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A probabilistic approach 
to dispersal in spatially explicit 
meta‑populations
Rajat Karnatak1,2* & Sabine Wollrab1,2

Meta‑population and ‑community models have extended our understanding regarding the influence 
of habitat distribution, local patch dynamics, and dispersal on species distribution patterns. 
Currently, theoretical insights on spatial distribution patterns are limited by the dominant use of 
deterministic approaches for modeling species dispersal. In this work, we introduce a probabilistic, 
network‑based framework to describe species dispersal by considering inter‑patch connections as 
network‑determined probabilistic events. We highlight important differences between a deterministic 
approach and our dispersal formalism. Exemplified for a meta‑population, our results indicate that the 
proposed scheme provides a realistic relationship between dispersal rate and extinction thresholds. 
Furthermore, it enables us to investigate the influence of patch density on meta‑population 
persistence and provides insight on the effects of probabilistic dispersal events on species persistence. 
Importantly, our formalism makes it possible to capture the transient nature of inter‑patch 
connections, and can thereby provide short term predictions on species distribution, which might be 
highly relevant for projections on how climate and land use changes influence species distribution 
patterns.

One of the central aims of meta-population theory is to better understand how species distribution is determined 
by dispersal, spatial distribution of habitats, as well as local patch  dynamics1–3. A first theoretical description 
of meta-populations—formed by a species sub-populations, distributed on a landscape consisting of a certain 
number of habitable patches and connected via species dispersal—was introduced by  Levins4. Levins’ approach 
was formulated as a probability based species presence/absence model, for infinitely many, identical, and equally 
connected sub-populations. This dynamic model estimated the probabilities of patch occupancy based on the 
colonization and extinction rate parameters. More realistic extensions of Levins model have since been proposed 
which include (1) size structured patch populations with dynamical models to simulate the behavior of local 
populations at the patch  level5–7, (2) finite size stochastic  models8–10 to incorporate the effects of noise on system 
dynamics, and (3) finite, spatially realistic realizations of meta-population  dynamics11–13. Consequently, these 
extensions have helped (1) to move beyond the basic presence/absence description of patch populations, (2) in 
replacing the deterministic extinction time thresholds by temporal distributions due to colonization–extinction 
stochasticity, and (3) have provided the ability to incorporate heterogeneous patch characteristics and connectiv-
ity in meta-populations, respectively.

Spatially realistic models have shown that, besides patch quality, the spatial network structure (topology) has 
strong effects on patch  occupancy14, species  persistence15 and species  recovery16. In addition to network topology, 
predictions from spatial realistic models critically depend on the implementation of the dispersal process and its 
dependency on patch characteristics, as well as species specific dispersal abilities. Different modeling approaches 
have implemented species dispersal in various ways, for instance, implicit or two patch models assume an all-
to-all connected  system17–21, so effectively patch location and between patch distance are inconsequential for 
dispersal. In spatially explicit multi-patch models, dispersal has to come with certain assumptions on how it 
depends on patch distance. The widely used spatially realistic approach by Hanski et al.11,12 describes dispersal 
of a dynamic meta-population with an exponential decay with distance from a source patch in all directions. 
In essence, these existing approaches model dispersal as a deterministic process, even if they take into account 
prevalent short term changes in the  connectivity22. These deterministic conjectures on dispersal might work in 
specific instances, namely, (1) a spatially implicit all-to-all connected system can be a useful approximation to 
model the average system behavior for a sufficiently patch–dense meta-population, and (2) an exponentially 
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decaying uniform dispersal approach can model overall dispersal patterns in a long time limit of a spatially 
explicit meta-population. However, treating dispersal from a deterministic perspective completely ignores the 
inherent  stochasticity23–25 of the process—where an individual ends up in one out of all possible patches it could 
possibly reach—thereby ignoring the associated variability, especially on shorter time scales. Drivers of variability 
include changes in environmental flows, wind speed, and direction for instance, which can be quite dynamic 
on relatively shorter time scales—days or weeks compared to seasonal or annual—and can affect the dispersal 
patterns of  species26. The variability with shorter time scales might also be highly relevant for projections on 
changes in species distribution patterns due to climate change and changes in land use patterns, influencing 
habitat suitability and distribution, as a basis for successful mitigation strategies. Furthermore, there is also the 
possibility for an individual of not reaching any patch successfully as losses generally occur during dispersal. 
Dispersal between connected patches will also entail a loss of individuals during transport due to the local patch 
environment and species characteristics—since no natural process is fully efficient—and this fact is often ignored 
by modeling studies.

To overcome the limitations of existing deterministic approaches with respect to spatially realistic dispersal, 
we introduce a spatially explicit, network-based framework which enables us to treat dispersal from a more 
general, probabilistic perspective. Networks have found substantial application in food-web  ecology27–29, and 
network-based studies have also started to explore the dynamical aspects of meta-populations/communities30,31. 
It is indeed quite natural to consider meta-populations/communities as networks: regarding patches as nodes 
and a dispersal event between patches as a connection. In the proposed approach, an underlying distance matrix 
defines the overall landscape via inter-patch distances. This covers all potential dispersal routes of the network, 
while only a subset of these are realized via actual dispersal, represented by a connectivity/adjacency/dispersal 
matrix. Dispersal itself is implemented as a probable event, depending upon species dispersal ability, patch 
size and inter-patch distance, and is implemented via a directed network which captures directional dispersal, 
i.e. dispersal from a patch to another patch in the system does not imply reverse dispersal between them. In 
contrast to existing studies, the proposed framework allows to cover a broad range of connectivity scenarios, 
from all-to-all connected, to spatially explicit, and even captures the effects of transient and dynamic inter-patch 
connectivity over time. This framework enables us to more realistically simulate connectivity on shorter time 
scales, while at the same time providing average connectivity characteristics in the long time limit, which are 
consistent with existing all-to-all connected (for higher patch densities) or other deterministic spatially realistic 
dispersal approaches. To illustrate the main features of our network-based approach, we contrast predictions 
from all-to-all connected to fixed and dynamic network topologies derived via the introduced probabilistic 
dispersal perspective. While we limit our investigations in this paper to meta-populations, this approach can 
easily be extended to meta-communities.

Model
To introduce our approach, we modify and study a system of equations based on a meta-community model 
introduced by Wang and Loreau (WL)18. We extend their two-patch system to a spatially explicit multi-patch 
model by incorporating a directed network into the set of equations. Additionally, we take into account losses 
during dispersal which are not included in the original WL model—see detailed explanation below. Please note 
that for simplicity, and to highlight the main differences between a deterministic all-to-all connected dispersal 
approximation and probabilistic dispersal (fixed and dynamic networks), we limit our investigations to the 
case of a meta-population instead of a meta-community, however these concepts can easily be extended to 
meta-community models. This reduced approach enables us to highlight the main differences following from 
the extension of a deterministic two patch model/all-to-all connected system to a probabilistic implementation 
for fixed and dynamic (rewiring) network topologies. We use a directed network in our study to represent the 
fact that a dispersal/connection event from i → j does not imply a reverse dispersal event between j → i . The 
modified system equations are:

These equations describe a dynamical system ẋ = (ẋ1, ẋ2, . . . , ẋN )
T consisting of N patches. The first term of 

the equation represents the logistic dynamics of the local population of species x (represented by xi for the ith 
patch) with a species growth rate ri and carrying capacity Ki in the ith patch, respectively. In the second term, 
the parameter d represents the rate of dispersal for the species, δi represents the efficiency of dispersal, Aij cor-
responds to the adjacency matrix element containing the unweighted connectivity information for the system, 
and kiin represents the number of incoming connections (in-degree) to patch i. For simplicity, we assume that 
the species growth rate is identical for all patches, hence ri = r ∀ i . We assume that the carrying capacities of the 
patches are directly proportional to their areas i.e. smaller patches have a lower carrying capacity than the larger 
ones. The diffusive expression within the brackets corresponds to the difference between the species population 
in the ith patch xi and the scaled (with δi ) average input it receives through in-coming connections from other 
patches via dispersal—this diffusive (interaction) term within brackets is similar to a diffusive local mean-field 
coupling between connected patches. The dispersal rate parameter d can be interpreted as follows: in the absence 
of internal patch dynamics and any in-coming connections, the linear equation governing the dynamics of xi 
is simply, ẋi = −dxi . Solving this equation gives, xi(t) = xi(0)e

−dt (e being the Euler number), assuming xi(0) 
as the initial population of xi at time t = 0 . Considering a characteristic dispersal time Tc such that for t = Tc , 
the population in the patch exponentially decays by a factor of e−1 , i.e. xi(Tc) = xi(0)e

−1 . Then we can define 
dispersal rate d = Tc

−1 , i.e. the inverse of this characteristic dispersal time. The parameter δi ≤ 1 corresponds 
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to the efficiency of dispersal to account for possible losses during the process, since not every individual (here 
represented in terms of biomass) that is distributed from a patch, will successfully reach another patch. δi can be 
a function of species characteristics, as well as the local patch environment in general. For the following analysis, 
we consider this parameter to be identical for the entire meta-population, i.e. δi = δ ∀ i. An extreme value of 
δ = 1 (0) corresponds to a no (complete) loss scenario. Due to the diffusive nature of inter-patch interaction, the 
difference between the patch biomass and the loss-modulated (with δ ) input received by the patch determines the 
gradient of diffusion of individuals—into or away from the patch. Aij as mentioned before is the (i, j)th element 
of the asymmetric connectivity matrix, which contains the directional connectivity information of the system, 
with Aii = 0 ∀ i (no self connections/loops). The normalization (denominator) term kiin =

∑N
j=1 Aij corresponds 

to the in-degree of the ith patch, i.e. the total number of incoming connections to the patch. The term Aij = 1 (0) 
represents the case when there is a connection/dispersal (no connection/dispersal) from patch j → i. The two 
extreme cases, (1) ∀ Aij , i  = j = 0 corresponds to a situation when all patches are isolated and there is an absence 
of any connections, whereas, (2) ∀ Aij , i  = j = 1 corresponds to an all-to-all connected system where all patches 
are sources, as well as sinks to all other remaining patches, implying that the patches are coupled via the overall 
mean-field. This second case is equivalent to an implicit approach assuming an all-to-all connectivity, which does 
not take into account the regional distribution of patches and differences in inter-patch distances, and therefore 
reachability. For ∀ Aij , i �= j = 1 and δ = 1 , Eq. (1) reduce to an all-to-all connected system without any dispersal 
losses, similar to the WL model if reduced to a meta-population.

To estimate the underlying adjacency/connectivity matrix, we implement a probability term where a pair of 
nodes i and j are connected with a probability based on (1) Euclidean distance between patches, (2) the size of 
the patches, as well as (3) the average species dispersal distance. The probability term uses a modified version 
of the Waxman random graph  model32. For a regular Waxman random graph model, two nodes i and j are con-
nected with a probability,

Here α and β ∈ (0, 1] are system specific parameters, Dij is the Euclidean distance between the two nodes, and 
L = Max(Dij)∀(i, j), i �= j corresponds to the maximum inter-patch distance in the system. The parameters β and 
α control the density of connections, and long range connectivity in the system, respectively. For our purpose, 
we modify Eq. (2) as,

In Eq. (3), we interpret β s as normalized patch areas—obtained by dividing each patch area by the largest patch 
area in the system. As mentioned before, we assume that the patch carrying capacities Ki ∝ βi ∀ i. Consequently, 
we consider a simple relationship Ki = σβi where the proportionality constant σ = 5 for our analysis. We assume 
that the probability of dispersal from a source patch j to a destination patch i is proportional to the normalized 
areas of both patches, and hence the product term from both the source and sink patch. At the same time, we 
interpret α′ ∈ (0, 1] as the parameter which determines the dispersal-ability of a species, i.e. the ratio between 
average distance a species can disperse in the system, and L. For our calculations we fix α′ = 1 , indicating that the 
dispersal-ability is equal to the maximum distance L in our system—a value of α′ < 1 will reduce the dispersal 
distance accordingly. With this implementation of dispersal probability [Eq. (3)], both patch area and dispersal 
ability directly affect patch connectivity. For brevity, the modified Waxman network connectivity from Eq. (3) 
will be referred to as network derived probabilistic connectivity (NPC), and the system Eq. (1) with the NPC 
adjacency matrix will be referred to as network based model (NBM) henceforth. Furthermore, we refer to model 
Eq. (1) with a “fixed NPC” as “fixed NBM” and the system with a dynamic “rewiring NPC” as a “rewiring NBM”, 
respectively. The decision to use either fixed, or dynamic NPCs in models should be based on a comparison 
between the intrinsic time scales of the species (species specific time scales), and the time scales of changes in the 
environment (environmental time scales). If the species specific time scales are of the same order, or greater than 
the environmental time scales, then the dynamic NPC should be used in models. Conversely, if species specific 
time scales are substantially smaller than the environmental time scales, then a model can utilize a fixed NPC 
approximation of the inter-patch connectivity. We discuss the methods used for simulation and analysis in the 
following section. System parameters, network metrics, and their descriptions are briefly summarized in Table 1.

Methods
The following section describes the procedures and metrics used for simulation, and the analysis of the model 
output.

Generating the connectivity matrix. For NPC related calculations, we first fix a “landscape” using ran-
domly generated areas and inter-patch distances. We further fix the dispersal ability parameter α′ = 1 for gen-
erating the NPCs. The landscape and dispersal ability parameters stay fixed for all calculations presented in the 
manuscript. To estimate the underlying connectivity matrix, we first calculate the probability of connection Pij 
from Eq. (3), for a pair of nodes i and j using the system parameters (see Table 1 for ranges). For each pair of 
nodes, we generate a uniformly distributed random number η ∈ (0, 1) and based on η , if η < Pij ( η > Pij ), the 
adjacency matrix element Aij = 1(0) for dispersal (no dispersal) from j → i . This process is repeated for all pos-
sible N(N − 1) pair permutations in the system, providing the asymmetric connectivity matrix representing one 
possible NPC realization. For calculations of the “fixed NPC” case, several NPC realizations for a fixed landscape 

(2)Pij =β exp

(−Dij

αL

)
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and species dispersal ability parameters are generated forming an ensemble, and simulations are repeated for all 
the NPCs in the ensemble. Similarly for the “rewiring NPC” case, an ensemble of NPC realizations is initially 
generated. But in this case, each of these realizations serve as the initial NPC which rewires repeatedly after a 
given number of iterations, also referred to as rewiring time (or time units) during the simulation. At each rewir-
ing event, a new NPC (again with the predefined fixed landscape and dispersal ability parameters) is generated 
which stays fixed till the next rewiring. This process is repeated for all NPCs in the ensemble.

As an example, one NPC realization with N = 10 nodes is shown in Fig. 1. This realization was created for an 
arbitrary landscape with identical patch-area parameters and randomly generated distances. In this realization, 
patch 4 and patches 1 and 7 represent two extreme connectivity scenarios. Patch 4 can act only as a dispersal 
source, since it has only outgoing connections and no incoming connections. Whereas patches 7 and 1 only have 
incoming connections, and therefore will act as dispersal destinations and never as dispersal sources to other 
patches. All other patches have incoming as well as outgoing connections and therefore will behave likewise.

Individual patch and pair‑wise patch connectivity. We define Ci to represent the overall patch con-
nectivity for the ith patch. Similarly, Cij represents the pair-wise connectivity which gives the likelihood of con-
nection for any two patches i and j in the system. For the calculation of individual patch connectivity Ci , and 

Table 1.  Parameter summary.

Parameter Value Description

Dij Inter-patch distances

L Max(Dij) Maximum inter-patch distance in the system
Dij

L
∈ (0, 1] Normalized inter-patch distances

βi ∈ [0.3, 0.7] Normalized patch area: ratio between ith patch area and and maximum patch area

α′ = 1 Normalized dispersal–ability: ratio between average species dispersal distance and L

N Specified Number of patches

ri = 1 ∀ i Species growth rate

Ki ∈ [1.5, 3.5] Patch carrying capacity = σβi(σ = 5)

d ∈ [0, 20] Species dispersal rate

δ ∈ [0, 1] Dispersal efficiency

kiin
=

N
∑

j=1

Aij In-degree for ith patch/node

Ci = �kiin� Ensemble averaged in-degree for ith patch/node (“Individual patch and pair-wise patch connectivity” section)

Cij Ensemble averaged pair-wise connectivity (“Individual patch and pair-wise patch connectivity” section)

2

18 10

5

3

7

4

9

Figure 1.  Schematic realization of an NPC consisting of 10 nodes. Connectivity estimated using identical patch 
areas βi = 0.55 ∀ i and an arbitrary underlying landscape with random, normalized inter-patch distances 
Dij

L
∈ (0, 1] ∀ i, j.
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pair-wise patch connectivity Cij , the number of patches is fixed at N = 20 . The ensemble for these calculations 
consists of 10,000 fixed NPC realizations generated with connectivity matrices for a fixed landscape with ran-
domly generated area and inter-patch distances, and fixed dispersal ability α′ = 1 . 

1. To explore the influence of patch area on individual patch connectivity, we start by calculating ensemble 
averaged in (out)-degree 〈kiin〉 ( 〈kiout〉 ) per node. For this, we generate an ensemble of network realizations 
as described in “Generating the connectivity matrix” section, and calculate the number of incoming 〈kiin〉 
and outgoing connections 〈kiout〉 for every patch i in the network, and for every network realization in the 
ensemble. We observe that the ensemble size averaged values of in/out connections are almost identical for 
large ensemble sizes, and therefore use the average in-degree to estimate the individual patch connectivity 
Ci ∀ i.

2. For calculating the influence of inter-patch distance on pair-wise patch connectivity, an ensemble of network 
realizations with identical patch area parameters βi = β (= 0.5) ∀ i is generated. Pair-wise connectivity, Cij , 
for a pair of nodes i, j, located at a distance Dij , is then obtained by calculating the ratio between the num-
ber of times the pair is connected in the ensemble to the ensemble size. This calculation is repeated for all 
N(N − 1)/2 unique pair combinations giving Cij as a function of Dij.

Simulation of system dynamics. In the following (unless stated otherwise), starting from random initial 
conditions ∀ xi ∈ (0, 1) , we simulate the NBMs from Eq. (1), for a total of 3000 time units—30,000 iterations 
in time steps of δt = 0.1—and ignore the initial 2000 (20,000) time units (iterations) as transients. We use the 
data from the remaining 1000 (10,000) time units (iterations) for analysis. Deterministic all-to-all connected, 
and fixed NBM cases are solved using the  VODE33 solver, whereas the rewiring NBM is solved using the Euler 
 scheme34 with a time step δt = 0.01 for error minimization. For the case of homogeneous patches, the carrying 
capacities (patch areas) are fixed at Ki = K = 2.5 ( βi = β = 0.5 ∀ i ), whereas, for the heterogeneous patches 
(different carrying capacities/patch areas), carrying capacities (areas) are distributed in the range of [1.5, 3.5] 
( βi ∈ [0.3, 0.7] ). For calculations with dispersal efficiency δ = 1 , the dispersal rate d ∈ [0, 20] is increased in 
steps of 0.1. For two-parameter analysis, d ∈ [0, 20] , and δ ∈ [0, 1] increase in steps of 0.1 and 0.005, respectively.

In our calculations, we assume a population to be extinct when average meta-population biomass 
x̄ =

∑N
i=1 xi/N < 0.00001 . We consider an ensemble of Nensemble = 100 different network realizations and simu-

late the dynamics, starting with uniformly distributed random initial conditions ∀ xi ∈ (0, 1) , for each d value (d 
and δ values for two-parameter analysis). We note if species exist in the system at the end of the simulation by 
checking for x̄ > 0.00001 and record these instances for the entire ensemble. From measure theoretic 
 considerations35, we use the proportion of ensemble realizations leading to non-zero biomass to the total ensem-
ble size as the persistence probability estimate Pper , and the standard error of Pper : SE(Pper) =

sPper√
Nensemble(= 10)

 , 

where sPper is the ensemble (sample) standard deviation of Pper.

Results and discussion
In the following section, we start by discussing some important characteristics of NPC. In “Homogeneous 
patches” section, we look at the system behavior for homogeneous patch parameters and contrast between dif-
ferent connectivity modes, namely (1) all-to-all connected, (2) fixed NBM, and (3) rewiring NBM. We study the 
homogeneous patch case first to focus on the influence of NPC on system dynamics without any confounding 
effects of patch heterogeneity. In “Heterogeneous patches” section, we discuss some general results for NBMs 
with heterogeneous patches, expressed through different patch carrying capacities.

NPC characteristics. For the case of N = 20 patches, individual patch Ci and pair-wise patch Cij connectiv-
ity estimates are shown as functions of patch areas βi and inter-patch distances Dij , in Fig. 2a,b respectively. We 
observe a nearly linear growth in Ci as a function of patch areas in Fig. 2a, and a nonlinear (exponential) decrease 
in Cij as a function of inter-patch distances in Fig. 2b. These results nicely illustrate the essential features of the 
NPC as formulated in Eq.  (3): (a) larger patches have more incoming/outgoing connections as compared to 
smaller patches, and (b) closely located patches connect more frequently as compared to distant ones.

Homogeneous patches. The influence of dispersal rate d on species persistence are investigated and com-
pared for the (1) all-to-all connected model, (2) fixed NBM, and (3) rewiring NBM. For uniformity in com-
parison, we consider the dispersal efficiency parameter δ = 1 in the following “Probability of persistence” and 
“Influence of patch density and network rewiring rates on persistence” sections.

Probability of persistence. Figure 3 highlights the influence of NPC on the system dynamics for the N = 20 
case. For the (1) deterministic all-to-all connected case, species persistence Pper = 1 in the entire d range, and 
is mathematically expected to stay at the same value for arbitrarily high d → ∞ values—which is extremely 
counter intuitive considering the physical bounds and limitations in natural systems. Notably for an all-to-all 
connected system with δ = 1 , the second term in Eq.  (1) vanishes due to the parameter symmetry and the 
diffusive mean field nature of the term. Consequently, the dynamics of this system is essentially independent 
of the dispersal rate d, and therefore not affected by any changes in d. Hence in this case, local populations in 
each patch independently follow their logistic growth, and settle on the respective carrying capacity Ki = K ∀ 
i—which constitutes the stable equilibrium for the system. On the contrary, for the other two cases of (2) fixed 
and (3) rewiring NBMs, we observe decreasing Pper estimates for increasing d values. These results suggest that 
several network realizations in the NPC ensembles can lead to species extinction with higher dispersal rates in 
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the NBMs. Furthermore, for rewiring NBM, Pper approaches very low values for higher d, before exhibiting spe-
cies extinction Pper = 0 for d ≈ 28 (not shown). On the contrary, we do not observe species extinction Pper = 0 
for quite high d values for the fixed NBM case. Please see Online Appendix: Fig. A.1 for the corresponding aver-
age biomass calculations.

Influence of patch density and network rewiring rates on persistence. Figure 4 shows the relationship between 
species persistence probability Pper , and dispersal rate d for fixed and rewiring NBMs. Since the value of largest 
possible distance in the system (L) is fixed (fixed landscape) for all calculations, an increase in number of patches 
N corresponds to an increase in patch density in the meta-population. The results suggest that a higher patch 
density supports species persistence in the system for higher dispersal rates d. For N = 10 , Pper > 0 (non-zero) 
for the fixed NBM case over the entire investigated range of d, extending to even higher d values (not shown 
here). This implies that there are always some network realizations in the ensemble that support species persis-
tence. In contrast, the species go extinct at d ≈ 5 for the rewiring NBM case. For N = 20 , both fixed and rewir-
ing NBMs yield non-zero Pper estimates in the investigated d range. However we observe a steeper decrease in 
persistence with increasing d, and consequently, extinction for d ≈ 28 (not shown) for the rewiring NBM. For 
higher number of patches: N = 40 , Pper ≈ 1 for the entire d range for both fixed and rewiring NBMs, and this 
behavior extends to even higher d values above the range shown in Fig. 4. Our calculations suggest an exponen-
tial growth in the total number of connections as a function of number of patches N for a fixed landscape, and 
hence for increasing patch densities (see Online Appendix B, Fig. B.1). Therefore, we can conclude that higher 
patch densities tend to shift the Pper behavior closer to a highly connected case, which yields Pper results similar 
to the all-to-all connected situation. Overall, N = 20 seems to provide an appropriate trade-off between a system 
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which is neither too sparse, nor a densely filled landscape, where a sparse system might lead to a higher propor-
tion of isolated patches, and a dense system can mask the effects of spatially explicit connectivity. Therefore, 
we use N = 20 as the standard meta-population size in most of our calculations for the given set of parameter 
values.

For the case of rewiring NBMs, persistence probability Pper is also influenced by the rewiring time intervals 
of the connectivity matrix. Results in Fig. 5 compare the Pper estimates for fixed, and rewiring NBMs with dif-
ferent rewiring rates—every 10 and 100 time units. These results show that a faster rewiring NBM promotes 
species persistence in comparison to the fixed and slower rewiring NBMs, for a range of dispersal rates 
d ∈ (5, 10) —a faster rewiring provides higher Pper estimates in this d range. However, the average biomass esti-
mates for all these three cases are quite similar in this dispersal rate range (Online Appendix: Fig. A.3). However, 
for higher d values, species persistence for both rewiring NBMs is lower compared to the fixed NBM. Eventually, 
the rewiring NBMs exhibit species extinction for higher d, whereas, the fixed NBM still yields non-vanishing 
Pper estimates (not shown). To better understand the mechanism of species extinction in the meta-population, 
we need to focus on the critical role of the between-patch interaction (second) term in Eq.  (1), i.e. 

−d

(

xi −
δi

kiin

∑N
j=1 Aijxj

)

 . As mentioned before, this term assumes that the dispersal process is diffusive in 

nature, and the diffusion occurs along a gradient from higher to lower values. With this assumption, the follow-
ing situations can occur for any d > 0 : (1) average input from other patches is higher than the patch population, 

i.e. 
δi

kiin

∑N
j=1 Aijxj > xi =⇒ d

(

δi

kiin

∑N
j=1 Aijxj − xi

)

> 0 , the interaction term is positive implying an increase 

in the number of individuals within the patch via dispersal, i.e. net species movement is directed into the patch 
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Figure 4.  Persistence probabilities Pper as a function of the dispersal rate d for (a) fixed, and (b) rewiring 
(every 100 time units) NBMs. Nensemble = 100 network realizations were used for the simulations, for N = 10 
(blue), N = 20 (red) and N = 40 (black) network sizes. Standard error values SE(Pper) for these calculations are 
highlighted by error bars every four data points. Related biomass calculations can be seen in Online Appendix 
Fig. A.2.
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due to the population gradient, (2) average input from other patches is less than the patch population, i.e. 

xi >
δi

kiin

∑N
j=1 Aijxj =⇒ d

(

δi

kiin

∑N
j=1 Aijxj − xi

)

< 0 , the interaction term is negative implying a decrease in 

the number of individuals within the patch due to dispersal, i.e. net species movement is directed out of the patch 
due to the population gradient, (3) no input, i.e. no incoming connections, or an isolated patch case both cor-
respond to an extreme instance of (2), in which case, the interaction term reduces to −d(xi) ≤ 0 , and (4) input 

and patch population are identical, i.e. xi =
δi

kiin

∑N
j=1 Aijxj =⇒ d

(

δi

kiin

∑N
j=1 Aijxj − xi

)

= 0 , consequently the 

patches effectively decouple due to the absence of a population gradient. Considering these points, the mecha-
nism of an NPC realization leading to species extinction in the corresponding NBM can be interpreted in the 
following way: for d = 0 , the local populations remain in their respective patches and grow to the respective 
patch carrying capacity—no dispersal occurs, and therefore no species extinction. For d > 0 , the underlying 
NPC has a strong influence on the observed dynamics. The underlying connectivity matrix can lead to a situation 
where some patches have no incoming connections—such a situation is more likely in a sparsely connected 
network and/or for a network with low patch density. Absence of any incoming connections will lead to case (3) 
as discussed above, implying to net loss in the local biomass. Consequently, local populations will go extinct in 
these source-only patches once the dispersal rate is higher than the species growth rate for case (3). This extinc-
tion will decrease the biomass flux from these patches to the connected sink patches. With increasing dispersal 
rates, this will lead to case (2) for these sink patches and eventually they will also experience local extinction, 
thereby, enabling a cascade which leads to the extinction of the entire meta-population. In terms of bifurcation 
analysis, this extinction corresponds to a transcritical bifurcation (stability exchange) between equilibria with 
species persistence and extinction. An important point to consider is that for a fixed landscape, different NPC 
realizations can give rise to completely different persistence/extinction scenarios. Considering an NPC realiza-
tion where all patches have at least one incoming connection, and another realization where one/some patches 
have no incoming connections (source-only case) or are isolated, the described mechanism indicates that species 
can persist for comparatively higher d values in the former case, as compared to the latter. 

Dependence of persistence patterns on dispersal rate and efficiency. So far, the results were presented for cases 
with a dispersal efficiency δi = δ = 1 . However, an assumption of 100% efficiency of dispersal is unrealistic. 
Losses during the dispersal process are likely to occur in natural systems and there is a chance of the species 
not establishing after arrival in a new patch. To take these losses into account, we introduced δ in our system 
Eq. (1). In the following, we investigate species persistence for different connectivity scenarios for δ ∈ [0, 1] , and 
d ∈ [0, 20] . Pper ( SE(Pper) ) behaviors for the homogeneous case are shown in the top row of Fig. 6 (Fig. 7), for 
(a.i) all-to-all connected, (b.i) fixed NBM, and (c.i) rewiring NBM, respectively.

Starting with the all-to-all connected case, we do not observe any transitions to Pper = 0 for δ = 1 . The reason 
is related to parameter symmetries leading to a vanishing interaction term in Eq. (1) as discussed before. There-
fore, the species in their respective patches can grow to the patch carrying capacities Ki = K ∀ i—see also the 
average biomass estimates in Online Appendix Fig. A.4. On considering dispersal efficiency δ < 1 , the interaction 
term in Eq. (1) does not vanish, and therefore, species extinction can arise, as seen in Fig. 6(a.i), where red (blue) 

Figure 6.  (i) Pper projection on the (d, δ) plane for homogeneous patches, and (ii) for the heterogeneous 
patch case. [(a.i),(a.ii)] correspond to all-to-all connected system, [(b.i),(b.ii)] to fixed NBM, and [(c.i),(c.ii)] 
to rewiring NBM with a rewire every 100 time units. The blue shaded area corresponds to meta-population 
extinction, i.e. Pper = 0 , whereas red regimes correspond to Pper = 1 . The boundary between persistence and 
extinction for the all-to-all connected system is indicated by a yellow curve which for comparison, is indicated 
in all panels. Nensemble = 100 for these calculations. Corresponding biomass calculations are shown in Online 
Appendix Fig. A.4.
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areas correspond to persistence probabilities of one (zero). Linear stability analysis of the extinction equilibrium, 
x
∗ = 0 =⇒ (x∗1 = 0, x∗2 = 0, . . . , x∗N = 0)T , and any general N ≥ 2 yields the following eigenspectrum,

Note that these eigenvalues �i s are independent of patch carrying capacities, therefore the persistence–extinc-
tion boundary is unaffected by parameter mismatch in the carrying capacities. Using the largest eigenvalue �1 , 
one can follow the transition boundary of the transcritical bifurcation between persistence and extinction in the 
(d, δ) plane, which satisfies the expression �1 = (r − d)+ dδ = 0 . This boundary (yellow curve) is highlighted 
in Fig. 6(a.i) and is in excellent agreement with the theoretical estimates of this transition boundary (see Online 
Appendix Fig. A.4 for biomass calculations). Additionally, corresponding SE(Pper) calculations in Fig. 7(a.i) 
show that the error values for the homogeneous all-to-all connected case are uniformly vanishing in the entire 
considered (d, δ) plane. This is due to the behavior of Pper which is 1 before the bifurcation boundary and 0 after 
the bifurcation leading to meta-population extinction.

For the spatially explicit Fig. 6(b.i) fixed NBM, and Fig. 6(c.i) rewiring NBM cases, we observe that the 
persistence–extinction transition boundary is not as sharp as for the all-to-all connected case. For comparison, 
the transition boundary for the all-to-all case is indicated by a yellow curve in these figures. For the fixed NBM 
case, starting from lower δ and d values, the transition becomes more uncertain as we increase the value of δ
—which can be seen by the presence of lighter colored regimes corresponding to low, non-zero persistence 
probabilities. This ambiguity between persistence and extinction increases even further for higher δ . These 
results suggest that for high δ , and d values, species extinction is possible for the fixed NBM case contrary to 
the all-to-all connected network, where extinction is impossible in the similar parameter regime. The reasoning 
behind these results is quite straightforward considering how Pper is estimated. For high δ and d values, there is 
a proportion of connectivity configurations which lead to species extinction following the mechanism discussed 
in “Influence of patch density and network rewiring rates on persistence” section. Due to these configurations, 
we obtain 0 < Pper < 1 in this case. This effect is even more pronounced for the rewiring network, where the 
blue (extinction) regimes extend to even higher δ and d values, thereby comparatively reducing the regimes of 
persistence in the parameter space. These results are quite contrary to the all-to-all connected system where 
the persistence is ensured with Pper = 1 along the entire range of d values for high δ . The dynamical differences 
between the all-to-all connected and NBMs are even more conspicuous in the corresponding SE(Pper) calcula-
tions, see Fig. 7(b.i),(c.i). For the parameter regimes where Pper = 1(0) , the SE(Pper) values are either zero or 
very small. For 0 < Pper < 1 , SE(Pper) exhibit higher values implying a higher variability in the Pper estimates for 
NBMs. This comparison also highlights the differences between the fixed and rewiring NBMs. In correspondence 
to Pper estimates, fixed NBM results exhibit a higher variability for high δ and high d values, as compared to the 
rewiring NBM case. This is due to the fact that in these ranges of high variability for fixed NBM, the rewiring 
NBM predicts extinction of the meta-population.

It is quite natural that a meta-population with a local finite growth rate r and a biomass loss during disper-
sal, cannot sustain a population for ever increasing dispersal rates. For lower δ regimes, all three connectivity 
scenarios follow this reasoning. For higher δ , the all-to-all connected system can sustain the meta-population 

(4)�i =







(r − d)+ dδ, i = 1(largest)

(r − d)−
dδ

(N − 1)
i = 2, . . . ,N .

Figure 7.  (i) SE(Pper) projection on the (d, δ) plane for homogeneous patches, and (ii) for the heterogeneous 
patch case. [(a.i),(a.ii)] correspond to all-to-all connected system, [(b.i),(b.ii)] to fixed NBM, and [(c.i),(c.ii)] 
to NBM rewiring every 100 time units. The blue shaded area corresponds to regimes where the error is zero. 
Positive values are highlighted by colors as per the attached color bar. The boundary between persistence and 
extinction for the all-to-all connected system is again indicated by a yellow curve for comparison in all the 
panels. Nensemble = 100 for these calculations. The dynamical differences between all-to-all connected, and 
NBMs are even more obvious in these calculations.
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for arbitrary high d → ∞ values with Pper = 1 . In comparison, our NBM implementations yield reasonable 
estimates of Pper < 1 in high δ and d ranges. Additionally, rewiring NBMs show a higher likelihood of extinc-
tion than the fixed NBM—which highlights the fact that, everything else being constant, it is highly likely for a 
meta-population to exhibit extinction depending on the changes in underlying connectivity alone, which here, 
correspond to different NPC realizations.

Heterogeneous patches. Results for the heterogeneous patch case are shown in the bottom row of 
Fig. 6 for (a.ii) all-to-all connected, (b.ii) fixed NBM, and (c.ii) rewiring NBM. Here we investigate these three 
configurations for different patch areas βi ∈ [0.3,  0.7], and consequently different patch carrying capacities, 
Ki ∈ [Kmin,Kmax] , assigned to the patches in increments of (Kmax − Kmin)/N . For our calculations in Fig. 6(a.
ii),(b.ii),(c.ii), we chose Kmin = 1.5 , Kmax = 3.5 , and N = 20 . We observe that the results for heterogeneous 
patches are quite similar to the results with identical carrying capacities. The similarity in the transition bound-
ary can be explained by looking at the eigenspectrum in Eq. (4). The eigenspectrum for the all-to-all connected 
system is independent of the patch carrying capacities for the extinction equilibrium and therefore, the extinc-
tion threshold is not affected by the dissimilarity in the carrying capacities. Accordingly, for the all-to-all con-
nected cases in Fig. 6(a.i),(a.ii), there are no differences, and Pper behaves identically in both the homogeneous 
[Fig. 6(a.i)] and heterogeneous patch [Fig. 6(a.ii)] cases. Like for the homogeneous case, SE(Pper) calculations in 
Fig. 7(a.ii) again show that the error values for the heterogeneous all-to-all connected case are uniformly vanish-
ing in the entire considered (d, δ) plane. For the fixed NPC case [Fig. 6(b.i),(b.ii)], we observe some differences 
for the transition boundaries for higher δ values. The Pper estimates at the transition boundaries for high δ and d 
values are lower (lighter blue dots) in the heterogeneous case [Fig. 6(b.ii)] when compared to the homogeneous 
case [Fig. 6(b.i)], thereby signifying that in the heterogeneous case, more realizations in the ensemble close to the 
transition lead to extinction. At the same time, we observe that patch heterogeneity shifts the extinction thresh-
old towards higher δ values, as compared to the homogeneous case. This implies that for the case of heterogene-
ous patches, we will observe species extinction for higher δ values where the homogeneous system still supports 
persistence. A similar pattern can be observed for the homogeneous [Fig. 6(c.i)] and heterogeneous [Fig. 6(c.
ii)] rewiring SEMs. Similar to the homogeneous case, dynamical differences between all-to-all and SEMs are 
yet again more obvious in SE(Pper) calculations in Fig. 7(b.ii),(c.ii). These observations suggest that unlike in 
the all-to-all connected case, patch heterogeneity appears to play an essential role in determining the extinction 
threshold for meta-populations as a function of d and δ in fixed, as well as rewiring NBMs.

Conclusions and perspectives
In this paper, we introduced our network based probabilistic connectivity (NPC) approach for fixed and rewiring 
networks to describe species dispersal in the context of meta-populations. We found fundamental differences 
between the fixed/rewiring network based models (NBMs) and the deterministic all-to-all connected approach. 
For the case of lossless dispersal ( δ = 0 ), the comparison showed that the probability of species persistence 
decreases with an increase in the dispersal rate for the NBMs, whereas persistence probabilities were not affected 
by dispersal rate in case of all-to-all connected systems, even for arbitrarily high dispersal rates. When taking 
losses during dispersal into account, our results suggest that the NBMs display a smoother transition from per-
sistence to extinction, with increasing dispersal rates for higher dispersal efficiencies, whereas this transition is 
always discontinuous, forming a sharp boundary between persistence ( Pper = 1 ) and extinction ( Pper = 0 ) for 
the all-to-all connected system. It is important to note that the presented results consider a species which is able 
to disperse throughout the full landscape , i.e. the dispersal range of the species equals the maximum Euclidean 
distance in the network. We expect that species with lower dispersal ranges will occupy the system with lower per-
sistence probabilities, and exhibit extinction for a comparatively lower dispersal rate. Moreover, we demonstrated 
that an all-to-all connected system is obviously unable to capture the influence of patch density on the species 
extinction threshold, whereas we were able to observe that higher patch densities support species persistence 
for increasingly higher dispersal rates with the NBM approach. We also observe that for higher patch densities, 
the behavior of the NBMs tends towards the predictions of an all-to-all connected system. Therefore, the all-to-
all connected system can be treated as a limiting case of our NBMs for a patch dense system. Furthermore, our 
analysis shows that temporal changes in the dispersal patterns, i.e. changes in the inter-patch connectivity over 
time have an influence on species persistence, and distribution patterns. A detailed study regarding the interplay 
between different rates of changes in NBMs, and intrinsic species parameters on persistence are beyond the scope 
of this paper, but will be investigated in subsequent studies. Importantly, the results on species persistence reveal 
that fixed and rewiring NBMs more realistically capture the dependencies between dispersal rate and dispersal 
efficiency. The network analysis also reveals that our approach encompasses the exponentially decaying uniform 
dispersal approach as a long time limit.

The presented NPC formalism enables more flexibility with the temporal resolution, thereby differing from 
the deterministic approaches, some of which form a special case within the presented framework. The intro-
duced NPC formalism can be adapted to approach various theoretical as well as empirical questions. Some of 
these research avenues are highlighted in the following. Given that the variability in connectivity on shorter time 
scales might be highly relevant for projections on changes in species distribution patterns due to climate change 
and changes in land use patterns, influencing habitat suitability and distribution, our NPCs, and related NBMs 
allow for the investigation of short term dynamics by incorporating time varying connectivity at different time 
resolutions into the model. Consequently, on interpreting network ensemble realizations as a result of temporal 
variations in connectivity, we observe that on shorter time scales, there is a considerable asymmetry between 
the in- vs. out-degree for the patches, whereas average in-degree vs. out-degree per patch is quite symmetric in 
the longer time limit. Similarly, sparse meta-populations will have highly asymmetric in-out connections, as 
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compared to dense ones—since the avenues of getting connected in a dense system are higher. Recent studies 
have explored the relationship between in- and out-degree of a network, using measures like “in-out degree cor-
relation” (IODC), and demonstrated that IODC has a dominant influence over meta-population  persistence30. It 
would be interesting to explore these IODC relationships using our approach to explore the generality of these 
results.

An important future direction of this work will be to study the effects of NPC for meta-communities by 
extending NBMs to a multi-species system. NPC based meta-community models can foster our understanding 
on the consequences of the interplay between species interactions and patch connectivity on biodiversity patterns 
by providing predictions on species distribution  patterns36–38. Our NPC approach also allows to take into account 
the local patch quality, thereby enabling predictions regarding species/community persistence under variable 
patch  quality39,40. Furthermore, the NPC approach can capture the connectivity characteristics of fragmented 
landscapes. This can help in simulating the consequences of habitat fragmentation on species distribution and 
 persistence11,41 and may serve as a predictive tool for landscape planning and species/biodiversity  conservation42, 
as well as for providing projections on corrective measures to avoid species/biodiversity loss—e.g. for the crea-
tion of effective habitat  corridors43,44.
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