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A least microenvironmental 
uncertainty principle (LEUP) 
as a generative model of collective 
cell migration mechanisms
Arnab Barua1,2,6, Josue M. Nava‑Sedeño2,4,6, Michael Meyer‑Hermann1,3 & 
Haralampos Hatzikirou1,2,5*

Collective migration is commonly observed in groups of migrating cells, in the form of swarms or 
aggregates. Mechanistic models have proven very useful in understanding collective cell migration. 
Such models, either explicitly consider the forces involved in the interaction and movement 
of individuals or phenomenologically define rules which mimic the observed behavior of cells. 
However, mechanisms leading to collective migration are varied and specific to the type of cells 
involved. Additionally, the precise and complete dynamics of many important chemomechanical 
factors influencing cell movement, from signalling pathways to substrate sensing, are typically 
either too complex or largely unknown. The question is how to make quantitative/qualitative 
predictions of collective behavior without exact mechanistic knowledge. Here we propose the least 
microenvironmental uncertainty principle (LEUP) that may serve as a generative model of collective 
migration without precise incorporation of full mechanistic details. Using statistical physics tools, we 
show that the famous Vicsek model is a special case of LEUP. Finally, to test the biological applicability 
of our theory, we apply LEUP to construct a model of the collective behavior of spherical Serratia 
marcescens bacteria, where the underlying migration mechanisms remain elusive.

Collective movement of dense populations is observed in several biological systems at different scales, from mas-
sive migration of  mammals1 to cells during  embryogenesis2. In these systems, individuals which are able to propel 
themselves independently and interact with other nearby, start moving in a coordinated fashion once enough 
similar individuals are brought together. Due to the relevance of many of these processes to human activity, as 
well as their pervasiveness, there is a need for quantitative understanding of collective migration. Mechanistic 
models, in particular, incorporate the driving interactions between individuals in the specific system modeled. It 
is clear that different types of individuals, especially across different spatial scales, synchronize their movements 
through different mechanisms. This results in a variety of models specific to certain individual  species1,3,4. In the 
specific case of biological cells, cellular migration involves numerous biophysical processes such as actin polym-
erization, receptor recruitment, or in bacteria flagellar motor reversal mechanisms to name a  few5. However, in 
many cases the exact knowledge of all participating biophysical/chemical mechanisms related to a particular 
collective migration pattern is not trivial. Therefore, there is a need to construct models of collective migration 
which do not require knowledge of the exact interactions between individuals.

To address this situation, several mathematical models introduce a phenomenological short-range bias that 
every individual feels. In one of the most influential collective migration  models6 the so-called Viscek model, the 
direction of movement of particles changes towards the mean velocity of individuals in a local neighborhood, 
inducing long-range swarming at the population level. Such models can be further refined into mechanistic 
models, where individual particle dynamics are dictated by a system of Langevin equations. In Langevin equation 
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models, the reorientation of individual particle velocities is brought about by the existence of a local interaction 
potential, which is determined by neighboring particle properties. Collective migration has been achieved, for 
example, through the introduction of a ferromagnetic-like interaction potential, which locally aligns particle 
velocities polarly, or a liquid-crystal-like interaction potential, which aligns particle velocities  nematically7.

Often neither biophysical nor phenomenological models are able to provide a plausible explanation or quanti-
tative reproduction of collective migration patterns, due to the lack of complete mechanistic knowledge. Such an 
example is the spatiotemporal dynamics of spherical S. marcescens bacteria. Interestingly, prior modeling  works8 
were able to partially reproduce the experimental results, since the underlying biophysical mechanisms are still 
unclear. In such cases, one could rely of machine/statistical learning methods that circumvent the biophysical 
 details9–11. However, such methods are typically of high accuracy but low interpretability, i.e. they are “black 
boxes” that do not offer mechanistic insights, and prone to overfitting.

Here, we view migration as an active decision-making process. Cell decision-making is the process of cells 
changing their phenotype according to their intrinsic programming and in response to the microenvironmental 
 cues12–15. Cell decisions involve complex biochemical regulation in the genetic, epigenetic, translational or tran-
scriptional level. The fundamental challenges are the (i) uncertainty of high-dimensional subcellular regulatory 
cell decision-making mechanisms, and the (ii) the lack of knowledge in the relative contribution of intrinsic 
and extrinsic cell decision-making factors to multicellular spatiotemporal dynamics. Regarding cells as Bayesian 
decision-makers under energetic constraints, it has been proposed that cell decisions are deictated by a ‘Least 
microEnvironmental Uncertainty Principle (LEUP)’. This is translated into a free-energy principle, implying a 
statistical mechanics theory for cell decision-making. Such a statistical mechanics reduction allows for simplify-
ing many parameters into a low-dimensional mathematical description and circumvent the uncertainty about 
the underlying mechanisms. Moreover, it allows to integrate heterogeneous data types as constraints of LEUP 
energy optimization. Applying the LEUP to collective cell migration, we aspire (i) to provide a low-dimensional 
statistical mechanics description, (ii) circumvent the uncertainty about the underlying biophysical mechanisms 
and (iii) provide a relationship to phenomenological models (e.g. the Vicsek model). Finally in Fig. 1, we illustrate 
how LEUP is positioned in terms of model interpretability and knowledge of biophysical details in comparison 
the afore-mentioned modelling/computational approaches. Interestingly, LEUP proposes a balanced solution 
for problems of low mechanistic knowledge and satisfactory interpretability.

Figure 1.  Applicability of different modelling/computational approaches according to their biological 
interpretability and the corresponding knowledge of biophysical migration mechanisms. The latter is typically 
encoded as the degree of interaction potential knowledge in Langevin equations (see text). In the case of 
extended biophysical mechanism knowledge, mechanistic models are the natural choice. When the effects 
of cell–cell interaction on cell migration are only partially understood, phenomenological models can be 
typically used. Finally, when data do not suffice to formulate an interaction potential, machine learning allows 
for the quantitative reproduction of experimental data. However, this has a toll in the interpretability of the 
resulting model, since machine learning methods are typically “black boxes”. LEUP models offer a compromise 
that allows for quantitative predictions under lack of mechanism knowledge and satisfactory biological 
interpretability.
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In this work, we present the simplest LEUP-driven Langevin model of swarming where individuals can sense 
the velocity orientations of other individuals in their surroundings. Individuals act as Bayesian inferrers and 
change their own orientation to optimize their prior, according to environmental orientation information. Under 
these assumptions, individuals reorient according to the entropy gradient of the environmental information. A 
parameter, named the sensitivity, controls the strength and directionality of the reorientation in relation to the 
local gradient. We find that the system adopts a steady, polar-ordered state for negative values of the sensitivity. 
Conversely, the system remains out of equilibrium, but partially nematic-ordered when the sensitivity is positive. 
Furthermore, we find that the qualitative behavior of the model depends on the values of the particle density, 
noise strength, sensitivity, and size of the interaction neighborhood. Finally, we showcase the LEUP principle by 
showing that our model replicates the collective behavior of spherical S. marcescens bacteria.

Materials and methods
The self‑propelled particle framework. Moving and interacting cells are modeled by a two-dimensional 
self-propelled particle model (SPP). In this model, N ∈ N cells move on a two-dimensional area. The n-th cell 
is characterized by its position, �rn ∈ R

2 , speed, vn ∈ [0,∞) ⊂ R , and an orientation θn ∈ [0, 2π) ⊂ R . Due to 
the small size of cells, it is assumed that viscous forces dominate. Changes in speed and orientation result from 
local potentials Uθ (�rm, θm, vm),Uv(�rm, θm, vm) : R

2 × [0, 2π)× [0,∞) �→ R which depend on the positions 
and polar velocity components of cells within a radius R ∈ R+ . The bias of the cell to follow the potential gradi-
ents are regulated by the parameters βθ ,βv ∈ R , called angular and radial sensitivities, respectively. Additionally, 
velocity fluctuations occur due stochastic noise terms ξαn (t) ∈ [0, 2π) , α ∈ {θ , v} where t ∈ R+ denotes time. The 
noise will be assumed to be a zero-mean, white noise term, which has the statistical properties �ξαn (t)� = 0 and 
�ξαn (t1)ξ

α
m(t2)� = 2Dαδ(t1 − t2)δnm , where t1 and t2 are two time points, Dα ∈ R+ is either the angular ( α = θ ) 

or radial ( α = v ) diffusion coefficient, δ(t) is the Dirac delta, and δnm is the Kronecker delta. Finally, the radial 
acceleration will be assumed to be damped by a density dependent friction, ψ(ρn) . In the following, it will be 
assumed that the density-dependent friction is given by ψ(ρn) = ρn − ρ̄ , where ρn is the local cell density within 
the n-th cell’s interaction radius, and ρ̄ is the global average cell density. Taking everything into account, the 
stochastic equations of motion of the n-th cell  read16 

 where �v(θn) is the normalized velocity of the cell and ε is a parameter. A representation of the SPP model is 
shown in Fig. 2. The function g(�vn) modulates the noise variance and allows us to model certain distributions 
(such as the Rayleigh distribution in Section 5).

(1a)
d

dt
�rn = vn�v(θn)

(1b)
d

dt
θn = −βθ

∂

∂θn
Uθ (�rm, θm, �vm)+ g(�vn)ξ

θ
n (t)

(1c)
d

dt
vn = −βv

∂

∂vn
Uv(�rm, θm, �vm)− εψ(ρn)vn + ξ vn (t).

Figure 2.  Graphic representation of the dynamics of the SPP model. The n-th cell is represented by a point 
particle with speed vn and orientation θn . Depending on the form of the interaction potential, the cell may feel 
a reorientation force −∂θUθ and a radial force −∂vUv due to interaction with other cells inside the interaction 
neighborhood defined by the radius R.
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The interaction potentials Uα(�rm, θm, �vm) , which dictate the velocity dynamics of cells, need to be specified. 
Biophysically, the potentials should encompass steric effects, hydrodynamic interactions, chemotactic effects, 
and terms arising from internal cellular processes, for example, flagellar motor dynamics, actin polymerization, 
receptor dynamics, etc. Finding such potentials is a formidable task since not all of the mechanisms and interac-
tions involved are known. To circumvent this problem, a variational principle of cell decision-making related to 
entropy  maximization17, known as the least microenvironmental uncertainty principle (LEUP), will be  used18. 
In the next section, we will discuss such a case.

Least microenvironmental uncertainty principle (LEUP). The main premise of LEUP is that cells 
equip Bayesian inference to decide their internal states, expressed as a combination of a sensed microenviron-
mental distribution (empirical/measured likelihood distribution) and a local entropy-dependent prior. From 
the cellular point of view, constructing an accurate microenvironmental sensing distribution is expensive, since 
cell sensing is an energetically costly process. Cells sense (collect information) of their surroundings by employ-
ing different processes, such as polymerizing pseudopodia, translocating receptor molecules or modifying its 
cytoskeleton according to mechanical  signals19,20. However, the cost can be minimized when cells build informa-
tive priors about their microenvironment. In the case of moving cells this could be achieved by, for example, 
promoting cell polarization through the recruitment of actin related  proteins21. In turn, this allows cells to spare 
the energy from building extra sensory processes. At same time, cell polarization effectively promotes the co-
evolution of the cellular state and its microenvironment, where the latter becomes more predictable. The simul-
taneous determination of cell state and its microenvironment results in the minimization of the microenviron-
mental uncertainty towards a target value related to a given tissue or bacteria (e.g. biofilm). This process also 
is prominent during differentiation, where pluripotent progenitors generically sense, with the goal to find an 
appropriate differentiation niche, but differentiated cells have very targeted sensors, e.g. precise receptors, that 
detect a narrow range of tissue-relevant cues. This gives them an advantage since they can invest their energy 
in optimizing their actual function rather than environmental sensing. The state of the n-th cell in this case is 
defined by its orientation θn and velocity vn . We assume that the orientation and velocity of cells are decoupled, 
i.e. one can consider orientations and velocities independent from one another. The set of intrinsic angular states 
of other cells within its radius of interaction is given by �n = {θm : ��rn − �rm� ≤ R} , while the set of intrinsic 
velocity states is Vn = {vm : ��rn − �rm� ≤ R} . The cell reacts to the environmental information, �n and Vn , by 
changing its own states, θn and vn . The cell then acts as a Bayesian decision-maker, such that

αn ∈ {θn, vn} , An ∈ {�n,Vn} where P(An | αn) can be interpreted as the accuracy with which a cell can sense other 
cells in their surroundings and react accordingly, and P(αn) is the probability distribution of the cell’s intrinsic 
states (or prior). However, sensing other cells and evaluating P(An | αn) entails an energy cost. It is reasonable 
to assume that the cell will try to optimize its prior P(αn) for the sake of energetic frugality.

The prior probabilities P(αn) should, consequently, fulfill certain the premises of LEUP. First and foremost, 
they should be normalized, i.e. 

∫

P(αn = a)da = 1 , integrating over all possible values of internal cellular states. 
Second, a biological cell is an imperfect sensor. Therefore, the uncertainty in sensing accuracy S(An | αn) , should 
reach a certain level in average, which is species-dependent. This assumption is a cornerstone of the LEUP for-
malism. An important feature of the LEUP formalism, and of the entropy maximization principle in general, 
is its applicability when every other mechanistic details of the system are unknown. Entropy is a measure of 
uncertainty according to information theory, therefore entropy should be maximal, in order to reflect our lack of 
mechanistic knowledge of the phenomenon, and to avoid introducing any artificial bias in the model arising from 
the specific choice of P(αn)22. Given that the internal entropy is given by S(αn) = −

∫

P(αn = a) ln P(αn = a)da , 
entropy maximization subjected to probability normalization and the target mean sensing accuracy translates 
into the optimization problem

where δ
δP(αn)

 is the functional derivative, S̄(An | αn) is the target sensing accuracy, and � and β̃α are Lagrange 
multipliers. Taking into account the relations among entropy and probability, Eq. (2) yields

where Z =
∫

e−β̃αS(An|αn=a)da is a normalization constant and β̃α is the responsiveness of the cell. Using Eq. (3), 
the internal entropy of the cell, defined as S(αn) = −

∫

P(αn = a) ln P(αn = a)da , is given by

Using the relation between thermodynamic-like potentials, it is evident that the average internal energy is given 
by

P(αn | An) =
P(An | αn)P(αn)

P(An)
,

(2)

δ

δP(αn)

{

−

∫

P(αn = a) ln P(αn = a)da− β̃α

[
∫

P(αn = a)S(An | αn = a)da− S̄(An | αn)

]

−�

[
∫

P(αn = a)da− 1

]}

= 0,

(3)P(αn = a) =
e−β̃αS(An|αn=a)

Z
,

(4)S(αn) = β̃αS(An | αn)+ lnZ.
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and for a particular realisation of αn we can write the internal energy as

Now, Helmholtz-like free energy can be written as

Finally, we return back to the Bayesian formalism and to the main LEUP premise that cells tend to build informa-
tive microenvironmental priors P(αn) . In the steady state, the latter implies that

i.e. the posterior distribution of P(αn|An) becomes independent of measuring/sensing the microenvironmental 
information An , since the prior P(αn) includes all relevant information. Observing the Bayesian probability, 
this only happens when the measurement/sensing likelihood P(An|αn) approaches the probability distribution 
of the microenvironment P(An) , i.e. the cell perfectly senses its microenvironment. Using again the Bayesian 
probability, we can prove the following information-theoretic equation

Substituting the above in Eq. (4), the mutual information reads

Two cases have to be considered, depending on the sign of β̃α:

• When β̃α < 0 the only positive term is lnZ in Eq. (10). Thus, it is reasonable to expect the mutual informa-
tion to decrease to a minimum value.

• When β̃α ≥ 0 one can show that the system, for a large enough sensing radius, goes to an ordered state at 
the steady state (see “Collective cell migration patterns for different parameter regimes”). This implies that 
the microenvironmental entropy S(An|αn) tends to zero. In this case, the Eq. (10) becomes 

 This implies that the mutual information has the potential to reach zero. Interestingly, if this happens using 
Eq. (9), we can recover a similar definition to Boltzmann entropy for the internal cell state entropy, i.e. 

LEUP‑based dynamics. The internal energy depends on the internal states of the cell, as well as the inter-
nal states of other cells in the surroundings. Such internal states can be a vector of physical quantities (e.g. veloc-
ity, acceleration) and/or chemical variables such as intracellular proteins, genes and so on. Here, we focus on the 
former to define an interaction potential that models the equations of motion.

By doing so, it is evident that the responsiveness of the cells to LEUP can be quantified by the sensitivity 
βα = −β̃α . Analogously, we can write the equations of motion of the model similar to Eq. (1c) as  

 To illustrate entropy calculation, it will be assumed that the orientations of cells within the interaction neighbor-
hood are distributed according to

where µ is the mean of the distribution and γ is a parameter related to the variance. This is a wrapped Cauchy dis-
tribution, periodic over the interval [0, 2π] . Similarly, cell speeds will be assumed to be distributed half-normally

(5)U(An,αn) = S(An | αn) = �S(An | αn �= α)�

(6)Uα(An,αn) = S(An | αn)

(7)F = −
1

β̃α
lnZ.

(8)P(αn|An)
t→∞
−−−→ P(αn),

(9)I(αn,An) = S(αn)− S(αn|An)
t→∞
−−−→ 0.

(10)I(αn,An) = β̃αS(An | αn)+ lnZ − S(αn|An).

I(αn,An) = lnZ − S(αn|An).

S(αn) = lnZ.

(11a)
d

dt
�rn = vn�v(θn)

(11b)
d

dt
θn = βθ

∂

∂θn
S(�n | θn)+ g(�vn)ξ

θ
n (t)

(11c)
d

dt
vn = βv

∂

∂vn
S(Vn | vn)− εψ(ρn)vn + ξ vn (t).

(12)P(ϑ ∈ �n | θn) =
sinh γ

2π[cosh(γ )− cos(ϑ − µ)]
,

(13)P(v ∈ Vn | vn) =

√

2

σ 2π
exp

(

−
v2

2σ 2

)

,
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where σ 2 is proportional to the variance of the distribution. Accordingly, the angular entropy is

while the speed entropy is

The parameter σ can be determined from the local speed variance, while the parameter γ depends on the local 
polar order (i.e. the degree of parallel alignment) of cell velocities in the neighborhood. It should be noted that 
the qualitative behavior of the model is independent of the particular choice of distributions, and the distributions 
considered here are suggested only for ease of calculation. Before defining γ , we will first define the observables 
characterizing the order of the velocity field.

Collective migration observables. Let us define the normalized complex velocity of the n-th cell, 
zn ∈ C as zn = eiθn , where i is the imaginary unit. The k-th moment of the velocity over an area A is given by 
�zk�A = 1

NA

∑

m∈A zkm , where the sum is over all cells in area A, and NA is the total number of cells in A. The polar 
order parameter in the area A is given by

which is the modulus of the first moment of the complex velocity in A, while the nematic order parameter in 
the area A is given by

which is the modulus of the second moment of the complex velocity in A. The order parameters are bounded, i.e.

due to the complex velocities zn being normalized. The parameter γ for the distribution of orientations in the 
neighborhood of the n-th cell is given by

where the subindices CR,n indicate a circular area of radius R centered at �rn . The latter directly stems from the 
properties of the wrapped Cauchy distribution.

While global polar and/or nematic order are characteristic of steady flows, rotating flow fields are com-
monly observed in out-of-equilibrium systems. The vorticity is an observable which is equal to twice the local 
angular velocity, and is thus a measure of the local strength and direction of rotation of the field. The vorticity 
ω is defined as

where �vmean(�r) is the mean velocity field at point �r , and �k is vector normal to the plane where cells move.

Statistical evaluation of experiments and model predictions. For the statistical evaluation of the 
results we have used the χ2-test. The testing hypothesis is that the experimental data are explained by the model 
predictions. To test it, we construct

where O(j)
i  is the experimental values of a certain observable j, being either speed or vorticity, and the Ô(j)

i  and 
σ̂
(j)
i  is the corresponding mean value of the stochastic model predictions, based on an ensemble of 50 simulations 

for each density point i = 1, . . . ,N , N = 11 . The quantity Ô
(j)
i −O

(j)
i

σ̂
(j)
i

 can be viewed as a z-score for each Ô(j)
i  and 

for large enough simulation ensemble should converge to a normal distribution. The total degrees of freedom 
for both observables is 2N = 22 . The we calculate the reduced χ2−statistic, or χ2 per degree of freedom, which 
is defined as χ2

2N = (2N)−1
∑

j χ
2
j = 1.97 being close enough to 1. This suggests that our fitting is satisfactory, 

since values χ2
2N ≫ 1 indicate a bad fit to the experimental data.

Results
From LEUP to phenomenological models of collective migration: the relationship to the Vic‑
sek model. By using the LEUP, we have modeled interaction as a change in velocity dictated by the local 
entropy gradient. The modulation of βα parameters modulates the response of cells to the local entropy gradient 
and gives rise to relationships with known phenomenological models, such as the Vicsek model. The absolute 
value |βα| is proportional to the likelihood of the cell to change its velocity according to a given entropy gradi-
ent. If βα < 0 , cells tend to go against the local entropy gradient towards the entropy minimum. In the specific 

(14)S(�n | θn) = ln(2π)+ ln(1− e−2γ ),

(15)S(Vn | vn) =
1

2
ln

(

πσ 2

2

)

+
1

2
.

(16)S1A = |�z�A|,

(17)S2A = |�z2�A|,

(18)0 ≤ S1A, S
2
A ≤ 1,

(19)γ = − ln
(

S1CR,n

)

,

(20)ω(�r) = [∇ × �vmean(�r)] · �k,

(21)χ2
j =

N
∑

i=1

(

Ô
(j)
i − O

(j)
i

σ̂
(j)
i

)2

,
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case of α = θ , a negative sensitivity would restrict the distribution of angles to a narrow selection. Conversely, 
βα > 0 forces cells to follow the entropy gradient towards the entropy maximum, broadening the distribution. 
From here on, we will assume that the effect of cell interactions will be averaging the radial component, therefore 
βv < 0.

To evaluate the effect of these two opposite migration strategies, we analyze the angular steady states in 
the two parameter regimes. Without loss of generality, we assume that, in the steady state, the mean velocity 
is v̄ = 1 . By expanding S1CR,n

 using Eq. (16), defining the components of the mean neighborhood velocity as 
v̄y,n =

∑

CR,n∋m �=n sin θm and v̄x,n =
∑

CR,n∋m �=n cos θm , and differentiating Eq. (14), we find that the orientation 
of θn at the entropy extrema must be such that (see Supporting Information)

but v̄y,nv̄x,n
= tan θ̄ , the tangent of the mean orientation of the neighbors, excluding the n-th cell. This results in two 

extremum points θn = θ̄ and θn = θ̄ + π , one where the velocity of the n-th cell is parallel to the average velocity 
of its neighbors, and one when it is antiparallel. In the first case 

 while in the second case 

 It can be shown (see Supporting information) that θn = θ̄ corresponds to an entropy minimum, while θn = θ̄ + π 
corresponds to an entropy maximum. Consequently, the behavior of the regime βθ < 0 is analogous to that of the 
Vicsek  model6. Conversely, the regime βθ > 0 corresponds to an anti-ferromagnetic analog of the Vicsek model.

Next, let us assume that the model has a steady state, where the Helmholtz free energy per cell is given by 
Eq. (7). Due to its extensivity, the Helmholtz free energy of complete, non-interacting, steady state system is

where Zn is the normalization constant of Eq. (3) for the n-th cell. For a weakly interacting system, the mean-field 
effective normalization constant ZT :=

∏N
n=1 Zn is given by

Note that this is only valid in the limit βθ → 0 . Integrating and substituting the resulting ZT into Eq. (7) (see 
Supporting information), yields the Helmoltz-like free energy

Eq. (25) is well-defined only for βθ < 1 . This indicates that no steady state exists for βθ ≥ 1 , hinting at an out-of-
equilibrium  regime23. The present model belongs to the class of models with logarithmic potentials (see Eqs. (6) 
and (14)). The existence of a non-normalizable state in certain parameter regimes is a staple of systems with 
logarithmic  potentials24.

Collective cell migration patterns for different parameter regimes. The model was implemented 
computationally to characterize the model and the effects of the different parameters on the resulting macro-
scopic behavior. The general qualitative behavior of the model can be observed in Fig. 3. In the regime βθ < 0 , 
cells tend to travel in a single direction after some time has elapsed, similar to the Vicsek model. Conversely, in 
the βθ > 0 regime, cells are seen to move collectively in transient vortex-like structures, even after long times 
have elapsed. Qualitatively, the patterns resulting from different parameter combinations are summarized in 
Table  1. Analyzing simulations, two important phenomena are observed. First, there is a critical parametric 
regime �C := {(βθ ,R) : S

1
A, S

2
A > 0} where patterns emerge. Specifically, for low values of interaction radius 

R no structures can be formed. This indicates that medium-to-long range spread of information is necessary 
for ordering. On the other hand, for βθ > 0 for large values of R, outside of �C , again no patterns occur. This 
implies that for large interaction radii there is a destructive interference of the travelling information. A second 
important observation is that patterns do not depend on the choice of βv when this is different than zero. For 
βv  = 0 , LEUP dynamics divide the population into fast and slow cells. While fast cells are useful for spreading 
information (and therefore, increasing the effective interaction range), slow cells are necessary for maintaining 
local ordering. On the other hand, if we fix the initial speed distribution and assume βv = 0 , then we find differ-
ent patterns emerging as shown in Table 1 (also see in SI). Furthermore, we quantitatively characterized global 
ordering at long times. The global polar order parameter, given by Eq. (16), for the complete simulation domain, 

tan θn =
v̄y,n

v̄x,n
,

(22a)sin θn ∝ v̄y,n and

(22b)cos θn ∝ v̄x,n,

(23a)sin θn ∝ −v̄y,n and

(23b)cos θn ∝ −v̄x,n.

FT ≈ −
1

βθ

N
∑

n=1

lnZn = −
1

βθ
ln

(

N
∏

n=1

Zn

)

,

(24)ZT =

∫

e−βθ
∑N

n=1[ln(2π)+ln(1−e−2γn )]dϑn.

(25)F = N

[(

1−
1

βθ

)

ln(γn)+ ln(4π)+
ln(1− βθ )

βθ

]

.
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Figure 3.  Simulation snapshots of the velocity field at long times. Arrows show the direction and magnitude 
of the velocity field. The snapshots were taken after 1000 time steps. 1000 particles were simulated, with an 
interaction radius of 3, and noise standard deviation of angles and speeds equal to 0.01. Here g = 1,βv = −5 
and ε = 0 . In (a) the value of the angular sensitivity was equal to 18 while in (b) the angular sensitivity was 
equal to −0.25 . Periodic boundaries were employed.

Table 1.  Qualitative description of the observed patterns for different angular sensitivity and interaction 
radius regimes, as well as radial sensitivity.The patterning regime �C is the blue area in Fig. 4a,b.

βθ < 0 Radial sensitivity ( βv) R /∈ �C R ∈ �C

βv  = 0 Polar aligned streets of cells Scattered polar aligned cells

βv = 0 (for uniform distribution) Compact polar aligned cluster Compact polar aligned cluster

βθ > 0 Radial sensitivity ( βv) R /∈ �C R ∈ �C

βv  = 0 No order or patterns Vortices

βv = 0 (for uniform distribution) No order or patterns Nematic streaming and vorticules

Figure 4.  Pattern formation regimes �C in the interaction radius—sensitivity plane for positive and negative 
values of angular sensitivity. In (a) there exists an optimal regime where we can find pattern formation. But in 
(b) for negative values of beta we can see patterns at smaller values of interaction radius and at smaller values of 
angular sensitivity.
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measures the global degree of polar alignment, or polarization. The global nematic order parameter, given by 
Eq. (17) for the complete simulation domain, measures the tendency of all cells to align nematically, or along a 
single axis. These order parameters take a value of one when there is global order, while taking a value of zero 
when the system is completely disordered. It should be noted that polar order implies nematic order, but the 
reverse is not true.

Similarly to other velocity alignment  models7, the model shows an order-disorder transition with increas-
ing noise amplitude and decreasing density (SI figure Fig. 1). More importantly, we observe that in the regime 
βθ < 0 the system also undergoes a transition towards polar order with decreasing βθ . After the transition, most 
particles have a similar orientation (Fig. 5a,c). In the regime βθ > 0 , a phase transition is also observed towards 
nematic order with increasing βθ . In this case, however, the nematic ordering is not perfect, as evidenced by the 
nematic order parameter reaching values of around 0.35 after transition (b) compared to the value of 0.9 of the 
polar order parameter after transition in the βθ < 0 regime. This is further evidenced by the bimodal distribu-
tion of orientations with peak separation of approximately π radians (Fig. 5d). These simulation results further 
corroborate our previous theoretical results.

In turn, we study the effect of speed sensitivity βv in terms of phase transitions. We fix the angular sensitivity 
βθ , either positive or negative, thus the speed distribution will only depend on βv values.

When βv is positive then speed distribution become bimodal and for βv < 0 the speed distribution becomes 
unimodal (see Fig. 10 in supplementary material). Moreover, we show that if the radial sensitivity βv < 0 
decreases then the average speed increases. On the other hand, for any value of βv > 0 , the first and the second 

Figure 5.  Order-disorder phase transitions and orientation distributions in two parameter regimes. Here g = 1 , 
βv = 0 , ε = 0 and �ξ vn (t)2� = 0 . (a) In the regime βθ < 0 , a phase transition towards polar order occurs at a 
critical value of the sensitivity. (c) After the phase transition, polar order arises, and all cells have roughly the 
same orientation. (b) In the regime βθ > 0 , the phase transition towards nematic order occurs at critical value 
of the sensitivity. (d) There is partial nematic order after the phase transition. Accordingly, several cells have 
opposite orientations. (a) and (b) The number of particles was fixed at 103 , noise standard deviation at 0.01, and 
interaction radius at 3. Values of the order parameters were averaged over 50 realizations after 1000 time steps. 
(c) and (d) The number of particles was fixed at 1000, noise standard deviation at 0, and interaction radius at 3. 
The histogram was created with data from 50 realizations after 1000 time steps.
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moments of the speed distribution cannot be defined, since this is bimodal. Finally, for increasing cell densities, 
the average speed increases as well (see supplementary Fig. 9).

A collective migration example of restricted mechanistic knowledge: the spherical bacteria 
case. Collective motion of bacteria has been extensively studied and modeled. Most studies have focused on 
the collective properties of S. enterica, E. coli, and M. xanthus. These species of bacteria are similar since they 
have a high aspect ratio. It has been shown that volume exclusion, coupled with a high aspect ratio, is sufficient 
to induce velocity alignment in the  system7, and accordingly, ordered clusters of bacteria are observed at high 
densities.

However, it has been recently  shown25 that even spherical S. marcescens bacteria do display collective migra-
tion (for experimental details please see SI section). The biophysical mechanism whereby spherical bacteria 
interact with one another must be different from the high body aspect ratio volume exclusion mechanism 
proposed for elongated bacterial species.

Recently, a combination of biophysical agent-based and hydrodynamics model has been proposed to describe 
these experiments. In this study the experimental observations were only partially reproduced. Therefore, the 
biophysical mechanisms underlying collective migration in spherical bacteria are still not well understood. An 
important aspect to consider is the bacterial speed vn . It was found  experimentally25 that bacterial speed followed 
a Rayleigh distribution, dependent on bacterial density. Collective effects on cell orientations, on the other hand, 
were studied by observing the vortical behavior of the  population25.

To reproduce the experimentally observed Rayleigh distribution for cell speed, we chose the function 
g(vn) = v−1

n  as shown  in16. It is important to note that this term is not impacting the qualitative behavior of 
the average bacteria speed but only its variance (see SI Fig. 11). Moreover, the interested reader could see the 
impact of the friction term in the average cell velocity in SI Fig. 12. As shown in Fig. 6, our model qualitatively 
and quantitatively reproduces both the speed distribution and vorticity behavior of the experimental system. 
Interestingly, the behavior of the experimental system was replicated for high values of the sensitivities βv and 
βθ , and large interaction radii R.

Our LEUP model not only allows for a quantitative reproduction of the experiments, but also provides 
insight into the potential biophysical mechanisms. Such values of the sensitivities and interaction radii indicate 
far-reaching, strong tendencies of bacteria to average their speeds while reorienting and traveling differently 
from their neighbors. Spherical, rear-propelled particles have been shown to destroy polar order as a result of 
hydrodynamic  interactions26, similarly to our model. Considering that S. marcescens is an example of a spherical, 
rear-propelled  particle27, our results agree with previous findings indicating that S. marcescens interacts through 
long-range  hydrodynamics28. The long range interaction radius suggests the existence of hydrodynamically 
induced interaction (which has been suggested by Ariel et. al as well as by other  studies27,28) or self avoiding 
 interaction29.

Discussion
In this work, we have introduced an off-lattice model of LEUP-induced collective migration, based on the 
self-propelled particles modeling framework. It was assumed that individuals changed their radial and angular 
velocity components independently through LEUP. Reorientation is governed by a stochastic differential equa-
tion depending on a white noise term and a force arising from an interaction potential.

The exact form of the interaction potential can be very complex, and its specific form is dependent on par-
ticular mechanochemical details of the modeled system. While it has been shown that, in general, interactions 
among individuals can effectively drive the entropy of the entire system towards an extremum  point30,31, here 
we do the opposite. Instead of modeling the interaction potential biophysically, it was assumed that particles 
followed the LEUP, which dictates that cells change their internal states in order to minimize the uncertainty 
of the internal states of cells in their surroundings. Although LEUP has been conceptualized to deal with high-
dimensional internal states involved in cell decision-making, here we restrict on physical internal states such 
as speed and orientation. While cell speed was assumed to always minimize uncertainty, there was no assump-
tion made on the cell orientation. Particles are therefore free to reorient either towards or against the gradient 
of entropy of the orientational distribution of particles in their neighborhood, depending on the sign of the 
sensitivity parameter, which also dictates the strength of the interaction. The orientational distribution in the 
neighborhood was assumed to be wrapped Cauchy distributed. Such a distribution facilitates the mathematical 
analysis of the model. However, the usage of other wrapped distributions do not qualitatively change the general 
behavior of the model (see SI). Please note that non-parametric methods for estimating entropies without assum-
ing any underlying parametric distributions exist. For instance, such methods employ kernel density estimation, 
k−nearest neighbours or regression  methods32.

We show that, when the parameter βθ is negative, the model produces steady-state polar alignment patterns. 
Interestingly, we showed that the classical formulation of Vicsek  model6 is a special case of LEUP. Conversely, 
when the parameter βθ is positive, particles tend to reorient against the mean velocity of their neighborhood. In 
this regime, the free energy diverges, indicating an out-of-equilibrium parameter regime. This kind of param-
eter-dependent dichotomy is similarly observed in systems with logarithmic  potentials33, involved in processes 
such as long range-interacting  gases34, optical  lattices35, and DNA  denaturation36. The dichotomy arises from 
the logarithmic form of the entropy driving interaction in our model. It has been shown that, due to the non-
normalizability of the steady state solution, such systems require a time-dependent expression for their  analysis24. 
Therefore, an in-depth theoretical analysis of our model would require a similar multiparticle, time-dependent 
expression of the angular probability densities.
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However, our LEUP migration model may go beyond the observed patterns in past Viscek-type models. In 
particular, in Barua et al.37 we have developed a discrete speed version of our LEUP migration model, where cells 
can have only zero or a finite speed. This model exhibits Turing patterns, i.e. dynamics clusters of non-motile 
cells of specific characteristic wavelength, where previously published Viscek-like models cannot may produce 
moving clusters of swirling cells (e.g. the milling Viscek model) but never static ones.

As a proof of principle, we show that our model replicates the collective vortical behavior of spherical motile 
particles. Recently, the collective behavior of spherical particles have been modeled as a combination of steric 
repulsion and hydrodynamic  interactions38. Our study has shown that hydrodynamics and steric interactions 
induce long-range microenvironmental entropy maximization, which coincides with the βθ > 0 LEUP regime. 
This generalizes the type of biophysical mechanisms required to produce vortical patterns.

It should be noted that, while spherical S. marcescens bacteria have been modeled biophysically, their collective 
behavior was partially  reproduced8. This hints at an additional biological and/or biochemical interaction between 
cells. While our LEUP-based model is coarse-grained in terms of specific biophysical/biochemical interactions, 
it allows for a plausible reproduction of the experimentally observed collective velocity behavior by fitting a only 
few parameters. The application to spherical bacteria allows us to showcase the potential of the LEUP principle 
when the precise interaction mechanisms are not known.

As already mentioned, we have made some assumptions to simplify the model. Our model assumes a Gauss-
ian, white noise term in the SDEs. This results in normal diffusive behavior in the absence of interactions. It 
has been observed experimentally, however, that in some conditions, cells perform Lévy walks resulting in 

Figure 6.  Comparison between vorticity trends in experiments and in simulations. (a) Relation between the 
average speed and the density. The simulation values shown are averaged over fifty realizations. (b) Dependence 
of the spatially normalized averaged absolute value of vorticity on the density. The simulation values shown 
are averaged over fifty realizations. (c) Relation between average speed versus mean absolute vorticity from 
simulations for various densities over fifty realizations. Experimental values were taken  from25. Throughout all 
simulations, the standard deviation of the noise was set at 0.0001, interaction radius at R = 10 , proportionality 
constant ε = 0.008 , radial sensitivity βv = −20 , g = 1

vn
 and angular sensitivity at βθ = 5 . Data was obtained 

after 500 time steps.
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superdiffusive  behavior39. By changing the distribution or time correlations of the  noise9,40, it would be pos-
sible to both replicate the non-Gaussian dynamics of single cells, and investigate the effect of single anomalous 
dynamics on collective behavior.

We have also assumed that particle velocities are the only internal states relevant for reorientation, for sim-
plicity and as a proof of concept of the LEUP principle. However, it is reasonable to think that other states, such 
as relative position or adhesive state, may be relevant to include when modeling specific systems. This reveals an 
interesting point in the application of LEUP-driven models which is the selection of the most relevant/dominant 
internal variables. Although experimental intuition could be the easiest approach, we are currently developing 
a spatial principle component analysis method that would allow to select the most relevant internal variables 
using spatial data such as multiplexing biopsies or spatial RNA sequencing.

As stated above, LEUP circumvents the biophysical details of cell migration. The need to model systems of 
interacting agents without previous knowledge of the biophysical mechanisms involved has sparked at least 
another agent based  model41. In this model, similarly to ours, agents act without a mechanistic rule. Rather, they 
consider every possible action and penalize those which are not favorable to their internal standards. While both 
the aforementioned model and LEUP are defined in a similar spirit, modeling under LEUP consists in correctly 
identifying the relevant internal cellular states for entropy optimization, while  in41 modeling is concerned with 
defining suitable penalizations for each possible decision scenario.

LEUP has additional appealing features. For instance, LEUP allows for replicating a plethora of collective 
migration patterns. In this particular case, we have analytically derived the polar and nematic alignment Vicsek 
models for LEUP arguments. In this sense, LEUP acts as a generative model for collective migration mecha-
nisms. This is particularly useful upon limited knowledge of such mechanisms, a problem called structural 
model uncertainty. Another advantage of LEUP is the mapping of biophysical mechanism combination to the 
β > 0 or β < 0 regimes. This allows for unifying the model analysis but for a better classification of migration 
mechanisms. Finally, known mechanisms or data could be easily integrated to our proposed framework by 
further constraining the LEUP dynamics.
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