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Reliable and accurate diagnostics 
from highly multiplexed 
sequencing assays
A. Sina Booeshaghi1, Nathan B. Lubock2, Aaron R. Cooper2, Scott W. Simpkins2, 
Joshua S. Bloom2,3, Jase Gehring4, Laura Luebbert5, Sri Kosuri2 & Lior Pachter5,6*

Scalable, inexpensive, and secure testing for SARS-CoV-2 infection is crucial for control of the novel 
coronavirus pandemic. Recently developed highly multiplexed sequencing assays (HMSAs) that 
rely on high-throughput sequencing can, in principle, meet these demands, and present promising 
alternatives to currently used RT-qPCR-based tests. However, reliable analysis, interpretation, 
and clinical use of HMSAs requires overcoming several computational, statistical and engineering 
challenges. Using recently acquired experimental data, we present and validate a computational 
workflow based on kallisto and bustools, that utilizes robust statistical methods and fast, memory 
efficient algorithms, to quickly, accurately and reliably process high-throughput sequencing data. 
We show that our workflow is effective at processing data from all recently proposed SARS-CoV-2 
sequencing based diagnostic tests, and is generally applicable to any diagnostic HMSA.

Reliable, scalable, low-cost testing for SARS-CoV-2 is paramount for reducing infection rates and controlling 
the current  pandemic1. Currently, SARS-CoV-2 tests are primarily based on RT-qPCR, however, several groups 
have recently proposed massively parallelized diagnostic assays based on high-throughput sequencing that hold 
the promise of greatly increased throughput, reduced cost, and improved  sensitivity2−4. While the proposed 
diagnostics differ in implementation details, they share several key features:

(Synthetic) sequence barcodes known as samples indices are associated with samples and are recovered by 
sequencing.
(Biological) sequences associated with genes, including viral genes, control genes, or spike-ins, are recovered 
by sequencing.
Sequenced sample indices and biological sequences are associated with each other.

These assays bear resemblance to multiplexed barcoding technologies used for single-cell RNA-seq5−7, and as 
a result, the bioinformatics challenges that must be overcome in analyzing the data are similar.

Processing of the data requires association of the biological sequences with their genes of origin, error cor-
rection of the sample indices and collation of sequences associated with a single sample to count the number of 
molecules from each gene that have been observed (Fig. 1). Finally, the infection status for each sample must be 
determined from the gene abundance estimates per sample.

It is crucial that the software used to report infection status for each sample is reliable, well-documented, 
portable, and open source. These features of diagnostic software instill confidence in healthcare providers and 
patients, and ensure transparency and reproducibility in a setting where software errors can be deadly. Addi-
tionally they make it easier to adapt, improve, and expand on the capabilities of the software to handle novel use 
cases. Current software programs used for sequencing-based diagnostics, such as bcl2fastq, do not satisfy these 
crucial requirements, despite being used in FDA approved  diagnostics8,9.

To address these shortcomings, and to overcome the challenges required for SARS-CoV-2 sequencing-based 
diagnostics, we adapted the RNA-seq and single-cell RNA-seq tools  kallisto10 and  bustools11,12 to HMSA analysis, 
and coupled them in a workflow we designate “kallisto|bustools” (Supplementary Note). These tools are portable, 
well-documented, open source, and have a low computational footprint making them usable on a wide variety 
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of architectures. In addition, we developed a testing framework to report infection status, and we validate our 
results with complementary methods. Our software is freely available under the permissible BSD-2 open source 
license, and we show that it can be used for  SwabSeq2, a technology based on Octant’s RNA amplicon sequencing 
platform; LAMP-seq3, which relies on  LAMP13; covE-seq14, which targets the SARS-CoV-2 E gene; or TRB-seq4, 
which is a targeted BRB-seq15 variant. The short running time and low memory footprint of the software allow 
low-cost logistical solutions to data analysis in the clinical setting.

Results. To validate our workflow, we analyzed 307,494,992 SwabSeq reads (see Methods). This dataset con-
sisted of two 384-well plates each with a titration series of viral RNA from two companies, Twist and ATCC, for a 
total of 768 uniquely barcoded samples. HEK293 lysate, nasopharyngeal (NP) lysate, and controls were included 
in all of the wells of each plate. The first plate was used to test primers bound to the SARS-CoV-2 N gene and 
the second plate was used to test primers bound to the SARS-CoV-2 S gene (Supplementary Fig. 1). Reads were 
aligned to a custom set of reference sequences (see Methods) using kallisto, and sample indices were corrected 
to a barcode whitelist. Finally, the counts of genes per sample were collated to make a sample by gene matrix (see 
Methods) and this was used to determine, for each sample, whether it contained viral RNA.

Figure 2a shows the predicted classification results for the Plate 2 S ATCC RNA experiment obtained by 
training a logistic regression classifier on half of the data and testing on the remaining half. The classifier learns 
coefficients for each covariate that optimally (by the logistic model) classify positive versus negative samples (see 
Methods). Crucially, the model provides a probability for each classification. Furthermore, the weights estimated 
in the logistic regression allow for an intuitive visualization of standard curves where virus and spike-in, suitably 
normalized according to regression coefficients, are measured relative to one another (Fig. 2b). This enables the 
assessment of the quality of a diagnostic assay in the context of classification via a standard curve.

The FDA recommends that developers of diagnostic tests assess their method using a dilution series of three 
replicates per concentration with inactivated virus on actual patient specimens, and then confirm the final 
concentration with 20  replicates16. Based on this guidance, the FDA defines the limit of detection (LoD) as the 
lowest concentration at which 19/20 replicates are positive. Therefore, to assess the LoD from a standard curve, 
we performed 99 replicates of the training–testing and identified the titer at which the mean recall was equal to 
or above 0.95 (= 19/20). The results (Fig. 2c), can be automatically generated for any HMSA for which a standard 
curve has been generated. Moreover, by spiking in preset amounts of virus to make a standard curve alongside 
a group of samples being tested, our workflow makes possible dynamic calibration of the decision boundary for 

Figure 1.  Massively parallel diagnostic testing by high-throughput sequencing. Workflow of a high-throughput 
sequencing based diagnostic test. (1) Samples are collected and prepared. (2) Samples are barcoded and 
amplified. (3) Multiplexed samples are pooled and sequenced using a high-throughput sequencer. 4) Sequencing 
data is aligned to a set of genes, (5) sample indices are error corrected, (6) counts are computed, and (7) 
diagnostic results are obtained.
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groups of samples being tested together. Finally, to test the ability of kallisto|bustools to estimate the amount of 
virus present, we fit a linear model to the virus counts and spike-in counts. We found a strong correlation between 
kallisto|bustools estimates and actual viral titer (Fig. 2d). Estimation of viral load in the course of testing could 
help in determining time since  infection17.

To validate our results, we compared our approach to a complementary method which performed gene iden-
tification and sample index error correction using different algorithms. This alternative approach reverses the 
order of error correction of sample indices and assignment of biological reads to genes. First, sample indices are 
identified and corrected using the Illumina utility bcl2fastq. Next, reads are clustered and the number of reads 
in each cluster are counted using  starcode18. The bcl2fastq + starcode approach identifies slightly fewer aligned 

Figure 2.  Sample classification, viral load prediction and limit of detection. (a) Positive and negative samples 
from the Plate 2 S ATCC RNA experiment can be effectively separated using logistic regression. Points 
correspond to samples and are colored by the known amount of viral RNA per sample. The probability of each 
sample having a non-zero amount of viral RNA is given by the logistic function and is painted as orthogonal 
to the logistic regression boundary. The shape of the point indicates whether the sample was predicted to be 
positive for viral RNA (circle) or negative (square). (b) The standard curve measuring spike-in and virus versus 
the known amount of viral RNA per sample with optimal exponential coefficients determined by logistic 
regression; samples are colored by their predicted classification. (c) The limit of detection as estimated from 99 
rounds of split/test and logistic regression to classify samples with a non-zero amount of viral RNA. The limit of 
detection is defined as the number of RNA molecules for which the recall is greater than 19/20 (= 0.95) (d) The 
viral load per sample can be predicted with a weighted linear regression using the log counts from each gene. 
Each point is a sample, with perfect predictions lying on the diagonal line. The size of the points represents their 
weight, with points weighted so that each titer is represented with equal weight. The code to reproduce each 
figure is here: https ://githu b.com/pacht erlab /BLCSB GLKP_2020/blob/maste r/noteb ooks/diagn ostic .ipynb  (a) 
and (b), https ://githu b.com/pacht erlab /BLCSB GLKP_2020/blob/maste r/noteb ooks/lod_fda.ipynb  (c), https ://
githu b.com/pacht erlab /BLCSB GLKP_2020/blob/maste r/noteb ooks/viral _load.ipynb  (d).

https://github.com/pachterlab/BLCSBGLKP_2020/blob/master/notebooks/diagnostic.ipynb
https://github.com/pachterlab/BLCSBGLKP_2020/blob/master/notebooks/lod_fda.ipynb
https://github.com/pachterlab/BLCSBGLKP_2020/blob/master/notebooks/viral_load.ipynb
https://github.com/pachterlab/BLCSBGLKP_2020/blob/master/notebooks/viral_load.ipynb
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reads but otherwise produces results that are near identical to the kallisto|bustools results (Fig. 3). However, in 
addition to mapping more reads, the kallisto|bustools workflow is faster and requires less memory.

Most importantly, unlike bcl2fastq, the kallisto bustools workflow is readily accessible, open source, port-
able, and reliable. Obtaining a copy of bcl2fastq requires a user to create an account at Illumina.com and agree 
to a restrictive license agreement (https ://githu b.com/pacht erlab /bcl2f astq/blob/maste r/bcl2f astq2 -v2-20%20
EUL A%20(27%20Aug %20201 7).pdf). In addition, the behavior of kallisto bustools is transparent and well-
documented, whereas the behavior of bcl2fastq is not. By generating BCL files from a set of FASTQ records and 
running the BCL files through bcl2fastq (code), we found that when the sample sheet used for demultiplexing 
has two index barcodes that are Hamming distance n apart, bcl2fastq exists with an error when the Hamming 
distance used for error correction is less than n/2 + 1. Moreover, the default Hamming distance correction for 
bcl2fastq 2.20 and bcl2fastq 1.8.4 differs, with 1 mismatch for the former and 0 for the latter. This issue alone 
can result in unwanted and unexpected behavior when using bcl2fastq.

Finally, kallisto and bustools can be easily adapted to different barcoding assays. To illustrate the point, we 
extended kallisto to process three different diagnostic HMSAs: covE-seq, LAMP-seq, and TRB-seq data. To vali-
date LAMP-seq and TRB-seq, we created two synthetic sets of sequencing reads which mimic the read structure 
of each assay. Starting with the count matrix from the SwabSeq assay and a set of 1,000 LAMP-seq sample  indices3 
we generated 12,062,027 single-end reads consisting of a gene target and a sample index (see Methods). Similarly, 
we used a set of 19,200 TRB-seq sample  indices4 to generate paired-end reads, one for the sample index and one 
for the target gene. In both cases, bases in each read were randomly changed to another base with a probability 
of 0.005 to simulate Illumina sequencing errors. We processed these reads with kallisto|bustools and obtained 
near identical results to those from the SwabSeq assay, thereby confirming the accuracy of the workflow for 
these assays (Supplementary Figs. 2 and 3). We also extended the kallisto|bustools workflow to process 2,437,573 
reads produced with the covE-seq S5 protocol. The processing time was 8.17 s as compared to 20–22 h with the 
covE-seq mBrave and BOLD cloud  platforms14.

Discussion
We have demonstrated a fast, accurate, and statistically rigorous approach to process highly multiplexed sequenc-
ing assays, and have validated an intuitive and interpretable method for obtaining diagnostic results from the 
data. Our workflow is easily extendable to assays which target different genes of interest and assays that have 
a different sample index structure. In addition, our approach is extendable to assays that incorporate unique 
molecular identifiers (UMIs) and that target regions of genetic variation, both of which are promising future 
directions for HMSAs.

The SwabSeq data shows  the high data quality of HMSAs and that accurate testing is technically feasible. 
The primary remaining challenge to widespread usage is, therefore, the organization of sample collection and 
associated logistics. While our work does not address the challenges of high-throughput sample collection, cura-
tion and handling of samples upstream of sequencing, our software does solve several post-sequencing logistics 
challenges. The low memory footprint of kallisto|bustools, specifically the requirement of less than 4 Gb of 
RAM (Supplementary Fig. 7) enables essentially cost-free computing in the  cloud19. Furthermore, the speed of 
the workflow allows for the processing of thousands of samples within minutes (Supplementary Fig. 7), which 
reduces overall testing time. Moreover, the bustools software can automatically identify sample indices without 
the need for a pre-configured Sample Sheet, thus facilitating quality control throughout the analysis. Additionally, 
we made the entire workflow easily usable in the cloud via Google Colaboratory which can be used to run the 
workflow for free via a browser window. This should facilitate collaborative optimization of analysis workflows, 
rapid deployment, and will simplify analysis logistics for large-scale testing.

Finally, our software is reliable, portable, and well-documented. We can therefore be confident that, in many 
years from now, our preprocessing workflow will not require any overhaul or refactoring for use in future 
HMSAs. While we focused on SARS-CoV-2 testing in this manuscript, the methods we have developed are 

Figure 3.  Orthogonal validation by read clustering. Scatter plots between the kallisto|bustools and the starcode 
workflow show near identical results on the genes targeted by the SwabSeq protocol: (a) RPP30, (b) S, and (c) 
S spike-in. Each point is a sample and the Pearson correlation is determined for the counts for a gene for all 
samples between kallisto|bustools and starcode. The code to reproduce this figure is here: https ://githu b.com/
pacht erlab /BLCSB GLKP_2020/blob/maste r/noteb ooks/kb_v_starc ode.ipynb .

https://github.com/pachterlab/bcl2fastq/blob/master/bcl2fastq2-v2-20%20EULA%20(27%20Aug%202017).pdf
https://github.com/pachterlab/bcl2fastq/blob/master/bcl2fastq2-v2-20%20EULA%20(27%20Aug%202017).pdf
https://github.com/pachterlab/BLCSBGLKP_2020/blob/master/notebooks/kb_v_starcode.ipynb
https://github.com/pachterlab/BLCSBGLKP_2020/blob/master/notebooks/kb_v_starcode.ipynb
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general and we expect that they should be applicable to future multiplexed diagnostic testing methods based on 
high-throughput sequencing.

Methods
SwabSeq. The kallisto|bustools workflow was used to process a SwabSeq experiment with two 384-well 
plates. The wells included each of two different SARS-CoV-2 genes, N and S, a varying amount of titered RNA 
from three different sources (Twist, ATCC RNA, and ATCC viral), a human gene control (RPP30), and two 
different lysates (HEK293, NP). The wells moreover contained barcoded primers unique to each well, synthetic 
RNA spike-in controls that contained the same priming regions as the target RNA from SARS-CoV-2, primers 
for the target SARS-CoV-2 RNA, and a one-step RT-PCR mix. Next, RT-PCR was performed on all of the wells. 
The wells were then pooled and sequenced on an Illumina Nextseq.

FASTQ files. Raw BCL files were converted into FASTQ files for the kallisto|bustools workflow using 
‘bcl2fastq –create-fastq-for-index-reads’ with read 1 corresponding to the Illumina i5 index, read 2 correspond-
ing to the biological read, and index 1 corresponding to the Illumina i7 index.

Alignment index. The genes targeted by SwabSeq were a 108 bp sequence of the SARS-CoV-2 S gene, a 
6 bp modification of the SARS-CoV-2 S gene (spike-in), a 72 bp sequence of the SARS-CoV-2 N gene, a 6 bp 
modification of the SARS-CoV-2 N gene (spike-in), and a 65 bp sequence of the RPP30 gene (a housekeeping 
gene assumed to be present in all patient samples at a uniform abundance). The spike-in sequence differs from 
the original gene at the first 6 bp. For each spike-in/viral gene, a 10 bp window around the unique stretch of the 
sequence was retained and the rest of the sequence removed since any 11-mer that maps outside of the unique 
region could have originated from either the target gene or the spike-in. A FASTA file of all Hamming one dis-
tance variants of these target genes was made and indexed with ‘kallisto index -k 11’ with a k-mer length of 11.

Read alignment and BUS file processing. A BUS file is a columnar binary file where each row is a 
quadruplet of a sample index, UMI, set, and count that facilitates sample index error correction and amplicon 
quantification. Reads from the FASTQ files generated for the kallisto|bustools workflow were pseudoaligned 
using ‘kallisto bus -x SwabSeq’ to generate a BUS file where all records contain the same UMI.

The BUS file was sorted with bustools sort which in addition to sorting the file lexicographically, counts and 
collapses the BUS records that are the same. Each half of the sample index in the BUS file was then corrected 
separately to a whitelist using ‘bustools correct -w whitelist.txt –split’. Correcting each half of the sample index 
independently is unique to SwabSeq which has a whitelist for the i5 and i7 primers, the combination of which 
makes the sample index. Each half of the sample index was corrected to at most Hamming distance one. The BUS 
file was sorted once more using ‘bustools sort’ to count and collapse any additional BUS records that are the same.

The BUS file was processed with ‘bustools count—cm’ to count the number of reads per sample that map 
uniquely to a specific target gene. This procedure yielded a sample by gene matrix with the number of reads. For 
the SwabSeq assay, this matrix consisted of 768 samples by 5 genes.

Sample classification with logistic regression. Each sample was classified as + virus if it contained a 
non-zero amount of viral RNA. For each experiment, we split the data into two, half for training and half for 
testing, and used the log of the viral, spike-in, and RPP30 counts plus one as input. We learned the weights of a 
multivariate logistic regression model on the training data and used those weights to predict, for each sample, 
the probability that it contained virus. The logistic model used was

 where wi = weights, V = loge(1 + virus counts), K = loge(1 + spike-in counts) and H = loge(1 + RPP30 counts).

Viral load prediction with weighted linear regression. We performed a weighted linear regression 
on the viral and spike-in counts where the samples with known zero RNA titer were weighted by one over the 
number of unique titers. This was done to equalize the effect of each titer in the regression. For each experiment, 
we split the data into two halves: a training set and a testing set. The optimal coefficients for the linear model 
were learned from the training data, and the viral load was then predicted using those weights for the testing 
data. We performed this procedure on the  loge(1 + counts). Given the weights wi, the known viral load yi, and the 
log of the counts for each training sample Xij plus one, the weighted linear regression model identified the vector 
of parameters β minimizing

Limit of detection. We iteratively removed the samples corresponding to increasing amounts of RNA titer, 
starting with the lowest titer, and performed 99 rounds split/test and logistic regression on the remaining sam-
ples. Each run reported the recall rate, i.e. the number of true positives divided by the sum of the number of true 
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positives and false negatives. We defined the limit of detection (LoD) as the lowest RNA titer such that the mean 
of the recall for that titer is greater than or equal to 19/20 (0.95).

Validation with a complementary bcl2fastq and starcode workflow. Demultiplexed FASTQ files 
for the orthogonal validation were generated using the Illumina Sample Sheet and ‘bcl2fastq –no-lane-splitting 
–sample-sheet SampleSheet.csv’. The default with bcl2fastq is error correction of 1 mismatch, this step serves to 
error-correct each index separately. The resultant demultiplexed FASTQ files corresponding to each sample were 
clustered using ‘starcode -d2 -t1 –sphere’. Sequence centroids were assigned to genes by exact matching, and the 
count for each gene was given by the number of reads up to Levenshtein distance 2 away from the centroid. A 
sample by gene matrix was then constructed from the counts.

Generating of reads for testing LAMP-seq and TRB-seq. Reads were generated using the sample by 
genes matrix from the Plate 1 HEK293 lysate N gene Twist RNA SwabSeq experiment. This matrix consisted of 
96 samples and 3 targeted genes. We obtained a list of 1000 sample indices from LAMP-Seq and 19,200 sample 
indices from TRB-Seq as well as their associated primer sets, N1, N2, and RPP30 for TRB-seq and B_B3 for 
LAMP-Seq. We generated a number of reads equal to the number of amplicon counts for each sample index and 
target gene pair, 12,062,027 reads in total. In addition, bases in each read were randomly mutated to another 
base with a probability of 0.005 to simulate Illumina sequencing errors. The read structure for TRB-seq consists 
of paired-end reads with read 1 corresponding to a 15 bp sample index and a 22 bp constant region, and read 2 
corresponding to the target gene. The read structure for LAMP-seq consists of single-end reads where the first 20 
bp correspond to the targeted gene, the next 22 bp correspond to the first forward inner primer, the subsequent 
10 bp correspond to the sample index, and the last 19 bp correspond to the second forward inner primer.

LAMP-seq and TRB-seq. Reads from each assay were processed with ‘kallisto bus -x LAMPSeq’ and 
‘kallisto bus -x TRBSeq’ to generate a BUS file. The BUS file was sorted with ‘bustools sort’, the sample indices 
were corrected to Hamming distance 1 with ‘bustools correct’ and the BUS file was sorted once more to sum 
duplicate records. The BUS file was then processed with ‘bustools count—cm’ to generate the technology com-
parisons.

covE-seq. We downloaded data in the form of FASTQ reads for the S5  protocol14, and processed the reads 
with ‘kallisto bus -x covEseq’. The processing time for all 2,437,573 reads was determined with the time com-
mand line utility.

bcl2fastq. Using Illumina  documentation21 we developed a simple tool, bcltools which is available at https 
://githu b.com/pacht erlab /bclto ols, to generate BCL files from a set of FASTQ files. We created three FASTQ files 
each containing three reads. The index FASTQs contain 8 bp sequences and the biological read contains a 26 bp 
sequence. The I1 FASTQ sequences are all the same and the I2 FASTQ sequences differ. In the I2 FASTQ read 
1 is 3 Hamming distances away from read 2 and 1 Hamming distance away from read 3. Read 2 is 2 Hamming 
distances away from read 3. After generating a set of BCL files, bcl2fastq 2.20 was run both with a Sample Sheet 
and without a Sample Sheet. When run without the Sample Sheet, we obtained the same read sequences as those 
that were put in. When run with the Sample Sheet, we observed that the reads were assigned to the samples in 
the Sample Sheet by correcting the index sequences within 1 Hamming distance.

Data, protocol, and software availability. All the data, code and methods used to generate the results 
in this manuscript are open source freely available. The code to reproduce every figure and analysis for this man-
uscript is located here: https ://githu b.com/pacht erlab /BLCSB GLKP_2020. Each notebook can be run directly on 
Google Colab by pressing “Open in Colab” → “Runtime” → “Run all”. The links to all FASTQ files can be found 
in Supplementary Table 1.

The SwabSeq protocol is described at https ://www.notio n.so/Octan t-SwabS eq-Testi ng-9eb80 e793d 7e463 
48038 aa80a 5a901 fd.

Software programs used are listed in Supplementary Table 2.
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