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Analysis and synthesis of a growing 
network model generating dense 
scale‑free networks via category 
theory
Taichi Haruna1* & Yukio‑Pegio Gunji2

We propose a growing network model that can generate dense scale-free networks with an almost 
neutral degree−degree correlation and a negative scaling of local clustering coefficient. The model 
is obtained by modifying an existing model in the literature that can also generate dense scale-
free networks but with a different higher-order network structure. The modification is mediated by 
category theory. Category theory can identify a duality structure hidden in the previous model. The 
proposed model is built so that the identified duality is preserved. This work is a novel application of 
category theory for designing a network model focusing on a universal algebraic structure.

Networks whose degree distribution pk follows a power-law pk ∼ k−γ are called scale-free networks and have 
been playing a fundamental role in understanding real-world networks in this two decades1,2. Here, pk is the 
fraction of the nodes of degree k in a given network. The Barabási–Albert model (BA model) is one of the most 
familiar growing network model that can generate scale-free networks with exponent γ = 33. It has been shown 
that variants of the BA model can generate scale-free networks with arbitrary exponent in the range γ > 24.

When γ > 2 , the generated networks by a growing network model are sparse in the sense that the average 
degree does not diverge as the networks grow. On the other hand, it has been reported that dense scale-free 
networks are sometimes observed in online social networks and other real-world networks5,6. Here, we call a 
network dense when its average degree diverges as it grows7,8. In order for scale-free networks generated by a 
growing mechanism to be dense, the following two requirements need to be satisfied: First, the power-law expo-
nent γ should be less than or equal to 2 in order for the average degree to diverge. Second, there should exist a 
cutoff for the power-law regime due to a constraint resulting from the maximum degree in a network9. So far, 
only a few growing network models for generating dense scale-free networks with specific values of γ have been 
known (For example, γ = 210 and γ = 3

2
5).

Recently, the authors proposed a growing network model that can generate dense scale-free networks with 
arbitrary exponents in the range γ > 111 by modifying a copying model12. However, the generated networks by 
this model have a rather distorted higher-order network structure: They have a strong positive degree−degree 
correlation, namely, the degree correlation function knn(k)13 increases linearly as the degree of nodes k increases 
on average, and the local clustering coefficient C(k)14 has a tendency that is rarely observed in real-world net-
works, namely, C(k) increases as k increases on average11.

In this paper, by modifying our previous model11, we propose a growing network model that can generate 
dense scale-free networks with a different higher-order structure such as an almost neutral degree−degree cor-
relation and a negative scaling of local clustering coefficient. We show that the proposed model can generate 
dense scale-free networks in which knn(k) is an almost constant function of k on average and C(k) is a decreasing 
function of k on average. In particular, the latter is a hallmark of a hierarchical structure or a modular structure, 
and frequently observed in real-world networks14,15.

The modification of our previous model relies on category theory16. Category theory is a kind of abstract 
algebra that has been used to extract common mathematical structures in different fields of mathematics and 
transfer a theory in one field to another field17. Recently, it has been suggested that category theory can also have 
effective applications in different fields of science18: control theory19,20, electrical circuits21, reaction networks22, 

OPEN

1Department of Information and Sciences, School of Arts and Sciences, Tokyo Woman’s Christian University, 
2‑6‑1 Zempukuji, Suginami‑ku, Tokyo  167‑8585, Japan. 2Department of Intermedia Art and Science, School 
of Fundamental Science and Technology, Waseda University, 3‑4‑1 Ohkubo, Shinjuku‑ku, Tokyo  169‑8555, 
Japan. *email: tharuna@lab.twcu.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-79318-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22351  | https://doi.org/10.1038/s41598-020-79318-7

www.nature.com/scientificreports/

databases23, resource theory24, dynamical systems25, machine learning26,27, complex systems design28, and so on. 
We use category theory for identifying a hidden duality structure in our previous model of growing networks 
and making use of it for building a new model. In order to obtain the new model, we modify the previous model 
so that the duality structure is preserved. Here, we only use a small part of category theory. In particular, we 
only need the notions of preordered sets and the Galois connections. These materials are reviewed in "Methods".

Background
Recall that the algorithm of the BA model consists of two steps: growth and preferential attachment (PA)3. In 
the growth step, a new node enters into an existing network. The degree of the new node is given as a fixed value 
m. Then, in the PA step, each existing node acquires a new link to the new node with probability proportional 
to its degree. The network grows as these two steps are repeated indefinitely.

The copying model focused on in our previous work11 was originally proposed as a model of evolution of 
protein-protein interaction networks driven by gene duplications and mutations12. The mechanism of PA is not 
directly implemented in the model algorithm. However, it naturally gives rise to PA. The copying model replaces 
the above two steps in the BA model by the copying step and the divergence step, respectively. In the copying 
step, a new node is produced by copying a randomly chosen existing node together with links emanating from 
it. In the divergence step, each link from the new node is deleted with a given probability 0 < p < 1 . PA follows 
from the copying step because the higher the degree of a node is, the higher the probability that it is reached 
from a randomly chosen node is. It is known that the generated networks by the copying model have a power-
law degree distribution pk ∼ k−γ with 2 ≤ γ ≤ 3 when p ≤ 1

2
 , and they are dense but not scale-free for p > 1

2
12.

In our previous model11, only the degree of a randomly chosen node is copied when creating a new node. 
The copied degree of the node is interpreted as an evaluation value of the ability to form link (‘popularity’). After 
multiplying a conversion coefficient δ > 0 from the degree (a result of link formation) to the ability (a cause of 
link formation), the obtained value is called the virtual degree of the new node. The targets of links from the new 
node are determined by a weak form of PA called ordinal preferential attachment (OPA). In OPA, the new node 
connects to randomly chosen existing nodes whose evaluation value of the ability to form links is greater than 
or equal to the virtual degree of the new node. Thus, our previous model consists of the following two steps: the 
copying degree step and the OPA step. In the copying degree step, first an existing node y is chosen randomly. 
Then, the virtual degree d∗x of the new node x is given as a randomly chosen natural number k less than or equal 
to ⌈δdy⌉ , where dy is the degree of y and ⌈r⌉ is the smallest integer greater than or equal to a real number r. In 
the OPA step, d∗x existing nodes z satisfying d∗x ≤ ⌈δdz⌉ are randomly chosen and the new node x forms links to 
them. When the number of existing nodes z satisfying the above inequality is less than d∗x , x connects to all such 
nodes and the OPA step is completed.

Our previous model can generate dense scale-free networks with exponent 1 < γ ≤ 2 for 
1 ≤ δ < e = 2.71828 . . .11. A theoretical analysis based on the rate equation shows that γ is obtained as a non-
trivial solution of γ = δ(γ − 1)2 + δγ−1 . The range of power-law regime is given by 1 ≪ k < Mt

1
γ  for some 

constant M > 0 , where t is the number of nodes. The average degree diverges in proportional to ln t and t
2
γ
−1 

for γ = 2 and 1 < γ < 2 , respectively. The degree correlation function knn(k) defined as the average degree of 
the neighbors of a node with degree k satisfies knn(k) ≥ δ

2
k for k ≫ 1 , indicating a strong positive degree−degree 

correlation. For the local clustering coefficient C(k) defined as the probability that a pair of nodes among neigh-
bors of a node of degree k is linked, we have C(k) ≥ D

t k
γ for k ≫ 1 when δ < 1.796028 . . . , where D is a constant 

depending on δ . Thus, C(k) is expected to increase on average as k increases, which was verified by numerical 
simulation11.

Results
We modify our previous model so that the modified model still can generate dense scale-free networks but 
with a different higher-order network structure. We show that the generated networks have an almost neutral 
degree−degree correlation and a negative scaling of local clustering coefficient. First, we analyze the duality 
structure of our previous model by category theory. Second, we synthesize a new model preserving the extracted 
duality structure.

Analysis of the previous model.  Let X be the set of nodes in a network generated by our previous model 
described in Section "Background". We define a map G : X → N from X to the set of natural numbers N by 
G(x) = ⌈δdx⌉ for x ∈ X . Here, we assume that dx > 0 for all x ∈ X . This condition is satisfied in the course of 
growth if the initial network is a connected network with two or more nodes. We regard N as a preordered set 
by the usual less-than-or-equal-to relation ≤ between natural numbers. We equip X with a preorder ≤X by defin-
ing x ≤X y :⇔ dx ≤ dy for x, y ∈ X . The preorder ≤X is a total preorder, namely, for any pair of nodes x, y in X, 
x ≤X y or y ≤X x hold. Two nodes x, y ∈ X are equivalent, namely, both x ≤X y and y ≤X x hold, if and only if 
dx = dy . By this definition of ≤X , G becomes a preorder-preserving map. Namely, if x ≤X y then G(x) ≤ G(y) 
holds. Note that the converse implication also holds for δ ≥ 1 , which corresponds to the dense regime of interest 
in this paper. Thus, x ≤X y is equivalent to G(x) ≤ G(y) when δ ≥ 1 . G is the map evaluating the ability of each 
node to form links. The copying degree step in our previous model is restated as follows: Randomly choosing a 
natural number k such that k ≤ G(y) for a randomly chosen node y ∈ X.

If we restrict the range of G to the interval [1,maxG(X)] ⊆ N , then there exists a preorder-preserving map 
F : [1,maxG(X)] → X such that F(k) ≤X x ⇔ k ≤ G(x) holds for all x ∈ X and k ∈ [1,maxG(X)] . Concretely, 
F(k) is a minimum element of the set {z ∈ X | k ≤ G(z)} , which is guaranteed to exist, since ≤X is a total preorder 
and X is a finite set. Since G is a many-to-one map in general (see Fig. 1(b)), there can be multiple minimum 
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elements. Any choice from the set of the minimum elements can be used to define F(k). The pair of preorder-
preserving maps (F, G) is called a Galois connection, or an adjunction16,18. Figure 1(b) illustrates a Galois con-
nection (F, G) for the network shown in Fig. 1(a). We can see that F(G(x′)) and x′ are equivalent for all x′ ∈ X 
in Fig. 1(b). This is true in general when δ ≥ 1.

Since G evaluates the ability of each node to form links, the dual map F to G can be regarded as expressing a 
‘realization’ process of the ability to form links. Under this interpretation, it might be natural to introduce the 
following link formation rule: For k ≤ G(y) obtained in the degree copying step, the targets of the links from the 
new node x with virtual degree d∗x = k is chosen as F(k). In more detail, let Mk be the set of the minimum ele-
ments of {z ∈ X | k ≤ G(z)} . If the size of Md∗x is greater than or equal to d∗x , then x connects to randomly chosen 
d∗x nodes in Md∗x . Otherwise, x connects to all nodes in Md∗x . We call this link formation rule the adjunction rule. 
However, the adjunction rule cannot produce dense scale-free networks as numerically demonstrated for δ =

√

3
2

 
in Fig. 2. On the other hand, in the OPA step of our previous model, the targets of the links from the new node 
x are randomly chosen from the set 

{

z ∈ X | d∗x ≤ G(z)
}

 rather than taking the minimum elements. We call this 
rule used in the OPA step the pre-adjunction rule.

Synthesis of a new model.  In Section "Analysis of the previous model", we express the duality of degree 
of nodes (result of link formation/cause of link formation) as a Galois connection (F, G). The copying degree 
step and the OPA step in our previous model are restated in terms of the Galois connection (F, G). In particular, 
it turns out that the OPA step uses the pre-adjunction rule for link formation. Now, we obtain a new growing 
network model by choosing a different but isomorphic Galois connection (F ′,G′) to (F, G).

First, we describe the algorithm of the new model without referring to category theory. Then, we explain how 
we obtain the new model from the Galois connection (F ′,G′).

Given an initial network, the following two steps are repeated indefinitely in the new model: 

(1)	 An existing node y is chosen uniformly at random from the set of all existing nodes. A new node x is 
generated with its virtual degree d∗x . d∗x is a natural number chosen uniformly at random from the interval 
[1, ⌈δdy⌉] , where δ > 0 is a parameter.
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Figure 1.   (a) A network consisting of five nodes v, w, x, y and z. (b) A Galois connection (F, G) associated with 
the network shown in (a). Here, we assume that δ = 1 and thus the map G is simply given by G(x′) = dx′ for all 
x′ ∈ X . Equivalent elements in each preordered set are enclosed in the same round box. Even if we change the 
value of F(3) from y to x or z, (F, G) is still a Galois connection since x, y and z are equivalent.
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Figure 2.   Evolution of the degree distribution of the generated networks by our previous model with the OPA 
step replaced by the adjunction rule for δ =

√

3
2

 . The initial network consists of two different nodes and a link 
between them. The data are averaged over 100 trials.
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(2)	 An existing node z is chosen uniformly at random from the set of all existing nodes z′ satisfying d∗x ≤ ⌈δdz′ ⌉ . 
Let Nz be the union of the set of neighbors of z and {z} . If d∗x is less than the size of Nz , then x connects to 
d∗x nodes chosen uniformly at random from Nz . Otherwise, the targets of x are the all nodes of Nz.

Now, we explain the category theoretical derivation of the new model. We consider the set NX := {(x,Nx) | x ∈ X} 
instead of X. We define a map G′ : NX → N by G′((x,Nx)) = G(x) . We introduce a preorder ≤NX on NX by 
(x,Nx) ≤NX (y,Ny) :⇔ dx ≤ dy for (x,Nx), (y,Ny) ∈ NX . Then, G′ is a preorder-preserving map. The preor-
dered sets (X,≤X) and (NX ,≤NX ) are isomorphic by the isomorphism I : X → NX defined by I(x) = (x,Nx) for 
each x ∈ X and we have G′ = G ◦ I−1 . Thus, the preorder-preserving maps F ′ := I ◦ F :

[

1,maxG′(NX)
]

→ NX 
and G′ form a Galois connection (F ′,G′) . For k ∈

[

1,maxG′(NX)
]

 , F ′(k) is a minimum element of the set 
{

(x,Nx) ∈ NX | k ≤ G′((x,Nx))
}

.
Based on the pre-adjunction rule for (F ′,G′) , we obtain the above new growing network model consisting 

of the copying degree step and a new version of the OPA step. We adopt the same procedure for the copying 
degree step. Let x be a new node to be added and d∗x its virtual degree. According to the pre-adjunction rule for 
(F ′,G′) , the targets of x is chosen from the set 

{

(z,Nz) ∈ NX | d∗x ≤ G′((z,Nz))
}

 . However, since (z,Nz) is not 
a node but a pair of a node and a set of nodes, there is an arbitrariness how they are chosen. Here, we adopt the 
following procedure: d∗x nodes are chosen randomly from Nz , where (z,Nz) is chosen randomly from the above 
set. If the size of chosen Nz is less than d∗x , x connects to all nodes in Nz and complete the OPA step. In short, 
the new node x can make a new link with existing nodes z whose ability to form links is greater than or equal 
to that of x and z’s neighbors.

We expect that this link formation rule has following effects to degree−degree correlation and local clustering. 
Since a z’s neighbor z′ does not necessarily satisfy d∗x ≤ G′((z′,Nz′)) , degree−degree correlation can be weakened 
compared to that in our previous model where the inequality is satisfied for all targets of x. On the other hand, if 
the set of chosen targets of x includes both z and its neighbors z′ , triangles among x, z, and z′ are formed, increas-
ing the degree of local clustering. This mechanism can result in a negative scaling of local clustering coefficient29.

The new model can generate dense scale-free networks when 1 ≤ δ < e . In the following, we focus on this 
parameter range. An analysis based on the rate equation30 similar to that in our previous work11 shows that if 
we assume that pk ∼ k−γ for 1 ≪ k < M ′t

1
γ  , where 1 < γ ≤ 2 , M ′ > 0 is a constant, and the upper limit M ′t

1
γ  

comes from the constraint on the allowed maximum degree for dense scale-free networks5, and that the degree of 
a neighbor of a randomly chosen node is independent of the degree of the chosen node, then we self-consistently 
obtain (see "Methods")

In Fig.  3, degree distributions of numerically simulated networks for three different values of δ 
( δ = 1,

√

3
2
, δ =

√
2 ) are compared with the theoretical prediction. Here, t denotes the number of nodes and 

the initial condition is given as the network with two different nodes and a single link between them. As networks 
grow, the scale-free regime is enlarged and the slope in the log-log plot agrees with the value obtained from 
Eq. (1). The number of links L scales as

where 〈k〉 is the average degree. In other words, the average degree 〈k〉 diverges as ln t and t2/γ−1 for δ = 1 and 
1 < δ < e , respectively. Thus, the generated networks are expected to be dense. Indeed, Fig. 4 compares the result 
of numerical simulation and Eq. (2) for the number of links L, showing that they are consistent.

The numerical results for the degree correlation function knn(k) and the local clustering coefficient C(k) are 
shown in Figs. 5 and 6, respectively. The average of knn(k) is almost constant and thus is consistent with the 
assumption of the above rate equation analysis. C(k) tends to decrease as k increases, which is the opposite trend 

(1)γ = 1+
1− ln δ

1+ ln δ
.

(2)L =
t

2
�k� ∼ t

∫ M ′t
1
γ

dk k−γ+1 ∼
{

t ln t (γ = 2)

t2/γ (1 < γ < 2),
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Figure 3.   Evolution of the degree distribution of the generated networks by the proposed model. (a) δ = 1 , (b) 
δ =

√

3
2

 , and (c) δ =
√
2 . The values of the power-law exponent are given by Eq. (1). The data are averaged over 

100 trials.
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against C(k) of the generated networks by our previous model. The behavior of knn(k) and C(k) is consistent with 
our expactation from the link formation rule discussed above.

Discussion
In this paper, we apply category theory for building a new growing network model that can generate dense 
scale-free networks. The proposed model is constructed through a modification of our previous model while 
preserving the duality associated with it. Both our previous and proposed models can generate dense scale-free 
networks. However, their higher-order network structures are different: Those generated by the former have a 
positive degree−degree correlation and a positive scaling of local clustering coefficient, while those generated by 
the latter have an almost neutral degree−degree correlation and a negative scaling of local clustering coefficient.

In Section "Analysis of the previous model", we have observed that the adjunction rule for link formation does 
not work for generating power-law degree distributions. In the pre-adjunction rule adopted in our previous and 
proposed models, a kind of fluctuation is introduced, which is crucial for generating dense scale-free networks: 
Taking minimum elements of a set is replaced by a random choice from the set. Formally, such incorporation 
of randomness can be readily extended to category theoretical limits or colimits, which are generalizations of 
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Figure 4.   The average number of links. (a) δ = 1 , (b) δ =
√

3
2

 , and (c) δ =
√
2 . Solid lines are the best fitting of 

the right-hand-side of Eq. (2). The data are averaged over 100 trials.

Figure 5.   The degree correlation function knn(k) of the generated networks at the final time step in the 
numerical simulation. (a) δ = 1 , (b) δ =

√

3
2

 , and (c) δ =
√
2 . Open squares are the result for a single trial and 

filled squares are the average over 100 trials.

Figure 6.   The local clustering coefficient C(k) of the generated networks at the final time step in the numerical 
simulation. (a) δ = 1 , (b) δ =

√

3
2

 , and (c) δ =
√
2 . Open squares are the result for a single trial and filled 

squares are the average over 100 trials.
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minimum or maximum elements of a subset of a preordered set16,17. Studying whether such extension of the 
pre-adjunction rule is meaningful or not in different mathematical models will be investigated elsewhere.

The category theoretic duality of nodes’ degree described in Section "Results" is mathematically rather trivial. 
However, we have shown that it guides construction of a non-trivial mathematical model of growing networks. In 
one of the authors’ previous work31,32, category theory was applied for analyzing the structure of static networks. 
In this paper, we have presented a novel kind of application of category theory, namely, designing of a dynamic 
network model. We hope that such an extended application of category theory leads to deepening understanding 
of mathematical structures of models for networks.

Methods
Preordered sets and Galois connections.  For a reference on the material in this section, we refer to 
Chapter 1 of Fong and Spivak18.

Let X be a set. A preorder on X is a binary relation ≤X⊆ X × X satisfying the following two conditions: (i) 
x ≤X x for all x ∈ X (reflexivity), and (ii) if x ≤X y and y ≤X z , then x ≤X z for all x, y, z ∈ X (transitivity). A 
set X equipped with a preorder ≤X is called a preordered set and is denoted by (X,≤X) . Two elements x, y ∈ X 
are called equivalent when both x ≤X y and y ≤X x hold. The preorder ≤X is called a total preorder when x ≤X y 
or y ≤X x hold for all x, y ∈ X.

Let (X,≤X) and (Y ,≤Y ) be preordered sets. A map F : X → Y  is called a preorder-preserving map when F 
preserves the preorder, namely, it holds that if x1 ≤X x2 then F(x1) ≤Y F(x2) for all x1, x2 ∈ X . Let F : X → Y  
be a preorder-preserving map. If there exists a preorder-preserving map G : Y → X satisfying G ◦ F = idX and 
F ◦ G = idY , where idX and idY are the identity maps on X and Y, respectively, then F is called an isomorphism 
between (X,≤X) and (Y ,≤Y ) . Here, G is also an isomorphism and is denoted by G = F−1.

Let F : X → Y  and G : Y → X be preorder-preserving maps for preordered sets (X,≤X) and (Y ,≤Y ) . A pair 
of preorder-preserving maps (F, G) is called a Galois connection or an adjunction between (X,≤X) and (Y ,≤Y ) 
if F(x) ≤Y y ⇔ x ≤X G(y) holds for all x ∈ X and y ∈ Y .

Let (X,≤X) be a preordered set and Z ⊆ X a subset. z∗ ∈ Z is called a minimum element of Z, when z∗ ≤X z 
for all z ∈ Z.

Let (F, G) be a Galois connection as above. It holds that, for each x ∈ X , F(x) is a minimum element of 
Z :=

{

y ∈ Y | x ≤X G(y)
}

⊆ Y  . Indeed, since F(x) ≤Y F(x) , we have x ≤X G(F(x)) , which shows F(x) ∈ Z . 
We also have, for any y ∈ Z , x ≤X G(y) , which is equivalent to F(x) ≤Y y . Thus, F(x) is a minimum element of Z.

Derivation of Eq. (1).  Let 1 ≤ δ < e . Let pk(t) be the fraction of nodes of degree k when the number of 
existing nodes in a network generated by the proposed model is equal to t. In the following, we assume k > 0 
since we are interested in the regime k ≫ 1.

The time evolution of pk(t) follows the rate equation

where ak(t) is the probability that an existing node of degree k gets a link from a new node x when the number 
of existing nodes is t, and bk(t) is the probability that the node newly added has degree k. Let qk(t) be the prob-
ability that d∗x = k . We have

and

Let Nk(t) := t
∑

k≤⌈δl⌉<t pl(t) . Let dk(t) be the probability that Nz for a specific node z of degree k is chosen 
and a specific node in Nz is chosen as the target for a link from the new node x. dk(t) is given by

Let us assume that the degree of a neighbor of a randomly chosen node is independent of the degree of the 
latter node. Then, the probability that the former is of degree k′ given the latter is of degree k, denoted by p(k′|k) , 
does not depend on k and is given by p(k′|k) = k′pk′ (t)

�k′�  . Using this, we obtain

Now, we assume that pk(t) ≃ ck−γ for 1 ≪ k < Mt1/γ and t ≫ 1 , where c,M > 0 are appropriate constants 
and 1 < γ ≤ 2 . We have

(3)(t + 1)pk(t + 1) = tpk(t)+ ak−1(t)tpk−1(t)− ak(t)tpk(t)+ bk(t),

(4)qk(t) =
∑

k≤⌈δl⌉<t

pl(t)×
1

⌈δl⌉
,

(5)bk(t) = qk(t)×
∑

k≤l<t pl(t)
∑

k≤⌈δl⌉<t pl(t)
+

∑

k<l≤⌈δk⌉
ql(t)×

pk(t)
∑

l≤⌈δm⌉<t pm(t)
.

(6)dk(t) =
∑

l≤k

ql(t)×
1

Nl(t)
×

l

k + 1
+

∑

k<l≤⌈δk⌉
ql(t)×

1

Nl(t)

(7)ak(t) = dk(t)+ k
∑

k′

p(k′|k)× dk′(t).
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Similarly,

and

for 1 ≪ k < Mt1/γ and t ≫ 1 . Plugging pk(t) ≃ ck−γ and Eqs. (9) and (11) into the continuous approximation 
of Eq. (3) with respect to k for t ≫ 1

and comparing the coefficients of k−γ on the both sides of Eq. (12), we obtain Eq. (1):

Data availability
The codes and the data that support our findings in this paper are available on the GitHub https​://githu​b.com/
taich​iharu​na/opa2.
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