to studies investigating the problem of reproducibility of biomedical results32 requiring the adjust-
ment of approaches, our paper is different because our results point to a fundamental lack of a commonly used 
framework which is unfixable. As a generalization of our results for 48 signatures, we assert that a signature with 
a sensible biological interpretation cannot be found within the studied prognostic framework utilizing survival 
analysis. More formally, this means the commonly used prognostic framework is no causal model33.

In conclusion, we demonstrated that the common assumption that “A reliable set of predictive genes also will 
contribute to a better understanding of the biological mechanism of metastasis”7 is not true.

Falsification mechanism to test biological meaning of prognostic signatures.  For testing the 
validity of general signatures, we suggest the following procedure to test if it is justified to investigate the biologi-
cal meaning of a prognostic signature of breast cancer.

1.	 G : total number of genes in a breast cancer dataset.
2*.	 *Optional step: Removing proliferation genes in PG from G. The set PG contains proliferation genes. This 

gives a new set of genes G∗ with G∗ = G \ PG.
2.	 BM : {g1, . . . , gm} . BM is the gene signature and g1, . . . , gm are the genes in the corresponding signature.
3.	 Mapping of the genes in BM to GO-terms. This gives: 

 Note, each gene can be connected to more than one GO-term. For this reason m ≤ t.
4.	 Mapping of the GO-terms to genes. This gives: 

 for all GO-terms i with i ∈ {1, . . . , t}.
5.	 Delete all the genes in D = ∪i∈{1,...,t}g(i) from G. This results in a new gene set given by G′ = G \ D.
6.	 From G′ , sample new sets of random genes of size |BM| and perform the prognostic task. This is repeated 

1000 times.
7.	 Application of a Bonferroni correction to the p-values and assessing the performance for a significance level 

of α.

From numerical analyses, we found that 1000 repeats are sufficient to estimate the tail distribution of random 
gene sets because, for the signatures studied in this paper, the probability to be a surrogate gene set ( psgs ) is in 
average 3% percent or higher. However, other signatures may require larger repeats due to the reciprocal relation 
between these entities, i.e., # repeats > 1/psgs.

If this procedure does not result in any surrogate gene set with the same prognostic prediction capabilities, 
the BM signature has a biological meaning that deserves to be discussed. Otherwise the BM signature has no 
sensible biological interpretation, which is the case for the 48 signatures studied in this paper.

Conclusion
In this paper, we shed light on the biological interpretability of BM signatures for the prognostic prediction of 
breast cancer. Our results demonstrate that none of the 48 studied signatures has a sensible biological interpre-
tation because for each, surrogate gene sets can be found that perform the same task, however, belonging to 
different biological processes. This implies that every signature (random or not) can just serve as a black-box 
prediction model without a biological interpretation. We believe that this has wider implications, even beyond 
biomedicine, to general machine learning and artificial intelligence models but this remains to be studied34. 
In addition, we proposed a procedure to test the biological meaning of prognostic signatures of breast cancer. 
This test could avoid further confusion in the literature about the biological meaning of prognostic signatures.

(11)GT = {GO1, . . . ,GOt}

(12)SGS = {g ′1, . . . , g
′
m}

(13)GT ′ = {GO′
1, . . . ,GO

′
t′ }

(14)GT ∩ GT ′ = ∅.

(15)BM = {g1, . . . , gm} → {GO1, . . . ,GOt}.

(16)GOi → g(i) = {g1(i), . . . , gk(i)}.
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It is widely know that prognostic signatures of breast cancer are very heterogeneous and sensitive to changes 
in the studied perspective. For this reason, we assumed in this paper a higher conceptual ground, based on a 
systems-view, in order to study a common aspect shared by many signatures that allows to pierce through the 
unavoidable variability and heterogeneity. This concept goes back to the roots of systems biology as envisioned 
in35,36.
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