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fNIRS‑based functional 
connectivity estimation using 
semi‑metric analysis to study 
decision making by nursing 
students and registered nurses
Jie Sheng Chong1, Yee Ling Chan1, Esther G. M. Ebenezer2, Hoi Yen Chen3, Masashi Kiguchi4, 
Cheng‑Kai Lu1 & Tong Boon Tang1*

This study aims to investigate the generalizability of the semi‑metric analysis of the functional 
connectivity (FC) for functional near‑infrared spectroscopy (fNIRS) by applying it to detect the 
dichotomy in differential FC under affective and neutral emotional states in nursing students 
and registered nurses during decision making. The proposed method employs wavelet transform 
coherence to construct FC networks and explores semi‑metric analysis to extract network redundancy 
features, which has not been considered in conventional fNIRS‑based FC analyses. The trials of the 
proposed method were performed on 19 nursing students and 19 registered nurses via a decision‑
making task under different emotional states induced by affective and neutral emotional stimuli. 
The cognitive activities were recorded using fNIRS, and the emotional stimuli were adopted from 
the International Affective Digitized Sound System (IADS). The induction of emotional effects was 
validated by heart rate variability (HRV) analysis. The experimental results by the proposed method 
showed significant difference (FDR‑adjusted p = 0.004) in the nursing students’ cognitive FC network 
under the two different emotional conditions, and the semi‑metric percentage (SMP) of the right 
prefrontal cortex (PFC) was found to be significantly higher than the left PFC (FDR‑adjusted p = 0.036). 
The benchmark method (a typical weighted graph theory analysis) gave no significant results. In 
essence, the results support that the semi‑metric analysis can be generalized and extended to fNIRS‑
based functional connectivity estimation.

Graph theory has been widely employed in neuroimaging studies such as functional magnetic resonance imaging 
(fMRI), electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) to better understand 
the functional connectivity (FC) under various neurological  conditions1–4. According to the graph theory, a brain 
network may be described as a graph consisting of nodes, and the connections between the nodes are known 
as  edges5. A collection of nodes in a brain network forms a brain region while the strength or synchronicity of 
the connectivity is usually represented by the weight of the edges. The number of edges connected to a node is 
referred to as a degree. To quantitatively evaluate the information transmission ability in a network, the shortest 
path length plays a crucial role in defining network efficiency at both local and global  levels3.

In conventional graph theory analysis, the shortest path length is always defined as the minimum sum of 
the distance between two  nodes6, providing the most preferable route for information to be passed from one 
node to another. In real-world networks, the shortest path is not always the direct distance because the distance 
from one node to another via a circuitous (indirect) path may be less than the length of the direct  path7. This 
phenomenon violates the transitive property and forms a semi-metric  network8, as shown in Fig. 1. Previous 
studies on  fMRI7,9 have shown improvement in graphical network processing performance in information sharing 
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by employing a semi-metric network via indirect paths. For instance, semi-metric networks have succeeded in 
discriminating changes in the human FC in different neurological conditions based on the percentage of the 
network semi-metricity8,10,11. However, its reproducibility and generalizability to other neuroimaging modalities 
such as fNIRS are unclear.

In semi-metric analysis, a network graph consists of two main components: semi-metric edges and metric 
backbones. Both these components have different shortest path properties. When a preferential (shortest) route 
is found via a circuitous path, this indirect path between the nodes is called a semi-metric edge. These semi-
metric edges depict a higher level of information sharing among multiple brain regions along the circuitous 
paths, in contrast to the information exchange by metric backbone  edges10. This network redundancy feature 
has not been considered in conventional graph theory-based FC analysis. Such characterization by semi-metric 
analysis is crucial for describing the hyperconnectivity of the FC. Excessive hyperconnectivity, for instance, has 
been identified as one of the main symptoms of neurodevelopmental disorder (autism) and post-traumatic stress 
disorder (emotional processing)12,13.

This study proposes the application of fNIRS to measure neuronal activity in the prefrontal cortex (PFC). 
The fNIRS data was found to closely correlate to that of the  fMRI14. Importantly, fNIRS devices are generally 
less expensive, provide higher portability and better balance between spatial and temporal resolution, and also 
provide higher resistance to motion  artifacts15. Few studies have been reported using fNIRS to assess functional 
connectivity during the resting state and cognitive  task2,16,17. These studies utilized semi-automatic methods for 
graph filtering, which involved manual tuning of the threshold to select edges above a certain weight value. Such 
methods may cause inconsistency in the interpretation of FC networks.

In this study, we propose to explore a semi-matrix for fNIRS-based FC analysis for the first time. We hypoth-
esize that (i) the semi-metric analysis applied in fMRI FC estimation could be generalized and extended to fNIRS, 
and (ii) the semi-metric analysis may provide a more effective technique to evaluate fNIRS-based FC than the 
conventional graph theory approach. To illustrate, we implemented the proposed method to study the differential 
FC under affective and neutral emotional states in nursing students and registered nurses.

Studies have shown that nursing is one of the most stressful  jobs18, and the drop-out rate among nursing 
students is very high (the average drop-out rate was 35–37% for Italy in 2011, 21.1% for Netherlands in 2013, 
and 20% for UK in 2015)19. The occupational stress results in reduced productivity among nurses (i.e., distracted 
decision-making ability), threatening patient care. To combat mental stress, registered nurses were found to cope 
with stress effects by exercising emotion  regulation20. This study aims to develop a means to detect the dichotomy 
in differential FC under affective and neutral emotional states in nursing students and registered nurses as the first 
step to identifying neural markers among nursing students who may be more susceptible to stress coping issues.

Results
This experiment was conducted in two sessions for each subject (under affective and neutral emotional states), 
in a counterbalanced manner. Our statistical analysis showed that the FC, HRV, and behavioral performance 
results were not affected (p > 0.05) by session order (affective-neutral session versus neutral-affective session).

HRV analysis. Using two-way mixed analysis of variance (ANOVA), the experimental results of root mean 
square of successive differences (RMSSD) showed a two-way interaction [F(1,36) = 4.148, p = 0.049, η2p = 0.103] 
between group type and emotional state. In the subsequent simple effect analysis, the result revealed a signifi-
cant emotional effect [F(1,18) = 8.117, p = 0.011, η2p = 0.311]. The pairwise comparison with false discovery rate 
(FDR) adjustment (in Fig. 2) showed that nursing students possessed significantly lower RMSSD (FDR-adjusted 
p = 0.044, t(18) =  − 2.834, Cohen’s d = 0.654) in affective state than that in neutral emotional state. On the other 
hand, no significant difference was observed in RMSSD among registered nurses (p > 0.05).

Semi‑metric analysis. Based on the two-way mixed ANOVA in global level semi-metric analysis, a sig-
nificant two-way interaction between group type and emotional state was observed [F(1,36) = 5.063, p = 0.031,  
η2p = 0.123]. Followed by the simple main effect analysis, significant emotional state effect was only observed in 
the students [F(1,18) = 15.212, p = 0.001,  η2p = 0.458]. From the pairwise comparison with FDR correction (in 
Table 1), the affective state resulted in significantly higher global semi-metric percentage (SMP) (FDR-adjusted 

Figure 1.  An example of a semi-metric network with weighted path. The dashed line represents the direct path 
from A to C with a weight of 7. However, there exists a shorter circuitous path from A to C via B with a sum of 
weight of 6. This is called an indirect path.
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p = 0.004, t(18) = 3.922, Cohen’s d = 0.895) than the neutral emotional state among the students. None of the 
comparison was significantly different in the case of nurses (p > 0.05).

A three-way mixed ANOVA was carried out to study the interaction between the group type, emotional state, 
and brain region. The regional semi-metric analysis result indicated a significant three-way interaction effect 
[F(1,36) = 8.278, p = 0.007,  η2p = 0.187]. Based on a follow-up evaluation (by splitting groups into students and 
nurses), the simple two-way interaction was found to be significant in the students [F(1,18) = 20.889, p < 0.001, η2p 
=  0.537], but not in the nurses [F(1,18) = 0.106, p = 0.749, η2p =  0.006]. Result of a follow-up analysis further 
showed that the students had a significant simple main effect of task [F(1,18) = 13.454, p = 0.002, η2p =  0.428] in 
the right PFC, but not in the left PFC [F(1,18) = 0.016, p = 0.902, η2p =  0.001]. The effect of region was also found 
to be significantly different in the affective state [F(1,18) = 9.740, p = 0.006, η2p =  0.351], but not in the neutral 
emotional state [F(1,18) = 1.072, p = 0.314, η2p =  0.056]. Lastly, the multiple pairwise comparison was conducted 
according to the significant simple main effects. With the FDR correction, Table 2 showed that the SMP in the 
right PFC was significantly greater (FDR-adjusted p = 0.036, t(18) = 3.113, Cohen’s d = 0.716) than that in the left 
PFC among the students in the affective state. Moreover, in the right PFC, the SMP was found to be significantly 
higher in the affective state than that in the neutral emotional state among the students (FDR-adjusted p = 0.024, 
t(18) = 3.298, Cohen’s d = 0.841). Meanwhile, none of the comparisons were significantly different in the case of 
the nurses (p > 0.05).

Weighted graph theory analysis. Based on the two-way mixed ANOVA conducted separately on the 
clustering coefficient (CC), characteristic path length (λ), global efficiency (Eglobal), and local efficiency (Elocal), we 
found no significant (p > 0.05) results at the global level analysis. At the regional level, three-way mixed ANOVA 
conducted on the nodal efficiency (Enodal), CC, and λ revealed that none of the interaction effects (p > 0.05) were 
found to be significant among the three factors (group type, emotional state, and brain region). From the pair-
wise comparison, as depicted in Table 2, no significant result was observed (p > 0.05).

Behavioral data. From the two-way mixed ANOVA of the behavioral performance parameters, we found 
no significant results in the number of correctly solved questions, accuracy, and response time. The pairwise 
comparison results also did not demonstrate any significant differences between the two factors (emotional state 
and group type).

Figure 2.  The result of HRV analysis based on RMSSD. * indicates FDR-adjusted p < 0.05.

Table 1.  Pairwise comparison between parameters in semi-metric analysis and graph theory analysis at global 
level. The table are shown in (FDR-adjusted p-values; t-values; Cohen’s d). df indicates degrees of freedom. * 
represents FDR-adjusted p < 0.05.

Comparisons df SMP Eglobal
Elocal CC λ

Students Affective vs. 
neutral 18 0.004; 3.922; 

0.895* 0.760; 0.900; 0.206 0.766; 0.894; 0.205 0.564; 0.895; 0.205 0.590; 1.079; 0.250

Nurses Affective vs. 
neutral 18 0.911; 0.113; 0.026 0.760; 1.158; 0.275 0.766; 1.135; 0.275 0.564; 1.136; 0.250 0.590; 1.102; 0.252

Affective Nurses vs. students 36 0.494; 1.178; 0.393 0.874; 0.159; 0.053 0.899; 0.129; 0.043 0.898; 0.129; 0.043 0.912;0.112; 0.037

Neutral Nurses vs. students 36 0.548; − 0.831; 
0.277 0.847; 0.385; 0.128 0.899; 0.356; 0.119 0.898; 0.356; 0.119 0.912; 0.204; 0.068
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Correlation between HRV and FC indices. Based on the Pearson’s correlation analysis, the relationship 
between HRV and FC indices was assessed. From the results in Table 3, with the adjustment of FDR correction, 
we identified a significant negative moderate correlation (r = − 0.459, FDR-adjusted p = 0.020) between changes 
in the global SMP and changes in the RMSSD. However, neither of the weighted graph theory indices signifi-
cantly correlated with the RMSSD score.

Discussion
This study introduces a computation of FC (semi-metric analysis), which could be a more effective technique 
to assess fNIRS-based FC changes due to the affective and neutral emotional states. Firstly, group types were 
identified in terms of HRV and FC semi-metricity. The significant reduction in the RMSSD indicated a clear 
decrease in parasympathetic activity among the nursing students when in the affective state; on the other hand, 
the RMSSD of the registered nurses did not show any significant change despite changes in emotional states. In 
terms of behavioral performance, the nurses, exhibiting no significant changes in HRV and FC indices, had no 
significant difference in the number of correctly solved questions, accuracy, and response time. Likewise, the 
behavioral performance indices of the students were observed to be insignificant. Proceeding to the FC analyses, 
the comparison of semi-metric analysis and graph theory analysis in detecting emotional effects was evaluated 
based on two approaches, including ANOVA and correlation analysis with HRV. The conventional weighted 
graph theory analysis showed no significant results for both nursing students and registered nurse groups. On 
the other hand, by splitting into individual groups, the semi-metric analysis was able to distinguish significant 
changes of semi-metricity, especially at the right PFC among the students due to emotional effects.

According to previous  studies21,22, the significant reduction in HRV among nursing students might be 
explained by the adaptive physiological responses under the elicitation of external emotional stimuli. In con-
trast, the non-significant change in ANS activity among the registered nurses, as indicated by HRV values, might 
reflect that the nurses have developed their own coping strategy and the affective stimulus did not affect decision 
making (i.e., the task). This validated the induction of emotional states as a reference for FC analyses. Moving on 
to FC analyses, earlier fMRI studies determined that the increment in SMP reflected a higher level of hypercon-
nectivity and dispersal of FC, which included other brain  regions10. The presence of hyperconnectivity in PFC 
areas has been further linked by previous studies to the processing of emotions such as anxiety and  stress23,24. 
The apparent changes in brain semi-metricity in the right PFC regions among students might imply the increase 

Table 2.  Pairwise comparison of FC indices in regional semi-metric analysis and graph theory analysis. The 
values in table are displayed in (FDR-adjusted p-values; t-values; Cohen’s d). df represents degrees of freedom. * 
indicates FDR-adjusted p < 0.05.

Comparisons df SMP Enodal CC �

Nurses
Affective Right vs. left PFC 18 0.604; 0.923; 0.212 0.907; 0.316; 0.066 0.928; 0.293; 0.057 0.961; 0.196; 0.033

Neutral Right vs. left PFC 18 0.555; 0.919; 0.316 0.907; − 0.326; 
0.076

0.928; − 0.332; 
0.076 0.948; − 0.382; 0.076

Students
Affective Right vs. left PFC 18 0.036; 3.113; 0.716* 0.876; 1.069; 0.258 0.858; 1.029; 0.229 0.814; 0.875; 0.204

Neutral Right vs. left PFC 18 0.605; 1.036; 0.238 0.876; 0.949; 0.229 0.858; 0.982; 0.367 0.814; 1.114; 0.268

Nurses
Right PFC Affective vs. neutral 18 0.806; 0.430; 0.099 0.876; 1.565; 0.344 0.858; 1.544; 0.194 0.814; 1.516; 0.344

Left PFC Affective vs. neutral 18 0.605; 0.847; 0.194 0.876; 0.868; 0.194 0.858; 0.868; 0.115 0.814; 0.902; 0.212

Students
Right PFC Affective vs. neutral 18 0.024; 3.298; 0.841* 0.907; 0.555; 0.153 0.928; 0.459; 0.176 0.948; 0.466; 0.098

Left PFC Affective vs. neutral 18 0.928; 0.125; 0.029 0.876; 0.793; 0.191 0.858; 0.809; 0.151 0.814; 0.997; 0.229

Affective
Right PFC Nurses vs. students 36 0.928; − 0.092; 

0.031
0.907; − 0.473; 
0.158

0.928; − 0.440; 
0.147 0.948; − 0.374; 0.125

Left PFC Nurses vs. students 36 0.605; 0.765; 0.255 0.995; 0.007; 0.002 0.982; 0.022; 0.007 0.961; 0.050; 0.017

Neutral
Right PFC Nurses vs. students 36 0.400; 1.734; 0.578 0.876; − 0.798; 

0.266
0.858; − 0.819; 
0.273 0.814; − 0.840; 0.280

Left PFC Nurses vs. students 36 0.605; 0.845; 0.232 0.876; − 0.085; 
0.028

0.982; − 0.054; 
0.018 0.961; 0.132; 0.044

Table 3.  Results of correlation between all FC parameters and RMSSD. *Represents FDR-adjusted p < 0.05.

Parameters Correlation
FDR-adjusted
p-values

SMP − 0.459 0.020*

Eglobal − 0.284 0.098

Elocal − 0.278 0.098

CC − 0.277 0.098

λ − 0.275 0.098
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in information sharing between the right PFC and other brain regions due to emotional effects. As discussed 
in several  studies13,25, lateral PFC areas are involved in the cognitive control of emotion. Our ANOVA results 
showed an agreement with previous  studies4,13,26 where the right lateralized asymmetry of FC was expected as 
the students were exposed to affective stimuli.

Moreover, the  study27 demonstrated that the non-significant emotional effect on task performance among stu-
dents was due to the compensatory effort of the subjects. According to the attentional control  theory28, students 
tended to maintain their behavioral performance in the affective state by increasing the executive function of 
PFC, which involved the right lateral PFC (BA 9/46), in agreement with our findings in the regional semi-metric 
analysis. This explained the emotional effects that were found to be significant in the change of brain topology, 
but not significant in behavioral performance among students. It also revealed that subjects in the affective state, 
indicated by a significant drop in the HRV RMSSD, possessed a significant reduction in the SMP. The linear 
correlation analysis strengthened the reliability of the semi-metric analysis by detecting a significant moderate 
negative association between the SMP and the RMSSD, as shown in Table 3. Therefore, it can be concluded that 
the affected cognition due to emotion may be detected from changes in the SMP.

This study has some limitations. Firstly, the structural description of the semi-metric network remains unclear. 
In the present study, the semi-metric network was constructed based on the existence of indirect paths, but it is 
still a challenge to specify all involved paths along all indirect connections. Assessing the differences between the 
two emotional states may help identify the brain regions involved in emotional cognition. Secondly, the subject 
groups are significantly different (p < 0.001) in age. The age effect could possibly confound with the FC results 
of group comparisons. Thus, further work would include the structural study of the semi-metric network and 
the correction of age effect.

Methods
In this section, we present the overall functional connectivity analysis framework, which includes a novel FC 
analysis using semi-metric and benchmark FC analysis based on weighted graph theory, as illustrated in Fig. 3. 
The framework utilizes heart rate variability (HRV) to validate the success of inducing the affective state, and 
statistical tests such as ANOVA and correlation analysis with HRV analysis to compare the effectiveness of both 
the FC estimation methods.

Proposed FC estimation method. Data preprocessing. First, the motion artifact was eliminated from 
the optical density (OD) of fNIRS signals using wavelet-based motion correction based on the hmrMotionCor‑
rectWavelet function in  HOMER229. The OD signal was decomposed into Gaussian distributed wavelet coef-
ficients. Wavelet coefficients exceeding 1.5 times the interquartile range were eliminated as motion artifacts. 
By converting the corrected OD to ∆HbO and ∆HbR, we applied a low-pass filter with 1.0 Hz to remove high-
frequency noise components. Subsequently, we extracted the functional neuronal component by separating the 
systemic physiological component (i.e., cerebral blood circulation) from the fNIRS signal based on the hemody-
namic modality separation (HMS)  method30.

Functional connectivity matrix. FC refers to the temporal correlation of the interacting cerebral region signals 
during the cognitive  task31. In this study, we employed wavelet transform coherence (WTC) to construct brain 
FC matrices by using MATLAB Wavelet Coherence  Toolbox32. WTC provided an advanced computation to 
Pearson’s correlation to measure the time-varying correlation between two signals in the frequency domain. It 

Figure 3.  Summary flow chart for FC analyses and HRV analysis. Using the weighted network theory, the 
derived shortest path was directly quantified into network efficiency. In semi-metric metric analysis, the semi-
metric component was extracted to be quantified as SMP.
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is suitable to assess non-stationary changes between fNIRS signals, especially the task-associated changes, and it 
has been widely used to investigate brain FC in fNIRS  studies33,34.

Based on the separation of the functional signal in the HMS method using the linear relationship assumption 
between ∆HbO and ∆HbR, we could expect the same FC matrices for both signal types. To verify our assump-
tion in selecting signal types, we applied the same FC analyses and eventually observed the same results for 
both functional ∆HbO and ∆HbR signals. Therefore, we only selected functional ∆HbO signals, which are more 
sensitive to task-related changes, as the backbone of  measurement35. The analyses of functional ∆HbR signals are 
shown in Supplementary Table 1 to Table 6. The functional ∆HbO time series signals were initially decomposed 
into wavelet coefficients in the time–frequency domain using wavelet  transform36. Subsequently, we computed 
the pairwise correlation between all channels’ wavelet coefficients to construct time–frequency dimensional 
network correlation matrices. The frequency band of interest lies between 0.01 Hz and 0.2  Hz37. Within this 
range of frequency of interest, we extracted and averaged the 60 s task-relevant correlations to construct 32 × 32 
network matrices. The channels represent the nodes, whereas the averaged correlation values denote weighted 
and undirected network edges. The constructed weighted network matrices were then submitted for semi-metric 
analysis and typical weighted graph theory analysis, as illustrated in Fig. 3.

Semi‑metric analysis. From the weighted and undirected graphs, we converted the correlation matrix to a dis-
tance graph by using a distance conversion  function38,39 as per Eq. (1):

where li j denotes the distance from node i to j and xi j is the correlation weight between nodes i and j, given that 
the positions of the two different nodes are i to j.

Subsequently, we labeled the semi-metric edges if li j was less than the summation of paths via other nodes 
between nodes i and j, for instance: lac < lab + lbc, given that there are nodes a, b, and c. As described in the pseu-
docode in Algorithm 1, we initiated the detection of semi-metric edges by finding the shortest paths, l′, based 
on the shortest path algorithm (i.e., Johnson’s  Algorithm40). Next, we computed the ratio of semi-metricity, si j

10:

si j greater than 1 represented semi-metric edges whereas si j equivalent to 1 denoted metric backbone edges.

Semi‑metric properties in FC networks. Finding the shortest paths in FC analysis may utilize two or more nodes 
to allow direct flow or sharing of information, respectively. Conventional graph theory, which quantifies an FC 
matrix based on its shortest paths, does not consider path sharing in the shortest paths. The application of semi-
metric analysis categorized the shortest paths as either direct paths or sharing paths, as constructed in Fig. 4. A 
map of semi-metric edges shows information about sharing paths when the number of nodes involved, is greater 
than two. In detail, Fig. 5 shows that more than 20% of all the shortest paths were constructed by utilizing more 
than two-node paths, confirming a strong presence of path sharing in the shortest paths.

Performance metric. To characterize the semi-metric behavior of the brain network, we calculated the SMP 
based on the semi-metric  ratio10:

(1)lij =
1

xij
− 1

(2)sij =
lij

l
′

ij
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where E is the total number of connections in the original network. Ultimately, SMP values were analyzed sta-
tistically at the global and regional levels based on the regions of interest (ROI).

Weighted graph theory analysis. Acting as a test bench for semi-metric analysis, we performed a typical 
weighted graph theory  approach2,41 to explore the reliability of semi-metric analysis in differentiating emotional 
states. The weighted graph theory analysis was conducted using the Brain Connectivity Toolbox (BCT)5. From 
the unthresholded and weighted functional network, we performed a global analysis by computing the network 
topological parameters including the CC, λ, Eglobal, and Elocal.

When the other nodes around a node of interest form at least a triangular connection, the measure of the 
cliquishness is defined as CC42 in Eq. (4):

From the FC matrices, we computed λ to quantify the integration of the potential information flow based on 
the average shortest path length as per Eq. (5):

(3)SMP =

∑

i,j sij > 1

E

(4)CC =
1

N

∑

i

2m

ki(ki − 1)

(5)� =
1

N

∑

i∈G

∑

j∈G,j �=i dij

N − 1

Figure 4.  FC maps showing the network matrices involved in conventional graph theory and semi-metric 
analysis. Further interpretation is conducted in semi-metric analysis where the information about sharing 
feature in a shortest path matrix is considered.

Figure 5.  The total number of shared paths used to construct the shortest paths among all subjects.
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Eglobal was described as the inverse of the harmonic mean of the shortest path length within the whole  network43,44. 
It quantified the ability of global and concurrent exchange of information between connected edges as derived 
in Eq. (6):

The Elocal of a network G is defined as the mean local efficiency of each  node41,43 as shown in Eq. (7) It not only 
characterizes the capability of information flow across node i to its nearest neighbor nodes but also reflects the 
tolerance of neighboring nodes when there is a defect in node i.

We further decomposed the PFC networks into regional subgraphs based on the ROI. To quantify the infor-
mation propagation ability across regions, we evaluated the regional CC, λ, and Enodal of all nodes within the 
ROI using Eq. (8)43:

From the equations above, i = 1, 2, 3, N; j  = i refers to the region relative to node i; m is the number of neigh-
boring edges; di j denotes the weighted shortest path length between nodes i and j; N refers to the total number 
of nodes in the network, G, which consists of all the nodes.

Validation experiment. Subjects. In total, 39 right-handed, healthy nursing subjects, consist-
ing of 19 nurses with actual working experience (Edinburgh Handedness  Inventory45 scale = 86.18 ± 15.53, 
age = 30.44 ± 3.20  years old, working experience = 8.32 ± 3.04  years) and 20 students with only internship ex-
perience (Edinburgh Handedness Inventory scale = 93.13 ± 12.48, age = 20.68 ± 0.82  years old, internship ex-
perience = 2.70 ± 0.41 years) participated in this study. Prior to the experiment, all subjects had to complete a 
screening questionnaire which included demographic information such as physical health, mental condition 
and family history of disease. Subjects with known history of any psychiatric or neurological disorders were 
excluded. The participants were prohibited from consuming alcohol and caffeine, smoking, and exercising for at 
least 3 h before the experiment. One nursing student who did not fulfill the requirements was excluded. Using 
G*Power  346, a sensitivity power analysis was carried out to evaluate the sample size based on the repeated meas-
ure ANOVA (within-between interaction), given the following conditions: (1) significant level = 0.05, (2) power 
of 1 − β = 0.80, (3) 2 groups, and (4) 2 measurements. The generated minimal detectable effect reported a critical 
effect size f(U) = 0.480 (or η2p =  0.102). This study was approved by the ethics committee of Universiti Kuala Lum-
pur Royal College of Medicine Perak (UniKL RCMP) (approval number: UniKLRCMP/MREC/2018/018). All 
the subjects provided informed consent, and the experiment was carried out in accordance with the Declaration 
of Helsinki guidelines and regulations.

Measurement. Brain activity in the PFC was measured using a dual-wavelength (695 nm and 830 nm) mul-
tichannel OT-R40 fNIRS continuous wave system (Hitachi Medical Corporation, Japan), with a sampling rate 
of 10 Hz. A 52-channel 3 × 11 optodes layout (17 sources and 16 detectors) with a source-detector distance of 
3 cm was deployed based on the international 10/20  system47 along the T4-Fpz-T3 positions. By using distinc-
tive absorption coefficients of different chromophores and the modified Beer-Lambert  Law48, we calculated the 
change in the concentration of oxygenated hemoglobin (∆HbO) and deoxygenated hemoglobin (∆HbR) based 
on the changes in light intensity of the dual-wavelength light. We estimated the channel localization accord-
ing to the Montreal Neurological Institute (MNI) coordination, determining the Brodmann area (BA) for each 
 channel35,47. Here, we identified PFC regions based on the 32 channels as labeled in Fig. 6 and subsequently 
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Figure 6.  Probes were setup on subjects’ forehead and scalp based on the international 10/20 system.
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divided the regions into the left and right PFC as our ROI. Measurements from channels 16 and 37 were excluded 
when we compared the two hemispheres.

A Nellcor DS-100A ear clip sensor was placed on the left ear of the subjects. The earclip sensor was connected 
to the AFE4490SPO2EVM Evaluation Board (Texas Instruments Inc., Dallas, Texas) to collect photoplethysmo-
graphic (PPG) signals at a sampling rate of 200 Hz simultaneously with the fNIRS measurement. The purpose of 
measuring PPG signals was to perform heart rate variability (HRV) analysis. Compared with electrocardiogram 
(ECG), PPG offers higher simplicity, minimum subject discomfort, and lower cost. Previous studies have reached 
a consensus that PPG is an alternative to ECG in estimating  HRV49,50. The evaluation of emotional states based 
on PPG has also been implemented in a recent  study51.

Affective and neutral emotional stimuli. Two sets of the auditory emotional stimuli were retrieved to induce dif-
ferent emotional states from the International Affective Digitized Sounds system (IADS)52. The first set consist-
ing of ten affective sound clips was referred to as the "case" set while the other set of ten neutral sound clips was 
labelled as the "control" set. The classes of stimuli were based on the emotional circumplex model, as shown in 
Fig. 753. Descriptively, the emotional circumplex model comprises two independent neurophysiological dimen-
sions, known as valence and arousal ratings. These ratings are scaled according to the Self-Assessment Manikin 
(SAM) 9-point  ratings54. The IADS provides a standardized database of emotional stimuli based on two-dimen-
sional ratings. We defined affective stimulus as sound clips audible in hospital with negative valence (rating 
of 2.147 ± 0.473 out of 9) and high arousal (rating of 7.388 ± 0.494 out of 9) including an ambulance siren, the 
crying of a baby, and human screams, whereas the neutral stimulus comprised sound clips with neutral valence 
(rating of 5.197 ± 0.720 out of 9) and medium arousal (rating of 4.560 ± 0.380 out of 9), such as the sounds of 
typewriting, clock ticking, and raindrops. The stimulus was played in the background throughout the entire task 
to induce different emotional states (one session, one emotional state).

Task. This experiment consisted of two sessions differentiated by two sets of auditory emotional stimuli. All 
subjects performed the second experimental session at least six weeks after the first session. They repeated the 
experiment with another auditory emotional stimulus set. The order of the sessions was counterbalanced across 
the subjects. In each session, subjects sat approximately 60 cm in front of a monitor in a quiet, dimly lit room. As 

Figure 7.  Emotional circumplex model based on the 9-point Self-Assessment Manikin (SAM) ratings classifies 
various emotional adjectives. The red-shaded and blue-shaded regions indicate the regions of retrieving affective 
and neutral stimuli respectively.

Figure 8.  Task paradigm constructed for validation experiment.
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shown in Fig. 8, the experiment started with 20 s of rest followed by five alternate periods of task and rest. The 
subjects were required to focus on the on-screen cross and relax. During each 60 s task period, up to five ques-
tions about the nursing case study with four choices were displayed in succession on the monitor. Subjects were 
instructed to answer swiftly and complete as many questions as possible within a task period of 60 s. At the same 
time, auditory emotional stimuli were played through a speaker during the task periods. The types of the ques-
tions were retrieved based on five objectives proposed in Bloom’s taxonomy, including remembering, under-
standing, applying, analyzing, and  evaluating55. The questions asked in both sessions were standardized in terms 
of type and difficulty level. The number of correctly solved questions, accuracy (percentage of correct answers 
over the total number of attempts), and response time were recorded and included in the statistical analysis.

HRV analysis. The HRV is described as the fluctuation of distance between two successive heart beats (also 
known as normal-to-normal (NN) interval)21,56. HRV has been widely used as a quantitative marker to investi-
gate the human autonomic nervous system (ANS) responses. Functioning as a physiological indicator of emo-
tion  processing57,58, it provides a non-invasive means to determine the balance between sympathetic (fight or 
flight) and parasympathetic (rest and digest) activity. The standard HRV analysis can be derived in both time 
and frequency  domains21,59.

In this study, we focused on the time-domain HRV analysis as it demonstrated a better accuracy for short-
term HRV  recording60. We computed the RMSSD between normal heartbeats. Low RMSSD has been found 
to be associated with low parasympathetic activity due to poor emotional  regulation56,59. We conducted HRV 
analysis using MATLAB-based (MathWorks Inc., Natick, MA) HRVTool v1.04 (https ://githu b.com/Marcu sVoll 
mer/HRV)61. Firstly, as depicted in Fig. 3, the PPG signals were smoothened using moving average filter with 
window length equivalent to the sampling rate i.e. 200 data points. By setting the maximum and minimum heart 
rate to 180 and 60 beats per minute, respectively, the NN intervals were extracted from the preprocessed signals 
by using the QRS detection  algorithm62. The artifacts (abnormal NN interval) were then eliminated using the 
same filtering method applied by  Vollmer61. Ultimately, from the filtered NN intervals, we computed the HRV 
RMSSD by using the following formula:

where NNi denotes the time intervals of successive beats and n denotes the total number of normal peaks.

Statistical analysis. Statistical analysis was conducted on the subjects’ behavioral performance, HRV and 
FC data. All multiple comparisons were FDR-adjusted using Benjamini and Hochberg  method63 at desired 
q-level (FDR-adjusted p = 0.05).

Behavioral performance. We applied two-way mixed ANOVA to evaluate the group and emotional state effects 
on the behavioral performance indices (the number of correctly solved questions, accuracy and response time).

HRV. To examine the statistical differences in the RMSSD, we performed two-way mixed ANOVA to evaluate 
the interaction between emotional state and group type.

Comparison of functional connectivity methods. We compared the proposed semi-metric analysis to the 
weighted graph theory analysis in discriminating the emotional effect based on (1) ANOVA (2) correlation 
analysis.

In the entire PFC analysis, using IBM SPSS Statistics v23 (IBM Corp, Armonk, NY), two-way mixed ANOVA 
was conducted on the FC indices (SMP, Eglobal, Elocal, CC, and λ) to examine the group and emotional task as the 
between-, and within-subjects factor respectively. At the regional level of semi-metric analysis and weighted 
graph theory analysis, three-way mixed ANOVA was carried out to evaluate the interaction between factors of 
group type, emotional state, and brain region (asymmetry). The effect size was determined using the partial eta 
squared ( η2p ) and Cohen’s d for ANOVAs and pairwise comparisons, respectively.

Furthermore, to examine the association between stimulated emotional states and FC indices, we computed 
the Pearson’s correlation, r between the average changes in the RMSSD and the average changes in the global 
SMP, Eglobal, Elocal, CC, and λ in affective versus neutral emotional states.

Conclusion
This study explored semi-metric in analyzing fNIRS-based functional connectivity. The semi-metric analysis 
characterized the weighted FC by considering the information sharing paths at the global and regional levels 
of FC. The experimental results revealed that the semi-metric analysis, as correlated to HRV, was able to detect 
that the nursing students were more susceptible to emotional change. Under the affective condition, the nursing 
students demonstrated significant change in semi-metricity, but not in the conventional graph theory analysis. 
The results suggest the semi-metric analysis as an FC analytical technique could be generalized and extended to 
fNIRS. Further investigation on the age effect will help better understand about the underlying causes of reduced 
emotional sensitivity among the registered nurses.
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