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Model selection for inferential 
models with high dimensional 
data: synthesis and graphical 
representation of multiple 
techniques
Eliana Lima, Robert Hyde & Martin Green*

Inferential research commonly involves identification of causal factors from within high dimensional 
data but selection of the ‘correct’ variables can be problematic. One specific problem is that results 
vary depending on statistical method employed and it has been argued that triangulation of multiple 
methods is advantageous to safely identify the correct, important variables. To date, no formal 
method of triangulation has been reported that incorporates both model stability and coefficient 
estimates; in this paper we develop an adaptable, straightforward method to achieve this. Six 
methods of variable selection were evaluated using simulated datasets of different dimensions with 
known underlying relationships. We used a bootstrap methodology to combine stability matrices 
across methods and estimate aggregated coefficient distributions. Novel graphical approaches 
provided a transparent route to visualise and compare results between methods. The proposed 
aggregated method provides a flexible route to formally triangulate results across any chosen number 
of variable selection methods and provides a combined result that incorporates uncertainty arising 
from between-method variability. In these simulated datasets, the combined method generally 
performed as well or better than the individual methods, with low error rates and clearer demarcation 
of the true causal variables than for the individual methods.

Inferential epidemiological research commonly involves identification of potentially causal factors from within 
high dimensional data spaces; examples include genetics, sensor-based data capture and large scale question-
naires. The selection of ‘important’ variables from within a high dimensional space is challenging because con-
ventional stepwise selection procedures are known to perform poorly, resulting in inflated coefficients, downward 
biased errors and over fit  models1–4. Over recent years, methods have been proposed in the statistical literature 
to improve variable selection for inference in high dimensional data, including modifications to AIC/BIC5, and 
a variety of regularisation methods based on functions that penalise model coefficients to balance over- and 
under-fitting (the variance-bias trade off)6–8. It has been shown, however, that different methods of variable 
selection can result in considerable differences in covariates  selected9 and this poses difficult questions for the 
researcher about which method to choose, as well as presenting wider concerns around variability of results and 
therefore the reproducibility of  science10,11.

To mitigate the issue of results being method-dependent, it has been argued that uncertainty in data are 
always explored from many  angles12. Triangulation of multiple methods has been proposed as an aid to identify 
important  variables13; in this context triangulation refers to conducting a variety of analytic methods on one set 
of data, on the premise that the most important variables will tend to be identified by most methods. Indeed, 
recent research has indicated this approach is likely to be  beneficial9. However, rather than using triangulation 
to simply compare methods, a route to formally combine results from several statistical approaches would be 
advantageous to explicitly represent the additional uncertainty arising from variation between methods. Here we 
propose an approach to synthesise parameter estimates across different methods, to formally triangulate results 
and to compare, capture and account for between-method variability.
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Furthermore, it is recognised that robustness in model selection can be improved through use of selection 
 stability14,15. The concept is that covariates most frequently selected under repeated resampling are most likely 
to be of importance in a target population. Resampling, such as bootstrapping, is effective to evaluate selection 
 stability14 and has the advantage of simultaneously providing an estimate of model coefficient  distributions4, both 
of which can be used to provide a ranking of the relative importance of potential  covariates16.

In this paper we propose an adaptable method to compare and synthesise results across any chosen number 
of variable selection techniques to triangulate results between methods. The method incorporates selection sta-
bility and coefficient distributions to provide an overall, unified result that encompasses the uncertainty arising 
between methods. To illustrate the method, we also describe a simple graphical technique to compare individual 
and synthesised models which readily allows identification and visualisation of the important variables selected 
by each, and the combination of methods.

Results
The data. Seven datasets were used to compare and synthesise results from six methods of automated vari-
able selection. Six datasets were simulated such that underlying relationships were known a priori within the 
data and one dataset was from a previously conducted field study, to illustrate the proposed methods using real 
data. Construction of the simulated datasets is described in detail in the “Materials and Methods” section.

The simulated datasets used were of different dimensions. Datasets 1 and 2 were constructed by randomly 
simulating 1000 observations (rows) for 910 theoretical potential explanatory covariates (columns), ten of which 
were specified to have a known relationship with an outcome variable. Datasets 3 and 4 were constructed by 
randomly simulating 200 observations for 10,000 potential explanatory covariates, again only ten of which 
were specified to have a known relationship with an outcome variable. All covariates were simulated to have a 
mean = 0 and a standard deviation = 1 (i.e. they represented standardised variables) and each dataset allowed the 
outcome variable, “y_out”, to be calculated with a known degree of uncertainty. Datasets 5 and 6 comprised 1000 
observations by 910 covariates, and 200 observations by 10,000 covariates respectively, but an outcome variable 
was generated at random (i.e. independent of and with no underlying relationship to, the potential explanatory 
covariates). The real dataset was gathered from a study conducted on 408 commercial sheep farms in the  UK16.

Results: datasets 1 and 2. The signal from the true variables was set to be stronger in Dataset 2 (the ten 
true variables explained 73% of variability in the outcome) than Dataset 1 (28% variability explained) but both 
datasets were considered to be representative of possible realistic field data. The partial coefficient distributions 
of the variables providing the ‘true’ underlying signal in these datasets are provided in Table 2.

Statistical methods implemented to conduct variable selection within these datasets were stepwise linear 
regression (SLR) based on AIC, elastic net regression (enet), smoothly clipped absolute deviation (SCAD), 
minimax convex penalty (MCP), SparseStep regression, and stepwise selection based on a modified Bayesian 
Information Criterion (mBIC). These statistical approaches were employed using standard methodology which 
is described in detail in the “Materials and Methods” section. Implementation of these six statistical approaches, 
without bootstrapping, resulted in different subsets of variables being selected using each method as described 
in Table 1. For both datasets, the false positive error rate was, as expected, substantially higher for the models 
using a conventional stepwise AIC method than for all other methods; this demonstrates the substantial over-
fitting that occurs using this methodology with high dimensional data. For Dataset 1, elastic net, SCAD and 
MCP each selected a number of false positive variables (false positive error rate (FPER) 3.2 – 4.4%) but with a 
relatively low false negative error rate (elastic net and SCAD models contained no false negatives). In contrast, 

Table 1.  Error rates in variable selection of six statistical methods conducted on two simulated datasets. 
Datasets 1 and 2 both contained 1000 observations and 910 potential explanatory covariates of which 10 were 
simulated to be ‘correct’ covariates and calculated to have a true effect on the outcome. The true covariates in 
Dataset 1 explained 28% of the variability in outcome and those in Dataset 2 explained 73%. AIC Stepwise 
selection based on Akaike Information Criterion, Enet elastic net regression, MCP minimax convex penalty, 
mBIC modified Bayesian Information Criterion, SCAD smoothly clipped absolute deviation, Sp_Step 
SparseStep regression.

Model type

AIC Enet MCP mBIC SCAD Sp_Step

Dataset 1

Number false positives 234 36 29 0 40 1

False positive error rate 26.0% 4.0% 3.2% 0.0% 4.4% 0.1%

Number false negatives 1 0 1 7 0 5

False negative error rate 10.0% 0.0% 10.0% 70.0% 0.0% 50.0%

Dataset 2

Number false positives 135 6 1 0 1 0

False positive error rate 15.0% 0.7% 0.1% 0.0% 0.1% 0.0%

Number false negatives 0 0 1 1 1 1

False negative error rate 0.0% 0.0% 10.0% 10.0% 10.0% 10.0%
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modified BIC and SparseStep models resulted in sparser models with low false positive rates (≤ 0.1%) but at the 
expense of omitting true variables, and hence a relatively high false negative rate (50–70%). For Dataset 2, in 
which a stronger signal was provided by the ten true variables, all models demonstrated reduced error rates. 
There were both fewer false positive and negative variables selected, although no method correctly allocated all 
variables. Despite the strong signal in the data, it was noticeable how poorly selection using conventional AIC 
performed (FPER = 15%).

The coefficient estimates for the variables selected in these models are provided in Table 2. For Dataset 1, of 
the variables selected using each approach, elastic net, SCAD and MCP tended to shrink coefficients towards zero 
whereas modified BIC and SparseStep tended to slightly inflate coefficient estimates compared to the underlying 
true partial coefficients. The results illustrate the substantive variations in both variables selected and coefficient 
values dependent upon the method adopted. For Dataset 2 with the stronger signal, coefficient estimates tended 
to be more similar between methods and closer to the true central estimate for all methods, although the same 
general tendency for bias occurred for each method.

Multiple method comparisons and synthesis; datasets 1 and 2. Covariate coefficients and selec-
tion stability were estimated for all models using a bootstrap methodology, except for the conventional SLR 
based on AIC which was deemed to perform too poorly to carry forward. The procedures for bootstrapping and 
calculating selection stability are described in detail in the “Materials and Methods” section. Model coefficient 
distributions derived from 500 bootstrap samples from Datasets 1 and 2, for each method, are illustrated in 
Fig. 1. For Dataset 1, in general the bootstrap intervals had reasonable overlap with the true covariate distribu-
tion, although mBIC and SparseStep had a tendency for overestimation and elastic net a slight tendency for 
underestimation. For Dataset 2, all estimated coefficient distributions were tighter reflecting the narrower true 
intervals from the stronger signal in these data. However, there remained variation in estimated coefficient dis-
tributions between method, especially for covariates X2, X4 and X7.

Covariate selection stability and bootstrap P values estimated for Dataset 1, for each statistical method and 
all covariates, are illustrated in Fig. 2. The between method variability in selection stability is evident with elastic 
net, SCAD and MCP tending to select more variables more often (at > 50% stability) than SparseStep and mBIC. 
Although for each method, the true variables tended to be ranked relatively highly in terms of stability, there 
remained considerable overlap with false variables. This overlap was generally less with mBIC and Sparsestep 

Table 2.  Comparison of coefficient estimates for ten ‘true’ variables specified in the underlying model for 
Datasets 1 and 2 for six statistical methods of variable selection. Both datasets contained 1000 observations and 
910 potential explanatory covariates. True the correct partial coefficient distribution, AIC Stepwise selection 
based on Akaike Information Criterion, Enet elastic net regression, MCP minimax convex penalty, mBIC 
modified Bayesian Information Criterion, SCAD smoothly clipped absolute deviation, Sp_Step SparseStep 
regression.

Model type

Model 
term True

True
(95% CI) AIC Enet MCP mBIC SCAD Sp_Step

Dataset 1

X1 3.23 (1.77 4.69) 4.25 3.23 4.28 4.40 4.56 4.78

X2 1.48 (0.11 2.84) 1.37 1.01 – – 0.12 –

X3 2.39 (0.97 3.82) 1.69 1.95 2.87 3.05 3.14 –

X4 2.23 (0.86 3.60) 1.30 1.80 1.71 3.16 1.84 2.94

X5 1.79 (0.37 3.22) 2.39 1.66 1.77 – 0.79 2.91

X6 2.24 (1.26 3.21) 2.84 1.20 2.02 – 1.75 2.11

X7 1.98 (1.02 2.94) 1.38 0.89 1.30 – 1.09 2.18

X8 1.29 (0.32 2.27) – 0.31 0.26 – 0.31 –

X9 2.28 (1.32 3.24) 1.68 1.20 1.99 – 1.77 –

X10 1.75 (0.79 2.72) 0.86 0.72 0.99 – 0.78 –

Dataset 2

X1 2.39 (1.78 2.99) 2.11 2.10 2.62 2.63 2.62 2.63

X2 1.06 (0.48 1.64) 1.12 0.94 – – – –

X3 2.66 (2.06 3.26) 2.33 2.49 2.91 2.92 2.91 2.92

X4 2.48 (1.91 3.05) 2.67 2.35 2.70 2.69 2.70 2.69

X5 2.88 (2.30 3.46) 3.07 2.88 3.09 3.09 3.10 3.09

X6 2.38 (1.97 2.80) 2.41 1.92 2.39 2.39 2.39 2.39

X7 2.58 (2.18 2.99) 2.44 2.10 2.61 2.61 2.61 2.61

X8 2.51 (2.10 2.91) 2.73 2.09 2.50 2.50 2. 49 2.50

X9 2.53 (2.10 2.95) 2.38 2.05 2.54 2.54 2.55 2.54

X10 2.23 (1.82 2.65) 2.11 1.75 2.21 2.22 2.21 2.22
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although the actual stability values were lower with these methods. The true variables X1, X6 and X9 were gener-
ally relatively stable and with a low bootstrap P value in all methods, but clear demarcation and similar ranking 
of the remaining true variables was not evident across methods. The combined stability and bootstrap P values 
calculated by synthesising results across methods, are also displayed in Fig. 2. The combined method provides 
a formal approach for triangulation of results across methods by combining the bootstrap coefficient matrices 
for all methods to calculate an overall stability and bootstrap P value for each variable. The combined method 
provided a clearer separation of the true variables indicating that in general, across methods, the true variables 
tended to be selected most commonly by all methods and with low bootstrap P values. Using a rolling mean 

Figure 1.  Bootstrap coefficient distributions of the true covariates in Datasets 1 and 2, estimated using five 
different statistical techniques and a combination method incorporating all five. ‘TRUE’ represents the actual 
underlying true partial coefficients. Key; X-axes – covariate coefficient value, X1 to X10 – covariate names, 
TRUE – the correct partial coefficient distributions for each covariate, SCAD – smoothly clipped absolute 
deviation, S_Step – SparseStep regression, MCP – minimax convex penalty, mBIC – modified Bayesian 
Information Criterion, Enet – elastic net regression, Combi – Combined method; results aggregated from all five 
techniques.
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rate of change of selection stability > 1 to identify a threshold above which variables were deemed ‘important’ 
(Fig. 2), nine of the ten true variables would be selected as important (FNER = 10%) and two false variables would 
incorrectly be identified as positive (FPER = 0.2%); this compared favourably with the error rates of full models 
of the different methods presented in Table 1.

The coefficient distributions of the combined method are illustrated in Fig. 1. These distributions showed a 
good coverage of the true covariate distributions although were generally slightly conservative (wider) than those 
in the true underlying model. The combined distributions represent a non-parametric, weighted average across 
models and since they were estimated from covariates selected in each bootstrap sample, they were effectively 
weighted by selection stability of each method. These combined coefficients therefore represent the combined 
uncertainty in covariate estimates arising from variability between method.

Covariate selection stability and bootstrap P values estimated for Dataset 2 are illustrated in Fig. 3. With the 
stronger signal, all methods performed better than with Dataset 1 with the true variables generally being most 
stable and with low bootstrap P values. All methods had difficulty in differentiating true covariate X2 (the covari-
ate with the smallest true effect size and true confidence interval closest to zero) and elastic net and SCAD tended 
to select false variables more commonly in bootstrap samples than other methods. The combined stability and 
bootstrap P values calculated across all methods are also displayed in Fig. 3. The combined method provided a 
clear separation of the true variables with the exception of variable X2 that was problematic for each method. 

Figure 2.  Graphical illustrations of bootstrap results from Dataset 1 using five methods of covariate selection. 
Graphs depict scatterplots of negative bootstrap P value against covariate selection stability except for Graph A 
that is an ordered plot of covariate selection stability in descending order for the combined model aggregating 
all five methods. The lines on graphs A and B represent the calculated threshold to determine a cut-off for 
‘important’ covariates. The ‘true’ underlying covariates are coloured blue and labelled X1–X10.
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Using the rolling mean rate of change of selection stability > 1 to identify a threshold above which variables were 
deemed ‘important’ (Fig. 3), all ten true variables were selected as important (FNER = 0%) and two false vari-
ables were incorrectly be identified as positive (FPER = 0.2%); this is similar to the error rates of the full models 
of different methods, presented in Table 1.

The coefficient distributions of the combined method for Dataset 2 are illustrated in Fig. 1. These distributions 
displayed good coverage of the true covariate distributions although, as with Dataset 1, were slightly conserva-
tive (wider) than those in the true underlying model. As for Dataset 1, the wider coefficient intervals from the 
combined method represents the uncertainty in covariate estimates arising from variability between methods.

Results: datasets 3 and 4. The same analytic work flow was conducted on the two larger simulated data-
sets in which p (number of covariates) was much greater than n (number observations), (p = 10,010 n = 200). 
Dataset 3 had the stronger signal (ten true variables explained 73% of variability in the outcome) than Dataset 
4 (63% variability explained). The partial coefficient distributions of the variables providing the ‘true’ signal in 
these datasets are illustrated in Fig. S1, in Supplementary Information. The FPER and FNER for each of the full 
models are provided in Table 3. In general, none of the methods performed well with these datasets; all models 
had a relatively high FNER (30–80%) with the exception of elastic net for Dataset 3 in which the FNER was zero 
but which selected 111 false positive variables (FPER = 1.1%).

Figure 3.  Graphical illustrations of bootstrap results from Dataset 2 using five methods of covariate selection. 
Graphs depict scatterplots of negative bootstrap P value against covariate selection stability except for Graph A 
that is an ordered plot of covariate selection stability in descending order for the combined model aggregating 
all five methods. The lines on graphs A and B represent the calculated threshold to determine a cut-off for 
‘important’ covariates. The ‘true’ underlying covariates are coloured blue and labelled X1–X10.
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Multiple method comparisons and synthesis; datasets 3 and 4. Model coefficients distributions 
derived from the bootstrap sampling are illustrated in Fig. S1 in Supplementary Information. For both datasets 
there was substantial variability in estimated covariate distributions between method, with both the central loca-
tion and 95% bootstrap intervals varying greatly.

Covariate selection stability and bootstrap P values for Datasets 3 and 4, are illustrated in Figs. 4 and 5 respec-
tively. For Dataset 3, all methods tended to differentiate the true variables relatively well in terms of stability, with 
the MCP and SparseStep methods performing particularly well. The combined stability and bootstrap P values 
synthesised across methods for Dataset 3 are shown in Fig. 4. Again, the combined method provided a good 
separation of the true variables and using the rolling mean rate of change of selection stability > 1 to identify 
a threshold for ‘important’ variables the combined method resulted in a zero false positive and false negative 
error rates; demarcation of true variables was much clearer in this combined model than for the full models 
described in Table 3.

For Dataset 4, covariate stability and bootstrap P values are illustrated in Fig. 5. All methods differentiated 
the true variables to some extent in terms of stability, with again the MCP and SparseStep methods performing 
best. The combined stability and bootstrap P values calculated across all methods for Dataset 4 are also shown 
in Fig. 5. As with the stronger signal in Dataset 3, the combined method still provided a clearer separation of 
the true variables and using the rolling mean rate of change of selection stability > 1 to identify a threshold for 
‘important’ variables, the combined method resulted in one false positive and no false negative covariates being 
identified, which was again markedly superior to the error rates of the full models (Table 3).

Illustration of methods using a real dataset. Although in these data there were no known ‘gold stand-
ard’ covariates (i.e. those known to be causally associated with the outcome), we use a real field dataset to illus-
trate the concept of comparing and synthesising different methods of variable selection. The real data were gath-
ered from a study conducted on 408 commercial sheep farms in the  UK16 with a normally distributed outcome 
variable and 340 potential explanatory covariates.

Covariate selection stability and bootstrap P values are displayed in Fig. 6 which allows visualisation of dif-
ferences between method. SparseStep and mBIC produced the sparsest models such that few variables had a 
stability > 50% and in contrast, elastic net identified many variables with a stability > 50%, many of which also 
had a bootstrap P value < 0.05. The combination method, incorporating the threshold for selection stability, 
suggested that accounting for variability between methods, 5 covariates were identified as being most likely to 
be the most important of the 340 (Fig. 6). The individual method plots (Fig. 6) display where these 5 covariates 
were ranked by each individual method and illustrate how these become formally ranked when results of the 
methods are combined.

Illustration of methods using datasets with no signal. To evaluate how the proposed combination 
method of covariate selection would perform when no important explanatory variables were present, we simu-
lated two further datasets with no underlying signal. That is, an outcome variable was generated from a ran-
dom normal distribution and potential explanatory covariates were randomly simulated independently of the 
outcome. Dataset 5 was comparable in size and structure to Datasets 1 and 2 with 910 potential explanatory 
variables, 1000 observations and correlations between explanatory covariates as described for Datasets 1 and 2. 
Dataset 6 was comparable in size and structure to Datasets 3 and 4 with 10,010 potential explanatory variables, 
1000 observations and correlations between explanatory covariates as described for Datasets 3 and 4.

Table 3.  Error rates in variable selection of six statistical methods conducted on two simulated datasets. 
Datasets 3 and 4 both contained 200 observations and 10,010 potential explanatory covariates of which 
10 were simulated to be ‘correct’ covariates and calculated to have a true effect on the outcome. The true 
covariates in Dataset 3 explained 73% of the variability in outcome and those in Dataset 4 explained 63%. AIC 
Stepwise selection based on Akaike Information Criterion, Enet elastic net regression, MCP minimax convex 
penalty, mBIC modified Bayesian Information Criterion, SCAD smoothly clipped absolute deviation, Sp_Step 
SparseStep regression.

Model

AIC Enet MCP mBIC SCAD Sp_Step

Dataset 3

Number false positives 199 111 14 0 0 0

False positive error rate 1.99% 1.11% 0.14% 0.00% 0.00% 0.00%

Number false negatives 1 0 5 6 3 4

False negative error rate 10.0% 0.0% 50.0% 60.0% 30.0% 40.0%

Dataset 4

Number false positives 200 6 3 0 2 78

False positive error rate 2.00% 0.06% 0.03% 0.00% 0.02 0.78%

Number false negatives 5 4 6 8 4 3

False negative error rate 50.0% 40.0% 60.0% 80.0% 40.0% 30.0%
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An identical analytic pathway was employed as described for Datasets 1–4 and illustrations of the resulting 
covariate selection stability and bootstrap P values are provided in Figs. S3 and S4 of Supplementary Informa-
tion. It was noticeable that for both datasets, the maximum stability achieved by any variable for all models was 
generally lower than with Datasets 1–4. In addition, when using the combined method for both datasets, the 
selection stability did not exceed 50% for any covariate. Using the rolling mean rate of change of selection stabil-
ity > 1 to identify a threshold for ‘important’ variables, in Dataset 5, the combined method resulted in a zero false 
positive covariates being identified and in Dataset 6, 2 false positive covariates were identified (FPER = 0.02%).

Discussion
Despite the fact that many views have been expressed suggesting that analysis of individual datasets should be 
considered from multiple  angles12 and that use of multiple analytic approaches may mitigate problems with sci-
entific  reproducibility13,17, it is rare that more than one technique is reported when conducting high-dimensional 
data analyses. In this paper we describe an approach to compare and combine results from different statistical 

Figure 4.  Graphical illustrations of bootstrap results from Dataset 3 using five methods of covariate selection. 
Graphs depict scatterplots of negative bootstrap P value against covariate selection stability except for Graph A 
that is an ordered plot of covariate selection stability in descending order for the combined model aggregating 
all five methods. The lines on graphs A and B represent the calculated threshold to determine a cut-off for 
‘important’ covariates. The ‘true’ underlying covariates are coloured blue and labelled X1–X10.
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methods used on one dataset, firstly to provide a basis to evaluate between-method variability and secondly to 
provide a means to formally combine and triangulate results between methods. Informal triangulation between 
statistical methods has been suggested as a route for researchers to confirm truly important  variables9 but 
approaches to numerically combine results from different methods using the same data are lacking. With the 
approach proposed in this paper, triangulation is given a numeric foundation based on covariate stability and 
coefficient distributions. A graphical visualisation of selection stability and bootstrap P values was found use-
ful to provide a framework to picture covariate importance of both individual and combined methods. In the 
combined method, covariates with highest stability and lowest bootstrap P values reflect those identified as 
most important overall by the individual methods and therefore those most sensible to be inferred of greatest 
importance in the data.

In these simulated datasets, the combined method generally performed as well or better than the individual 
methods; it tended to rank the true variables highly (in terms of stability and bootstrap P value) and gave 
coefficient estimates that, although slightly conservative (wider probability intervals than the true intervals), 
produced median values in close proximity to the true partial coefficient values. It should be noted, however, 
that the performance of the combined method will depend entirely on which individual methods are chosen 
to comprise the combination and will not necessarily produce an answer nearer to the truth than an individual 
method. Nonetheless, a comparison and combination of a variety of methods is still of use; it greatly adds to the 
transparency of analysis and helps ensure safety of results (by avoiding use of one specific ‘outlying’ method); 
this supports the view that use of multiple analytic approaches will lead to a better understanding of variability 

Figure 5.  Graphical illustrations of bootstrap results from Dataset 4 using five methods of covariate selection. 
Graphs depict scatterplots of negative bootstrap P value against covariate selection stability except for Graph A 
that is an ordered plot of covariate selection stability in descending order for the combined model aggregating 
all five methods. The lines on graphs A and B represent the calculated threshold to determine a cut-off for 
‘important’ covariates. The ‘true’ underlying covariates are coloured blue and labelled X1–X10.
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and important relationships within  data12,13,18. Whilst it remains a truism that no models are right, but some can 
be  useful19, we believe that using this comparison of individual and synthesised methods adds to the interpreta-
tion of high dimensional data analysis through transparently displaying differences between approaches and 
providing an overall result that incorporates this uncertainty.

Importantly, our results also confirm the recently highlighted issue that different analytic methods used on 
same data can yield different  results11, both in terms of variables selected and coefficient  estimates9. The simulated 
datasets used in this study, in which the true underlying relationships were known, were useful to illustrate such 
differences between methods. Differences between methods occurred in sparsity of solution, the magnitude 
and relative ranking of variable stability and coefficient estimates. Clear differences were also identified between 
methods in the analysis of datasets that contained no signal (Supplementary Information Figs. S3 and S4). Such 
variability confirms the value of assessing data from multiple angles. Indeed it was notable that in the simulated 
datasets with a weaker signal (i.e. with more random variation from unknown true variables included to calcu-
late the outcome), the variability of results between methods was greater than when a strong signal was present 
(and the combined method was more valuable in terms of selecting the true variables), suggesting that in these 
circumstances, use of multiple methods may be even more important. Since when collecting high dimensional 

Figure 6.  Graphical illustrations of bootstrap results from a real dataset using five methods of covariate 
selection. Graphs depict scatterplots of negative bootstrap P value against covariate selection stability except 
for Graph A that is an ordered plot of covariate selection stability in descending order for the combined model 
aggregating all five methods. The lines on graphs A and B represent the calculated threshold to determine a cut-
off for ‘important’ covariates. The covariates marked in blue represent the five selected as most important in the 
combined method.
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research data we cannot depend on necessarily having strong signals from explanatory variables, the use of 
multiple methods appears to be a pragmatic solution.

Although the use of selection stability is recognised to facilitate robust solutions in statistical  modelling14,15,20 
and was found to be useful to clarify covariate selection in this study, there remains an issue of how to determine 
an exact threshold of stability at which a variable is deemed ‘important’. However, graphical representation of 
variable stability in descending order indicated, in this study, a region in which stability tended to change from 
being relatively high to relatively low; in data with relatively sparse solutions, this is likely to be the case. It has 
been shown that the chosen threshold selection probability alongside the number of possible explanatory covari-
ates determines the rate of false positive covariates  selected14 and this can be seen for all methods used in this 
study; as the stability threshold increases, the false positive rate decreases. However, rather than concentrating 
on an exact threshold value, we believe covariate stability can be viewed more as a continuum to rank variables 
according to ‘likelihood of true positivity’. Since the higher the stability, the less likely a covariate is to be a false 
 positive14,21, a relatively high threshold could be chosen in studies in which false positive variables need to be 
avoided. However, not all studies are of this nature and, for example, when screening for potentially important 
explanatory variables for follow up intervention studies, it may be more prudent to avoid false negative covari-
ates and hence a lower stability threshold could be considered. The real field dataset used in this study illustrated 
this point (Fig. 6) and a threshold stability between 40 and 60% could be used depending on the requirement to 
either minimise false positive or false negative findings in that particular study.

For the simulated data used in this study we employed a sparsity assumption; the outcome variable was cal-
culated to depend on a relatively small number of variables in the data. Such an assumption is commonly used 
when evaluating high dimensional  data4 but it should be noted that our results relate to this circumstance. Addi-
tional research comparing the performance of statistical methods with less sparse solutions would be of interest.

Similarly, although these principles of model comparison and combination of results could be applied to any 
suite of methods, our results apply to the specific methods we chose. Our choice was based on methods that were 
reasonably common and with literature to support their  validity5,6,8,22, but the choice was arbitrary. A greater 
understanding would be useful of which statistical methods are best to combine in different circumstances, but 
despite this, a comparison and combination of several methods when analysing an individual dataset is likely 
to be fruitful to evaluate the extent of between-method variation and to triangulate results. Further insights are 
needed on the applicability of method synthesis for different model types (e.g. those including random effects, 
non-linearities or with categorical outcomes), although it is likely the same principles will apply. Furthermore, 
additional research would be useful to develop methods to determine the optimal threshold for selection stability, 
to minimise error rates for any given dataset and model.

In conclusion, in this paper we have developed an adaptable, straightforward method to compare and syn-
thesise results across any chosen number of variable selection techniques to formally triangulate results between 
methods. Importantly, the method includes selection stability as well as coefficient estimates and provides a 
unified result that incorporates uncertainty arising between methods.

Materials and methods
To evaluate and combine results from six methods of covariate selection, six simulated datasets containing known 
relationships were generated. Initially, two datasets were constructed, these are described in detail below. Subse-
quently, two larger datasets were constructed using similar methods and an overview of these is also provided. 
Finally, the combination of variable selection techniques were evaluated using one real dataset and two datasets 
containing no signal (i.e. comprising variables generated at random); these datasets are also briefly described.

Data simulation. The purpose was to construct realistic datasets in which a ‘true’ set of predictor vari-
ables were known and from which an outcome variable was directly calculated. Simulated datasets 1 and 2 both 
contained 1000 rows and 910 columns. Ten variables were set as being ‘causal’ and used to directly calculate an 
outcome variable, y. These variables were simulated from the following distributions;

Variables X1–X5 were drawn from a multivariate normal (using mvrnorm function in the MASS package in 
 R23), each variable drawn from a distribution with mean = 0, SD = 1 and covariance matrix specified such that 
variables were drawn with a correlation between each of 0.6. The purpose of these correlations was to mimic 
reality; causal variables are often correlated in epidemiological data.

Variables X6-X10 were drawn independently from a random normal distribution with mean = 0 and SD = 1.
An outcome variable, y, was generated from these 10 variables as follows;

where Intercept =1, xj represented the jth of t  =4 of the correlated covariates, xk was the additional correlated 
variable, xl represented the lth of s =5 of the uncorrelated covariates and v, a random variable that represented 
all other real but unknown effects that causally influence y, was drawn from a Normal distribution with mean = 0 
and standard deviation which varied in the two datasets as follows;

Dataset 1: v = N(0,15).
Dataset 2: v = N(0,6.5).

(1)y = Intercept +

t∑

j=1

2.5xj + xk +

s∑

l=1

2.5xl + v
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The ten variables used to calculate y, we refer to as the ‘true’ explanatory covariates throughout the manuscript. 
For each dataset a ‘true’ model was estimated using conventional linear regression in  R24 using solely these ten 
simulated variables. The coefficient distributions from these models were taken as the ‘true’ underlying distribu-
tions for comparison in subsequent analysis. The true coefficients for the covariates derived from Datasets 1 and 
2 are provided in Table 2 in the “Results” section.

An additional 900 ‘noise’ variables were simulated from distributions with mean = 0 and SD = 1; these had no 
dependence or relation to the outcome variable y, i.e. they were drawn from independent random distributions. 
These were deemed ‘false’ variables, not causally related to y. Since in epidemiological data it is common that 
such non-causal variables may also contain correlations, 400 of the 900 variables were drawn from multivariate 
Normal distributions as follows. Four sets of 50 variables were drawn from a MVN distribution such that each 
variable was drawn with a mean = 0 and SD = 1 and the correlation between individual variables within sets of 
50 variables was 0.7. Therefore, this resulted in four sets of 50 variables correlated at ~ 0.7. This procedure was 
repeated for another four sets of 50 variables but for these the correlation was 0.8. A final group of 500 variables 
were drawn independently from random Normal distributions with mean = 0 and SD = 1.

Therefore, the resulting simulated dataset contained an outcome variable that was calculated from ten ‘true’ 
variables (with an additional random term included to reflect unknown but causal influences on the outcome) 
and an additional 900 ‘false’ (noise) variables, simulated at random and independent of the outcome.

Two further simulated datasets were generated, Datasets 3 and 4, using the same principles but of different 
dimensions; with 200 rows and 10,010 columns (potential explanatory variables). The datasets again contained 
10 ‘true’ variables that were simulated as described for Datasets 1 and 2 (Eq. (2)), except the following random 
terms were used to reflect additional unknown but casual effects;

Dataset 3: v = N(0, 6.5).
Dataset 4: v = N(0, 23).

As with datasets 1 and 2, a ‘true’ model was estimated using conventional linear regression from these ten 
simulated variables and coefficient distributions from these models are illustrated in Figs. S1 and S2 in Supple-
mentary Materials. For Datasets 3 and 4, an additional 10,000 variables were simulated from random Normal 
distributions with mean = 0 and SD = 1. As for Datasets 1 and 2, a proportion of these variables were drawn from 
multivariate normal distributions as follows. Forty sets of 50 variables were drawn from a MVN distribution 
such that each variable was drawn with a mean = 0 and SD = 1 and the correlation between variables of 0.7. A 
further 40 sets of 50 variables were drawn from multivariate random normal distributions with mean = 0 and 
SD = 1 and the correlation between variables of 0.8. A final 6000 variables were drawn independently at random 
from Normal distributions with mean = 0 and SD = 1. Therefore, Datasets 3 and 4 contained 200 rows and 10,010 
columns of which 10 were ‘true’ variables. The rationale for using Datasets 3 and 4 was to evaluate the effective-
ness of covariate selection methods in data where the number of predictors (p) was far greater than the number 
of observations (n).

Datasets 5 and 6 comprised 1000 rows by 910 covariates and 200 rows by 10,000 covariates respectively, but 
an outcome variable was generated at random (i.e. independent of and with no underlying relationship to, the 
potential explanatory covariates).

Finally a set of field data were used to illustrate the proposed modelling approaches. This real dataset was 
gathered from 408 commercial farms in the  UK16, had an outcome variable that was approximately normally dis-
tributed and a set of 340 potential explanatory variables available for selection. Explanatory variables were stand-
ardised for analysis; details of the data, pre-processing and variable descriptions have been reported  previously16.

Models used for variable selection. To evaluate the effectiveness of retrieval of the ten ‘true’ variables 
from within the simulated datasets, six methods were employed and compared. These were; a conventional step-
wise selection method based on AIC (stepwise linear regression; SLR)25, elastic net regression (Enet)8; smoothly 
clipped absolute deviation (SCAD)6,26, minimax convex penalty (MCP)27, Sparsestep (S_step)22 and a modified 
Bayesian Information Criterion (mBIC)5. The basis for model selection for each of these methods is outlined 
below.

Stepwise linear regression based on AIC (SLR).
A conventional linear regression model was implemented using the ‘stepwise’ function in the Bigstep 

 package28 in  R24. The regression equation took the form;

where y was the response variable specified in the simulated data, β0 an intercept term, xj represented the jth of 
p covariates with an estimated coefficient βj , e was the residual model error. For computational reasons, covari-
ate selection was conducted by first removing explanatory variables with a relatively poor correlation with the 
outcome (P > 0.80) followed by a stepwise procedure with selection of variables achieved through minimisation 
of the Akaike information criterion (AIC) as the loss function (AIC defined as 2 k − 2ln(L̂) where k is the number 
of parameters in the model and L̂ the likelihood function). Therefore the number of covariates (p) selected in 
the final model was determined by the AIC loss function.

(2)y = β0 +

p∑

j=1

βjxj + e
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Elastic net regression. Elastic net is a form of regularised regression that incorporates a mixture of the lasso (L1) 
and ridge (L2) penalties and can be described as;

where SSEenet represente the elastic net loss function to be minimised, i denoted each simulated observation and 
n the number of observations,  yi and ŷi were respectively the simulated and model predicted outcome for the 
ith observation, j denoted a predictor variable with p the number of predictor variables selected in the model 
through minimisation of the loss function (some variable coefficients are set to zero meaning the

y are not selected in a final model), and |β| represented absolute values of the regression coefficients. The 
hyperparameters that represent the penalty (λE) and the relative proportion of penalisation on either the sum of 
the square of the coefficients or the unsquared coefficients (α) were optimised by 10 × tenfold cross validation 
to minimise mean absolute error (MAE).

Elastic net models were built using the glmnet  package29 using the caret package  platform30 in  R24.
Smoothly clipped absolute deviation and minimax convex penalty.
Smoothly clipped absolute deviation (SCAD)26 and minimax convex penalty (MCP)27 are also forms of 

regularised regression. A feature of these methods is that the size of the penalty function varies with the size of 
variable coefficient, β. Both methods can be described by the general framework;

where  SSEscad/mcp represents the SCAD or MCP loss function to be minimised, i,  yi, ŷi, j, p and n are as defined 
in Eq. (3) and P

(
βj
∣∣�, γ ) represents a penalty function as follows;

For SCAD:

For MCP:

where γ and � are hyperparameters optimised using 10 × tenfold cross validation to minimise the MAE. Both 
SCAD and MCP models were estimated using the R package  ncvreg31.

SparseStep. The SparseStep function provides another approach for non-linear penalisation in the regression 
loss  function22. The SparseStep loss function can be described as;

where  SSEsp_step represents the SparseStep loss function to be minimised, i,  yi, ŷi, j, p and n are as defined in 
Eq. (3) and �andγ are hyperparameters optimised using 10 × tenfold cross validation to minimise the MAE. The 
Sparsestep model was estimated using the sparsestep package in  R22.

Modified Bayesian Information Criterion (mBIC). A modified Bayesian Information Criterion was used for 
model selection implemented in the R package  bigstep28. This modification of the BIC effectively increases the 
penalty on the number of parameters selected in the model beyond the conventional BIC, hence producing a 
sparser model. The loss function on which stepwise variable selection is  based5 can be represented as;

where logL(Y |Mi,θi) represents the log likelihood given model Mi and parameter values θi , k is the number of 
predictors in the selected model, n the sample size, and pr the probability that a randomly chosen predictor 
influences Y. As the number of available predictors increases relative to the number of samples (n), pr decreases 
and kilog( 1−pr

pr ) becomes of increasing importance as a penalty term.

Estimation of selection stability and coefficient distributions. Conventional  bootstrapping32 was 
used to estimate covariate stability for all analytic approaches, according to methods previously  described9. In 
brief, selection  stability14,15,20 was evaluated for each model as the percentage of times that each covariate was 
selected in the model across bootstrap samples. The distributions of variable coefficients were calculated from 
all non-zero values of the coefficient in the bootstrap samples; this allowed comparisons between methods of 

(3)SSEenet =
1

2n

n�

i=1

�
yi − ŷi

�2
+ �E




P�

j=1

1

2
(1− α)β2

j + α
��βj

��





(4)SSEscad/mcp =

n∑

i=1

(
yi − ŷi

)2
+

p∑

j=1

P (βj|�, γ )

(5)P(β|�, γ ) =

�, if |β| ≤ �
γ �−|β|
γ−1 if ��|β|�γ �

0, if |β| ≥ γ �

(6)P(β|�, γ ) =
�|β| −

β2

2γ , if |β| ≤ γ �

0.5γ �2 if |β| > γ �

(7)SSEsp_step =

n∑

i=1

(
yi − ŷi

)2
+ �

p∑

j=1

β2

β2 + γ 2

(8)mBIC = logL(Y |Mi,θi)−
1

2
kilogn− kilog

(
1− pr

pr

)
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variable selection stability as well as coefficient estimates. A further evaluation of the importance of each variable 
in the final bootstrapped model was made from all non-zero values (i.e. when the variable was selected in the 
model), by estimating what we term the Bootstrap P value. The Bootstrap P value was calculated as the smallest 
proportion of (non-zero) coefficient values to one side of zero. That is, if a covariate was selected in the model on 
80 occasions (i.e. 80 non zero values) and 70 of these were either greater or less than zero, then the Bootstrap P 
value would be (80–70)/80 = 0.125. For all methods, variable selection and importance were visualised by plot-
ting selection stability against Bootstrap P value for all variables in the dataset.

Synthesis of results across methods. Coefficient distributions and stabilities were synthesised across 
methods (with the exception of Stepwise Linear Regression based on AIC which performed poorly) by aggregat-
ing the bootstrap matrix by row from each individual method; matrices were aligned by variable. Therefore, an 
enlarged ‘combined’ matrix containing an equal number of bootstrap samples for each method was produced 
comprising variables and coefficient estimates aggregated across all methods; this we term the combined model. 
Since an equal number of bootstrap samples were used for each method (n = 500 for Datasets 1 and 2, n = 100 for 
all other datasets, to speed computation), an equal weighting was given to each method when calculating syn-
thesised coefficient estimates and Bootstrap P values. From this combined matrix, an overall selection stability 
and Bootstrap P value were calculated as described above. Coefficient distributions for each covariate were also 
calculated from all non-zero values of the combined matrix. Therefore the combined model resulted in estimates 
for selection stability, coefficient distributions and Bootstrap P values derived for all covariates across all five 
methods of covariate selection.

Evaluation and comparisons of model performance. Model performance was assessed using false 
positive and false negative rates (FPER and FNER respectively). For each model, these were defined as;

FPER = Number of false positive covariates selected/Total number true negative covariates in data.
FNER = Number true positive covariates not selected/Total number true positive covariates in data.

For bootstrapped models, since both stability and Bootstrap P value were key for evaluating variable impor-
tance, we visualised and compared these parameters graphically. For the combined method, covariates were 
ranked and plotted in order of descending stability to identify the region where stability changed from being 
relatively high to low; the same principle as used in a classical scree plot. To evaluate stability objectively in the 
combined method, the rate of change in stability between consecutive covariates ranked in descending order 
was determined and a smoothed mean calculated for the rate of change in stability using 15 consecutive values. 
A sensitivity analysis was conducted on the number of values to include in calculation of the smoothed mean 
and for values between 10 and 20, there were negligible differences in results. A value under 10 gave insufficient 
smoothing and over 20 started to show a lack of discrimination, therefore a value of 15 was chosen. Once the 
rolling mean rate of change reached a value ≤ 1 (i.e. the rate of change moved from being > 1 to ≤ 1), this was 
deemed to signify the change point in stability for that model and used as a threshold to calculate FPER and 
FNER (see Fig. S5, Supplementary Information).
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