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Structural insights and evaluation 
of the potential impact of missense 
variants on the interactions 
of SLIT2 with ROBO1/4 in cancer 
progression
Debmalya Sengupta1, Gairika Bhattacharya1,3, Sayak Ganguli2* & Mainak Sengupta1*

The cognate interaction of ROBO1/4 with its ligand SLIT2 is known to be involved in lung cancer 
progression. However, the precise role of genetic variants, disrupting the molecular interactions 
is less understood. All cancer-associated missense variants of ROBO1/4 and SLIT2 from COSMIC 
were screened for their pathogenicity. Homology modelling was done in Modeller 9.17, followed 
by molecular simulation in GROMACS. Rigid docking was performed for the cognate partners 
in PatchDock with refinement in HADDOCK server. Post-docking alterations in conformational, 
stoichiometric, as well as structural parameters, were assessed. The disruptive variants were ranked 
using a weighted scoring scheme. In silico prioritisation of 825 variants revealed 379 to be potentially 
pathogenic out of which, about 12% of the variants, i.e. ROBO1 (14), ROBO4 (8), and SLIT2 (23) 
altered the cognate docking. Six variants of ROBO1 and 5 variants of ROBO4 were identified as "high 
disruptors" of interactions with SLIT2 wild type. Likewise, 17 and 13 variants of SLIT2 were found 
to be "high disruptors" of its interaction with ROBO1 and ROBO4, respectively. Our study is the first 
report on the impact of cancer-associated missense variants on ROBO1/4 and SLIT2 interactions that 
might be the drivers of lung cancer progression.

Cancer morbidity is mainly attributed to  metastasis1,2, where the invasion and migration of tumour cells are 
critical phenomena. However, the pathways that regulate metastasis are still unclear, which acts as a deterrent for 
an introduction of therapeutic modalities. Recent researches indicated that the SLIT-ROBO pathway also plays a 
critical role in the modulation of chemokine activation and cellular migration of different  lineages3–6. The SLIT 
family of proteins docks to Roundabout (ROBO) receptors and modulate  morphogenesis7, leukocyte  chemotaxis4, 
and most importantly, metastasis and  angiogenesis8,9. SLIT2 is the most studied member of the SLIT family that 
has been found to exert a tumour suppressive activity, mainly by binding to the ROBO1  receptor10. Strong evi-
dence suggests that SLIT/ROBO signalling requires heparan sulfate proteoglycans (HSPGs) as a co-receptor11–13. 
HSPGs consist of a large proteoglycan core protein decorated with heparan sulfate chains, which stabilises the 
interaction between ROBO1 and  SLIT211–13. The recognition of SLIT2 by ROBO1 is mediated through proper 
interaction of the respective domains, such as SLIT2.D214 and ROBO1.IG1 that, again, is facilitated by heparan 
sulfate  units11–13. Less is known regarding ROBO4 and SLIT2 interaction.

The SLIT/ROBO signalling pathway has anti-migratory and pro-apoptotic properties in many  cancers15, such 
as Small Cell Lung Cancer (SCLC). These tumour-suppressive effects could be weakened by mutations16 within 
the cognate partners and its mediators. Robo1 knockout mice exhibited pulmonary dysmorphogenesis that 
resulted in embryonic death in most cases, while the surviving ones showed bronchial  hyperplasia17. The SLIT2-
ROBO1 pathway was found to counteract HGF-mediated tumour cell migration by inhibiting CDC-42 and 
stimulating RAC-17. Recent studies have indicated the possible anticancer attributes of SLIT2-ROBO1  signalling18 
pathway in tumour cell migration and angiogenesis in lung  cancer19, breast  cancer20, gastric  cancer21, and colo-
rectal  cancer22. For instance, the SLIT2 gene is inactivated in multiple  cancers23–25, including lung  cancer26, often 

OPEN

1Department of Genetics, University of Calcutta, University College of Science (UCSTA), 35, Ballygunge Circular 
Road, Kolkata 700 019, India. 2Department of Biotechnology, St. Xavier’s College (Autonomous), 30, Mother 
Teresa Sarani, Kolkata 700 016, India. 3Cactus Communications, Mumbai, India. *email: sayakbif@yahoo.com; 
sengupta.mainak@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-78882-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21909  | https://doi.org/10.1038/s41598-020-78882-2

www.nature.com/scientificreports/

as a result of promoter hypermethylation, mutations (frequency of occurrence ~ 10%) and  LOH26,27. Recent 
investigations have shown the role of Myo9b-RhoA in mediating the inhibitory effect of SLIT2 on lung cancer 
cell  migration28.

Similarly, the downregulation of USP33 (a ubiquitin ligase enzyme) reduces the stability of the ROBO1 recep-
tor in lung cancer  cells29 and breast cancer cell  migration30. Interestingly, ROBO1 was found to be a specific serum 
biomarker in  SCLC31. Thus, it is well-established that the SLIT2-ROBO1 signalling pathway is tumour suppressive 
in many cancers, including lung  cancer26,28,29. The anti-angiogenic effect of ROBO4 is also well  documented8,32. 
Increased ROBO4 expression has been correlated with increased overall survival in early-stage non-small cell 
lung  cancer33. However, the role of the genetic variants on the interaction of SLIT2/ROBO1/4, potentially altering 
the anti-angiogenic pathway and overall tumour suppressive function, is yet to be elucidated.

This work aims at the in silico prioritisation, and pathogenicity assessment of the missense variants of SLIT2/
ROBO1/4 reported in lung cancer cases, based on sequence- and structure-based parameters followed by dock-
ing analyses to determine the interaction dynamics. We hypothesise that the variants would be responsible for 
the disruption of effective receptor-ligand docking and could result in the alteration of its tumour suppressive 
function within the pulmonary cells leading to lung cancer metastasis. These variants either individually or in 
 combination34 could act as docking disruptors by inducing conformational changes, like fluctuations in the 
secondary structural elements, alterations in solvent accessible surface area or solvation free energy, number of 
hydrogen bonds, number of salt bridges, partial unfolding or displacement of helices, any altered local/global 
flexibility and docking pose as compared to the wild-type proteins. It is worth mentioning that in this work, the 
missense variants reported in other cancers were also taken into consideration because some of them could also 
be found in lung cancer with the incorporation of more sample data using advanced sequencing technologies. 
For instance, p.R119Q (Arg119Glu) is reported in both colorectal cancer and lung cancer. Likewise, more vari-
ants reported in other cancers could be found in lung cancer with further studies.

Methods
Data mining. Somatic variants of ROBO1, ROBO4, and SLIT2 were curated from the "Catalogue Of Somatic 
Mutations In Cancer" (COSMIC, release v73; http://cance r.sange r.ac.uk/cosmi c)  database35. The canonical 
sequences for ROBO1 (UniProt sequence ID: Q9Y6N7-1), ROBO4 (UniProt sequence ID: Q8WZ75-1) and 
SLIT2 (UniProt sequence ID: O94813-1) were curated from UniProt (https ://www.unipr ot.org/)36,37 and the sec-
ondary structures were predicted using PSIPRED (Position Specific Iterated BLAST based secondary structure 
PREDiction) (http://bioin f.cs.ucl.ac.uk/psipr ed/)  server38.

Identification of the degree of disorder in the proteins. The IUPred2A (Intrinsically Unstructured 
protein Prediction 2A) (https ://iupre d2a.elte.hu/)39 analysis was done to understand the presence or absence 
of disordered or intrinsically unstructured regions in the context of the amino acid sequences. The presence of 
Intrinsically Unstructured Regions (IUR) tends to add a degree of randomness to the native conformation of the 
protein  structures40.

Variant prioritisation by sequence-specific parameters. The variants obtained from data mining 
were subjected to an in silico prioritisation pipeline for their pathogenicity determination by sequence-based 
and structure-based analysis (Fig. 1). In Silico analysis of all the variants (categorised as "lung cancer-associated 
missense variants" and "missense variants associated with other cancers") were done by PROVEAN (Protein Vari-
ation Effect Analyzer) (http://prove an.jcvi.org/index .php)41, which predicted whether amino acid substitutions 
or indels are "deleterious" or "Neutral". The PROVEAN web server also includes the algorithm of SIFT (Sort-
ing Intolerant From Tolerant)42 that predicted whether a variant is "damaging" (SIFT Score ≤ 0.05) or "toler-
ated" (SIFT Score > 0.05) based on sequence homology and the physical properties of amino acids. The same 
set of variants were analysed in PolyPhen2 (Polymorphism Phenotyping v2)43 (http://genet ics.bwh.harva rd.edu/
pph2/) that predicted the functional significance of an amino acid substitution as "Probably damaging", "Pos-
sibly damaging" or "Benign". The entire set of variants were further analysed in SNPs&GO (Single Nucleotide 
Polymorphisms & Gene Ontology) (https ://snps-and-go.bioco mp.unibo .it/snps-and-go/index .html)44, which 
predicted whether the variant is associated with "Disease" or not. Further, iMUTANT 2.0 (http://foldi ng.biofo 
ld.org/i-mutan t/i-mutan t2.0.html)45 predicted whether the variants "increases" or "decreases" the stability of the 
protein structures calculated from the input protein sequence. Finally, the variants were analysed in FATHMM 
(Functional Analysis Through Hidden Markov Models) (http://fathm m.bioco mpute .org.uk/)46, which predicted 
whether a protein variant is "cancer-associated" or a "passenger" variant by combining sequence conservation 
within hidden Markov models (HMMs). The scoring scheme followed for sequence-based variant prioritisation 
is depicted in (Table 1). A weighted score was applied to the outcomes of each prediction from the softwares. 
More weightage was given to the outcome, depicting the disruptive/damaging nature of the mutations and was 
assigned with higher scores while the benign/neutral or tolerated mutations were given less weightage with 
lower scores. For example, p.R119Q (ROBO1.IG1) is a “deleterious” mutation according to PROVEAN and was 
assigned with score 1 while p.D930N (SLIT2) is a “neutral” mutation and was assigned with score 0. The cumula-
tive score for each variant was calculated for the sequence-based analysis, and the variants with the cumulative 
score above the median value of the distribution of cumulative scores of all the variants were selected for further 
structure-based variant prioritisation. 

Generation of Homology models for the wild type proteins. Complete crystal structure of the pro-
teins was not available in the Protein Data Bank. Therefore, homology models were generated to study the altera-
tions in the structural dynamics of ROBO1/SLIT2 and ROBO4/SLIT2 interactions based on variants. Once the 

http://cancer.sanger.ac.uk/cosmic
https://www.uniprot.org/
http://bioinf.cs.ucl.ac.uk/psipred/
https://iupred2a.elte.hu/
http://provean.jcvi.org/index.php
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
https://snps-and-go.biocomp.unibo.it/snps-and-go/index.html
http://folding.biofold.org/i-mutant/i-mutant2.0.html
http://folding.biofold.org/i-mutant/i-mutant2.0.html
http://fathmm.biocompute.org.uk/
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secondary structures were obtained from  PSIPRED38, the sequences were subjected to BLAST analyses (https 
://blast .ncbi.nlm.nih.gov/Blast .cgi )47,48 using the Protein Data Bank (https ://www.rcsb.org/)49as the target data-
base, to identify suitable homologous templates. The results showed four suitable templates each for ROBO1 
(2V9Q, 5NOI, 2EO9, and 3WIH), ROBO4 (2V9Q, 2VRA, 3PUC, and 2VR9) and SLIT2 (2V70, 2V9T, 2V9S, and 
2WFH). Each of the proteins and their corresponding interaction domains was modelled separately by compara-
tive homology modelling using Modeller 9.1750, and the modelled structures were then subjected to molecular 
simulation for 40 ns using a GROMOS96 43a2 (GROningen MOlecular Simulation) force field in GROMACS 

Figure 1.  Schema of analysis. The work includes data mining followed by variant prioritisation and molecular 
docking for identification of candidate molecular targets as potential disruptors of ROBO/SLIT signalling 
mediated by ROBO1/SLIT2 and ROBO4/SLIT2.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.rcsb.org/
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(GROningen MAChine for Chemical Simulation)51,52. Following the simulation, the structures were analysed for 
torsional/ conformational stability from the Ramachandran plots of the models using the MolProbity  server53. 
The Q–MEAN score verified the integrity and validity of the 3D structures of the generated homology models.

Generation of Mutant Structures from wild type homology models. The variants prioritised by 
the sequence-based analysis were inserted within the wild type homology models of ROBO1, ROBO4 and SLIT2 
by using the MUTATE tool of DeepView v4.1.054. The mutant proteins were subjected to the simulation as men-
tioned earlier conditions and validation protocol to generate the final mutated homology models of the proteins.

Structural analyses of the mutant models. The mutant models were assessed for alterations in the 
pattern of hydrogen bond interactions (in terms of the interacting residues), bond length and also in steric 
clashes between residues in comparison to their corresponding wild type structures (Fig. 1). Deviation of the 
loco-regional status of the mutable amino acid residues of mutant ROBO1, ROBO4, and SLIT2 compared to 
their wild types were analysed in terms of the Accessible Surface Area (ASA) or Solvent Accessibility (SA) in a 
webserver called ASAview (http://ccbb.jnu.ac.in/shand ar/serve rs/asavi ew/ )55. The scoring scheme followed for 
assigning a score to each outcome of the structure-based variant prioritisation is depicted in (Table 1).

A cumulative score for each variant (i.e. variants selected after sequence-based analysis) was calculated, and 
the variants with top two cumulative scores were selected for the subsequent docking analysis. The selection 
criteria were kept similar for variants residing within the docking domains and outside the docking domains, 
belonging to both lung cancer and non-lung cancer datasets.

After the prioritisation of the variants, alterations in potential ligand-binding hotspots, due to variants in 
ROBO1, ROBO4 and SLIT2 proteins were analysed in DoGSiteScorer (https ://prote ins.plus/)  webserver56. This 
analysis was not used for prioritisation of the variants, but to assess the change in the respective structural attrib-
utes based on the variants finally selected for docking. The following parameters were assessed;

• Drug score The average drug score of all the pockets for both wild types and mutants was calculated. The 
mean drug score of wild type structures was annotated as ’Neutral’. The mean drug score of the mutants equal 
to the corresponding wild type was also annotated as ’Neutral’. Annotation ’Favourable’ was assigned if the 
mean drug score of the mutant is more than its wild type. If the mean drug score of the mutants is less than 
the corresponding wild type, annotation ’Unfavourable’ was assigned. This parameter depicts ligand (i.e., 
drugs, small molecules) binding capability of the structure, which could be considered as therapeutic targets.

• The number of ligand-binding pockets The number of ligand-binding pockets in the wild type structure was 
considered as the reference and was annotated as ’Neutral’. Gain in pockets upon variant is considered as 
’Increase’ while the loss of pockets upon variant was termed as ’Decrease’.

Table 1.  The scoring scheme for the prioritisation of the variants of ROBO1, ROBO4, and SLIT2. Each of the 
predictive outcomes is assessed by comparing with the wild type protein sequence or structure.

Webservers Predictive outcome for the mutants Score

(A) Sequence-based analysis

Provean
Neutral 0

Deleterious 1

SIFT
Tolerated 0

Damaging 1

Polyphen2

Benign 0

Possibly Damaging 1

Probably Damaging 2

SNPs&GO
Neutral 0

Disease-related 1

iMUTANT 2.0
Increase Stability 0

Decrease Stability 1

FATHMM
Passenger Variants 0

Cancer-associated Variants 1

(B) Structure-based analysis

H-bond

No Change compared to Wild Type (in any of the features like Bond Number, Bond Length, 
Interacting residues) 0

Change compared to Wild Type (in any of the features like Bond Number, Bond Length, Interact-
ing residues) 1

Steric clash
No Change compared to Wild Type 0

Change compared to Wild Type 1

Asaview
The mutant residue has no positional alteration compared to the wild type 0

The mutant residue shifts its position compared to the wild type 1

http://ccbb.jnu.ac.in/shandar/servers/asaview/
https://proteins.plus/
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Molecular docking. Rigid docking of the whole proteins and also the interacting domains of the same was 
done using PatchDock (https ://bioin fo3d.cs.tau.ac.il/Patch Dock/)  server57. The free energy of interaction of the 
wild type (native) and mutant complexes in the form of atomic contact energy based on shape complemen-
tarity principles was obtained from PatchDock and validated by using HADDOCK (High Ambiguity Driven 
protein–protein DOCKing) (https ://haddo ck.scien ce.uu.nl/)  server58,59. The molecular docking was elaborately 
performed as a wild type to wild type and mutant to wild type proteins/domains. The best docking pose was 
selected based on the global energy of the docked complex and the biological relevance concerning the dynamics 
of the interaction between the membrane-bound receptor to its extracellular ligand.

Analyses of docked complexes. The mutant-to-wild type complexes were then analysed for their resi-
due-specific interactions using PDBsum (http://www.ebi.ac.uk/thorn ton-srv/datab ases/pdbsu m/Gener ate.html) 
 server60 and were compared with wild type-to-wild type docked complexes for changes in the bond number.

Change in the binding affinity (ΔΔGBind kcal/mol) due to variants were also checked for mutant-to-wild type 
complexes about wild type-to-wild type complexes in a web server named BeAtMuSiC v1.0 (prediction of Bind-
ing Affinity Changes upon MutationS) (http://babyl one.ulb.ac.be/beatm usic/index .php)61.

Similarly, the change in free energy (ΔG kcal/mol) due to variants was also checked for mutant-to-wild type 
complexes about wild type-to-wild type complexes during docking. Further, gain in solvation energy upon com-
plex formation, for mutant-to-wild type docked complexes about wild type-to-wild type docked complexes, were 
assessed in PDBePISA (Protein Data Bank in Europe Proteins, Interfaces, Structures and Assemblies) webserver 
(http://www.ebi.ac.uk /pdbe/pisa/)62.

A weighted scoring scheme was followed for assigning a score to each outcome of the post-docking analysis 
(Table 2).

Analyses of structural distortion. The mutant-to-wild type complexes were superimposed upon wild 
type-to-wild type complexes using Matchmaker tool of UCSF-Chimera 1.14rc63 where the two docked com-
plexes were subjected to pairwise alignment per residue to identify non-alignment of the superimposed struc-
tures at the residue per se or for the overall conformation of the interacting partners. The degree of conforma-
tional distortion of the mutant complex compared to the wild type was assessed by the magnitude of the RMSD 
(Root Mean Square Deviation) values. The mean RMSD value for all the complexes was estimated, and the 
scoring of the variants was done (Table 2).

Cumulative score and grading of variants from docked complex analysis. Following the weighted scoring scheme 
as depicted in (Table 2), a cumulative score was estimated for each docked complex by merely summing the 
individual weighted score of each of the parameters analysed post docking. It was followed by the calculation 
of the mean of the cumulative score distribution of all mutant complexes for the respective docking categories, 

Table 2.  Weighted scoring scheme for the docked complexes for the variants of ROBO1, ROBO4, and SLIT2. 
Each of the predictive outcomes is assessed by comparing with the wild type to wild type docked complex.

Parameters Predictive outcome for the mutants Weighted score

(A) Post docking analysis

Changes in free energy (ΔG)

No change compared to wild type complex 0

More negative compared to wild type complex 1

Less negative compared to wild type complex 2

Changes in binding affinity (ΔΔGBind)

No change compared to wild type complex 0

More negative compared to wild type complex 1

Less negative compared to wild type complex 2

Gain in solvation energy (ΔiG)

No change compared to Wild Type complex 0

More negative compared to wild type complex 1

Less negative compared to wild type complex 2

Change in h-bond number

No change compared to wild type complex 0

Increased compared to wild type complex 1

Decreased compared to wild type complex 2

Change in van der waals interactions

No change compared to wild type complex 0

Increased compared to wild type complex 1

Decreased compared to wild type complex 2

Change in the number of salt-bridges

No Change Compared To Wild Type complex 0

Increased compared to wild type complex 1

Decreased compared to wild type complex 2

Super-imposition (mean RMSD)

RMSD of the mutant docked complex is equal to the mean RMSD 0

RMSD of the mutant docked complex is lesser than the mean RMSD 1

RMSD of the mutant docked complex is higher than the mean RMSD 2

https://bioinfo3d.cs.tau.ac.il/PatchDock/
https://haddock.science.uu.nl/
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html
http://babylone.ulb.ac.be/beatmusic/index.php
http://www.ebi.ac.uk
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i.e. ROBO1.IG1:SLIT2.D2, ROBO4.IG1-2:SLIT2.D2, ROBO1:SLIT2, and ROBO4:SLIT2. The cumulative score 
of the wild type:wild type docked complexes was denoted as ’0′. A variant was graded as "More disrupting" when 
its cumulative score was more than the mean of the cumulative scores of all the mutant complexes of a specific 
docking category and "Less disrupting" when its cumulative score was less than the mean of the cumulative scores 
of all the mutant complex for a specific docking category as mentioned above.

Results
Curation and categorisation of somatic variants. Systematic mining of the  COSMIC35 database 
(release v73) for somatic missense variants revealed 381 variants in ROBO1, 289 variants in SLIT2 and 155 vari-
ants in ROBO4. Out of 825 variants; 34 in ROBO1, 57 in SLIT2, and 34 in ROBO4 were reported to be associated 
with lung cancer. Thus, these were categorised as lung cancer dataset. In comparison, the other 255 variants in 
ROBO1, 324 variants in SLIT2 and 121 variants in ROBO4 were considered as non-lung cancer dataset.

Prioritisation of variants on sequence-based and structure-based parameters. Prioritisation of 
the variants was done according to our predefined pipeline, as shown in (Fig. 1). The variants were analysed in 
 PROVEAN41 that predicted nearly 50% of ROBO1, 29% of ROBO4, and 63% of SLIT2 variants of lung cancer 
dataset to be "deleterious". Similarly, 40% of ROBO1, 18% of ROBO4, and 56% of SLIT2 variants of non-lung 
cancer dataset were predicted to be "deleterious" by PROVEAN.

Similarly, analysis in  SIFT42 revealed about 65% of ROBO1, 47% of ROBO4, and 60% of SLIT2 variants of lung 
cancer dataset to be "damaging". About 61% of ROBO1, 45% of ROBO4, and 61% of SLIT2 variants of non-lung 
cancer dataset were predicted to be "damaging" by SIFT.

PolyPhen243 predicted about 15% of ROBO1, 15% of ROBO4, and 23% of SLIT2 variants of lung cancer data-
set to be "possibly damaging". About 13% of ROBO1, 13% of ROBO4, and 19% of SLIT2 variants of non-lung 
cancer dataset were predicted to be "possibly damaging" by PolyPhen2. Similarly, about 53% of ROBO1, 50% 
of ROBO4, and 46% of SLIT2 variants of lung cancer dataset to be "possibly damaging", while 45% of ROBO1, 
50% of ROBO4, and 43% of SLIT2 variants of non-lung cancer dataset were predicted to be "probably damag-
ing" by PolyPhen2. SNPs&GO44 predicted about 35% of ROBO1, 35% of ROBO4, and 32% of SLIT2 variants of 
lung cancer dataset to be "Disease-related". About 25% of ROBO1, 25% of ROBO4, and 35% of SLIT2 variants 
of non-lung cancer dataset were predicted to be "Disease-related" by SNPs&GO.

Interestingly, iMUTANT 2.0 revealed 91% of ROBO1, 79% of ROBO4, and 84% of SLIT2 variants of lung 
cancer dataset to cause a "decrease" in protein stability. About 89% of ROBO1, 76% of ROBO4, and 83% of SLIT2 
variants of non-lung cancer dataset were predicted to cause a "decrease" in protein stability.

Amino acid sequence-based predictions from  FATHMM46 using hidden Markov Models revealed 0% of 
ROBO1, 6% of ROBO4, and 0% of SLIT2 variants of lung cancer dataset to be associated with some form of 
"cancer". About, 0.4% of ROBO1, 0.8% of ROBO4, and 2% of SLIT2 variants of non-lung cancer dataset were 
predicted to be associated with "cancer" by FATHMM.

The cumulative score of all sequence-based parameters per variant was calculated (Table 1). The variants 
with a cumulative score > 3 (median value) of the distribution of the cumulative scores, were selected for further 
structure-based analysis. Thus, from the lung cancer dataset, 18 variants of ROBO1, 29 variants of SLIT2 and 13 
variants of ROBO4 were selected for structure-based analysis. From the non-lung cancer dataset, 113 variants of 
ROBO1, 134 variants of SLIT2 and 41 variants of ROBO4 were selected for structure-based analysis. The detailed 
results of the final set of prioritised variants are summarised in the following table (Table 3). The list of all vari-
ants of the three proteins with sequence-based scores is summarised in (Supplementary Information, Table S1).

The generation of mutant homology models as described in the Materials and Methods section and structural 
analysis of the mutants versus their respective wild types revealed variant-induced alteration in local hydrogen 
bond number and bond length among the interacting amino acid residues for the variants; 10 in ROBO1, 10 in 
ROBO4 and 14 in SLIT2 from lung cancer dataset. Similarly, for non-lung cancer dataset, the variants confer-
ring change in local hydrogen bond number and bond length are 50 in ROBO1, 31 in ROBO4, and 89 in SLIT2. 
Steric clash-induced destabilisations, primarily found in variants involving bulky amino acids were 7 in ROBO1, 
5 in ROBO4 and 9 in SLIT2 from the lung cancer dataset. In comparison to, 9 variants in ROBO1, variants in 
ROBO4, and 34 variants from the non-lung cancer dataset were found. The representative images of variant-
induced changes for both the changes in H-bond and steric clashes compared to wild types are depicted in (Sup-
plementary Information, Fig. S1). The detailed results of variant-specific alterations in local H-bond (number, 
length, interacting residues) and steric clash in the protein structures for the final set of prioritised variants are 
summarised in the following tables (Table 3, Supplementary Information, Table S2).

Analysis of the mutant structures of all the interacting domains of the 3 proteins in ASAview revealed 1 vari-
ant of SLIT2.D2 exhibit an inter-orbit shift in the position of the mutant amino acid residue compared to wild 
type structure in the lung cancer dataset. Similarly, in the non-lung cancer dataset, 5 variants of ROBO1.IG1, 7 
variants of SLIT2.D2 and 2 variants of ROBO4.IG1-2 domains show an inter-orbit shift of mutant amino acid 
compared to wild types. However, 2 variants of ROBO1.IG1, 2 variants of SLIT2.D2 and 1 variant of ROBO4.
IG1-2 domains in lung cancer dataset and 6 variants in SLIT2.D2 in the non-lung cancer dataset exhibits an 
intra-orbit amino acid position shift compared to wild types.

Similarly, for outside the docking domains, 3 variants of ROBO1 and 2 variants of ROBO4 show inter-orbital 
shift of mutant amino acid residue compared to wild type residue in the lung cancer dataset. In the non-lung 
cancer dataset, 1 variant of ROBO1 show inter-orbital shift of mutant amino acid residue compared to wild type 
residue. Only 1 variant of SLIT2 of lung cancer dataset show intra-orbital shift of mutant amino acid residue 
compared to wild type residue. The remaining variants do not have any impact on the change in the amino acid 
position compared to the wild type within the 3D protein structure. The representative images of the spiral plots 
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Table 3.  The final set of in silico prioritised variants by sequence-based and structure-based parameters.

Genes Variants PROVEAN SIFT Polyphen2 SNPs&GO iMUTANT 2.0 FATHMM H-bond change Steric clash change ASA Total score

(A) Lung cancer dataset

 (I) Variants within docking domain

  ROBO1 p.R119Q 1 1 2 1 1 0 1 0 1 8

  ROBO1 p.K103N 1 1 2 1 1 0 1 0 1 8

  SLIT2 p.D435V 1 1 2 1 1 0 1 1 1 9

  SLIT2 p.R306L 1 1 2 1 1 0 1 1 1 9

  SLIT2 p.Y323H 1 0 2 1 1 0 1 1 1 8

  ROBO4 p.G102C 1 1 2 0 1 0 1 1 1 8

  ROBO4 p.C207S 1 1 2 1 1 1 1 0 0 8

 (II) Variants outside docking domain

  ROBO1 p.R635S 1 1 2 1 1 0 1 1 1 9

  ROBO1 p.D312V 1 1 2 1 1 0 1 1 1 9

  ROBO1 p.R306I 1 1 2 1 1 0 1 1 1 9

  SLIT2 p.P54R 1 1 2 1 1 0 1 1 1 9

  SLIT2 p.P665S 1 1 2 1 1 0 1 1 0 8

  ROBO4 p.G829W 1 1 2 1 1 0 1 1 1 9

  ROBO4 p.W367C 1 1 2 1 1 1 1 0 1 9

(B) Non-lung cancer dataset

 (I) Variants within docking domain

  ROBO1 p.I78S 1 1 2 1 1 0 1 0 1 8

  ROBO1 p.G82V 1 1 2 1 1 0 1 0 1 8

  ROBO1 p.P123L 1 1 2 1 1 0 1 1 0 8

  ROBO1 p.R131C 1 1 2 1 1 0 1 0 1 8

  ROBO1 p.G143R 1 1 2 1 1 0 1 0 1 8

  ROBO1 p.G154E 1 1 2 1 1 0 1 0 1 8

  SLIT2 p.C436F 1 1 2 1 1 0 1 1 1 9

(B) Non-lung cancer dataset

 (I) Variants within docking domain

  SLIT2 p.R388W 1 1 2 1 1 0 1 1 1 9

  SLIT2 p.R456H 1 1 2 1 1 0 1 1 1 9

  SLIT2 p.N430K 1 1 2 1 1 0 1 1 1 9

  SLIT2 p.R420W 1 1 2 1 1 0 0 1 1 8

  SLIT2 p.L350V 1 1 2 1 1 0 0 1 1 8

  SLIT2 p.P431L 1 1 2 1 1 0 1 1 1 9

  SLIT2 p.L331P 1 1 2 1 1 0 1 1 0 8

  SLIT2 p.L398F 1 1 2 1 1 0 1 1 0 8

  SLIT2 p.L371P 1 1 2 1 0 0 1 1 1 8

  SLIT2 p.S352L 1 1 2 1 1 0 1 1 1 9

  SLIT2 p.R462C 1 1 2 1 1 0 1 1 1 9

  SLIT2 p.A340T 1 1 2 0 1 0 1 1 1 8

  SLIT2 p.P322L 1 1 2 0 1 0 1 1 1 8

  SLIT2 p.R461C 1 1 2 1 1 0 1 0 1 8

  ROBO4 p.G86E 1 1 2 1 0 0 1 1 1 8

  ROBO4 p.C207F 1 1 2 1 1 1 0 1 1 9

 (II) Variants outside docking domain

  ROBO1 p.P176L 1 1 2 1 1 0 1 1 1 9

  ROBO1 p.G337V 1 1 2 1 1 0 1 1 0 8

  ROBO1 p.C476Y 1 1 2 1 1 0 1 1 0 8

  SLIT2 p.C215Y 1 1 2 1 0 1 1 1 0 8

  SLIT2 p.G576R 1 1 2 1 1 0 1 1 0 8

  SLIT2 p.S636C 1 1 2 1 1 0 1 0 1 8

  ROBO4 p.G425V 1 1 2 1 1 0 1 1 0 8

  ROBO4 p.G876V 1 1 2 1 1 0 1 1 0 8
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are depicted in (Supplementary Information, Fig. S2), and the results of the final set of prioritised variants with 
their respective scores are summarised in (Table 3).

Finally, for the interacting domains, the prioritisation analysis revealed 2 variants of ROBO1, 2 variants of 
ROBO4 and 3 variants of SLIT2 in lung cancer dataset and 6 variants of ROBO1, 2 variants of ROBO4 and 15 
variants of SLIT2 from the non-lung cancer dataset as depicted in (Table 3). These variants were further analysed 
for their effect on the domain-domain interactions. Similarly, for full protein–protein interaction involving vari-
ants within the non-interacting regions of the proteins; 3 variants of ROBO1, 2 variants of SLIT2 and 2 variants 
of ROBO4 from lung cancer dataset and 3 variants of ROBO1, 3 variants of SLIT2, and 2 variants of ROBO4 
were prioritised for further docking and post-docking analyses. The results of the final set of prioritised variants 
are depicted in (Table 3).

Structure validation and analysis. The sequence-based analysis of the wild type models for residue-
specific IURs from IuPred2A indicates that 35.5% (38 disordered/69 ordered) residues of ROBO1.IG1, 59.6% 
(112 disordered/76 ordered) residues of ROBO4.IG1-2, and 0% (0 disordered/210 ordered) residues of SLIT2.
D2 to be intrinsically unstructured (Supplementary Information, Fig. S2, Table S2). Similarly, 51.3% (847 disor-
dered/804 ordered) residues of ROBO1, 45.4% (457 disordered/550 ordered) residues of ROBO4, and 0.005% 
(07 disordered/1522 ordered) residues of SLIT2 whole protein models, to be intrinsically unstructured (Sup-
plementary Information, Fig. S3, Table S2). These analyses have led to the rationalisation of the Ramachandran 
plots and Q-mean validation outcomes, which indicate a high level of structural dynamism in protein conforma-
tion related to their function. The unstructured residues identified in the analyses may contribute towards the 
flexibility of the protein backbone and adjoining side chains to allow interaction with their cognate partners. It 
may also explain the role of HSPGs as a stabiliser of the interaction between ROBOs and SLITs.

The wild types and prioritised mutants of the generated homology models were assessed for their confor-
mational stability in 3D by their respective Ramachandran plots and Q-mean (https:// swissmodel.expasy.org/
qmean/) scores. The individual Q-mean scores of all the wild types and the mutants of both partial interacting 
domains and full protein models were analysed and are graphically represented in (Supplementary Information, 
Fig. S4, Table S3). Further, analysis of conformational stability by Ramachandran plots of the representative top-
scoring variants of the interacting domains and whole protein models along with their respective wild types, 
are depicted in (Supplementary Information, Fig. S5). The percentage of amino acid residues in the allowed 
regions and the percentage of amino acids favoured in the Ramachandran plot assessed the stability of the 
protein structures.

Further, analysis of the effect of variants on the ligand/small molecule/drug binding capability of the pro-
teins in DoGSiteScorer and the changes in the number of ligand binding pockets upon mutations is depicted in 
(Supplementary Information, Table S4). Representative images of the impact of variants on drug/ligand binding 
pockets in the proteins are depicted in (Supplementary Information, Fig. S6).

Molecular docking and post-docking analysis. Mutant-to-wild type molecular docking of the recep-
tors (ROBO1 and ROBO4) and ligand (SLIT2) was performed to assess the effect of variants on the protein–pro-
tein interaction. Several parameters that influence the docking efficiency, such as ’Free energy change’64, ’Change 
in Binding affinity’, ’Gain in solvation energy’, ’Change in H-bond number’, ’Change in Van der Waals interactions’, 
’Change in the number of salt bridges’ were considered. The analysis revealed that all the mutant ROBO1.IG1-
SLIT2.D2 docked complexes have increased free energy change compared to the respective wild type. One vari-
ant in ROBO4.IG1-2 (G102C) docked to SLIT2.D2 (WT), and 1 variant in SLIT2.D2 docked to ROBO4.IG1-2 
(WT) caused a decrease in free energy upon docking as compared to the wild type-wild type docked complexes. 
The results for both lung cancer and non-lung cancer datasets are summarised in the following table (Table 4).

One variant of SLIT2.D2 (S352L) docked with ROBO1.IG1 (WT) and 1 variant of ROBO4.IG1-2 (G102C) 
docked with SLIT2.D2 (WT) show an increase in binding affinity of the interacting proteins compared to the 
respective wild type docked complexes, which depicts the docking stabilising effect of the variants. The remain-
ing 8 ROBO1.IG1 mutants docked with SLIT2.D2 (WT), 17 SLIT2.D2 mutants docked with ROBO1.IG1 (WT), 
3 ROBO4.IG1-2 mutants docked with SLIT2.D2 (WT), and 18 SLIT2.D2 mutants docked with ROBO4.IG1-2 
(WT) show a decrease in binding affinity compared to the respective wild type-wild type docked complexes, 
signifying the docking disruption effect of the variants. The results for both lung cancer and non-lung cancer 
datasets are summarised in the following table (Table 4).

Analysis over ePISA webserver revealed 8 ROBO1.IG1 mutants docked with SLIT2.D2 (WT), 18 SLIT2.
D2 mutants docked with ROBO1.IG1 (WT), 1 ROBO4.IG1-2 mutants docked with SLIT2.D2 (WT), and 12 
SLIT2.D2 mutants docked with ROBO4.IG1-2 (WT) to show a decrease in solvation energy while 2 ROBO4.
IG1-2 mutants docked with SLIT2.D2 (WT), and 6 SLIT2.D2 mutants docked with ROBO4.IG1-2 (WT) show 
an increase in solvation energy as compared to their respective wild type docked complexes of ROBO1.IG1/
SLIT2.D2 and ROBO4.IG1-2/SLIT2.D2. Only 1 ROBO4.IG1-2 mutant docked with SLIT2.D2 (WT) shows no 
change in solvation energy as compared to their respective wild type docked complexes. The results for both lung 
cancer and non-lung cancer datasets are summarised in the following table (Table 4). Analysis of the alteration in 
bond numbers revealed 2 ROBO1.IG1 mutants docked with SLIT2.D2 (WT), 4 SLIT2.D2 mutants docked with 
ROBO1.IG1 (WT), 1 ROBO4.IG1-2 mutants docked with SLIT2.D2 (WT), and 7 SLIT2.D2 mutants docked with 
ROBO4.IG1-2 (WT) to show a decrease in H-bond number while 2 ROBO1.IG1 mutants docked with SLIT2.
D2 (WT), 12 SLIT2.D2 mutants docked with ROBO1.IG1 (WT), and 5 SLIT2.D2 mutants docked with ROBO4.
IG1-2 (WT) to show an increase in H-bond number as compared to their respective wild type docked complexes. 
Similarly, the change in the number of van der Waals interactions and salt bridges were assessed. The alterations 
in the number of bonded and non-bonded interactions in mutant to wild type docked complexes, collectively 
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Protein–Protein Interactions
Changes in free 
energy (ΔG)

Changes in 
Binding affinity 
(ΔΔGBind)

Gain in 
Solvation 
energy (ΔiG)

H-bonds 
(N)

Van der Waals 
interactions 
(N)

Salt-bridges 
(N)

Super-
imposition 
(RMSD)

Total 
Score 
(TS)

Predictive 
outcome

(A) Domain-domain docking interactions

 (I) ROBO1.IG1 + SLIT2.D2

  p.Y323H + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Decrease:2 Increase:1 Decrease:2 2 13 More disrupting 
(TS > Mean TS)

  p.G82V + p.SLIT2.D2(WT) Increase:2 Decrease:2 Decrease:2 Decrease:2 Increase:1 Decrease:2 1 12 More disrupting 
(TS > Mean TS)

  p.C436F + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Decrease:2 2 12 More disrupting 
(TS > Mean TS)

  p.R388W + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Decrease:2 2 12 More disrupting 
(TS > Mean TS)

  p.R461C + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Decrease:2 2 12 More disrupting 
(TS > Mean TS)

  p.L350V + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Decrease:2 2 12 More disrupting 
(TS > Mean TS)

  p.L331P + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Decrease:2 Increase:1 Decrease:2 1 12 More disrupting 
(TS > Mean TS)

  p.L398F + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Decrease:2 Increase:1 Increase:1 2 12 More disrupting 
(TS > Mean TS)

  p.G154E + p.SLIT2.D2(WT) Increase:2 Decrease:2 Decrease:2 Decrease:2 Increase:1 Increase:1 1 11 More disrupting 
(TS > Mean TS)

  p.R306L + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Decrease:2 1 11 More disrupting 
(TS > Mean TS)

  p.R456H + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Increase:1 2 11 More disrupting 
(TS > Mean TS)

  p.N430K + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Decrease:2 1 11 More disrupting 
(TS > Mean TS)

  p.R420W + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Decrease:2 1 11 More disrupting 
(TS > Mean TS)

  p.P431L + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Increase:1 2 11 More disrupting 
(TS > Mean TS)

  p.L371P + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Decrease:2 Increase:1 Neutral:0 2 11 More disrupting 
(TS > Mean TS)

  p.A340T + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Decrease:2 1 11 More disrupting 
(TS > Mean TS)

 Mean = 10.88

  p.R119Q + p.SLIT2.D2(WT) Increase:2 Decrease:2 Decrease:2 Neutral:0 Increase:1 Increase:1 2 10 Less disrupting 
(TS < Mean TS)

  p.I78S + p.SLIT2.D2(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Neutral:0 2 10 Less disrupting 
(TS < Mean TS)

  p.P123L + p.SLIT2.D2(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Increase:1 1 10 Less disrupting 
(TS < Mean TS)

  p.R131C + p.SLIT2.D2(WT) Increase:2 Decrease:2 Decrease:2 Neutral:0 Increase:1 Decrease:2 1 10 Less disrupting 
(TS < Mean TS)

  p.D435V + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Neutral:0 Increase:1 Decrease:2 1 10 Less disrupting 
(TS < Mean TS)

  p.S352L + p.ROBO1.IG1(WT) Increase:2 Increase:1 Decrease:2 Increase:1 Increase:1 Increase:1 2 10 Less disrupting 
(TS < Mean TS)

  p.R462C + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Neutral:0 2 10 Less disrupting 
(TS < Mean TS)

  p.P322L + p.ROBO1.IG1(WT) Increase:2 Decrease:2 Decrease:2 Neutral:0 Increase:1 Decrease:2 1 10 Less disrupting 
(TS < Mean TS)

  p.K103N + p.SLIT2.D2(WT) Increase:2 Decrease:2 Decrease:2 Neutral:0 Increase:1 Increase:1 1 9 Less disrupting 
(TS < Mean TS)

  p.G143R + p.SLIT2.D2(WT) Increase:2 Decrease:2 Decrease:2 Neutral:0 Increase:1 Increase:1 1 9 Less disrupting 
(TS < Mean TS)

 (II) ROBO4.IG1-2 + SLIT2.D2

  p.S352L + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Decrease:2 Decrease:2 Decrease:2 Decrease:2 2 14 More disrupting 
(TS > Mean TS)

  p.R462C + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Decrease:2 Decrease:2 Decrease:2 Decrease:2 2 14 More disrupting 
(TS > Mean TS)

  p.D435V + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Increase:1 Decrease:2 Decrease:2 Decrease:2 2 13 More disrupting 
(TS > Mean TS)

  p.Y323H + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Increase:1 Decrease:2 Decrease:2 Decrease:2 2 13 More disrupting 
(TS > Mean TS)

  p.R461C + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Increase:1 Decrease:2 Decrease:2 Decrease:2 2 13 More disrupting 
(TS > Mean TS)

Continued
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Protein–Protein Interactions
Changes in free 
energy (ΔG)

Changes in 
Binding affinity 
(ΔΔGBind)

Gain in 
Solvation 
energy (ΔiG)

H-bonds 
(N)

Van der Waals 
interactions 
(N)

Salt-bridges 
(N)

Super-
imposition 
(RMSD)

Total 
Score 
(TS)

Predictive 
outcome

  p.R420W + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Increase:1 Decrease:2 Decrease:2 Decrease:2 2 13 More disrupting 
(TS > Mean TS)

  p.C436F + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Decrease:2 2 12 More disrupting 
(TS > Mean TS)

  p.R388W + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Decrease:2 2 12 More disrupting 
(TS > Mean TS)

  p.L371P + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Decrease:2 2 12 More disrupting 
(TS > Mean TS)

  p.C207S + p.SLIT2.D2(WT) Increase:2 Decrease:2 Decrease:2 Decrease:2 Increase:1 Increase:1 2 12 More disrupting 
(TS > Mean TS)

  p.P431L + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Decrease:2 Neutral:0 Increase:1 Decrease:2 2 11 More disrupting 
(TS > Mean TS)

  p.A340T + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Decrease:2 Decrease:2 Decrease:2 Neutral:0 1 11 More disrupting 
(TS > Mean TS)

 Mean = 10.90

  p.R306L + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Increase:1 Neutral:0 Increase:1 Decrease:2 2 10 Less disrupting 
(TS < Mean TS)

  p.L350V + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Decrease:2 Neutral:0 1 10 Less disrupting 
(TS < Mean TS)

p.L331P + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Decrease:2 Neutral:0 1 10 Less disrupting 
(TS < Mean TS)

  p.C207F + p.SLIT2.D2(WT) Increase:2 Decrease:2 Increase:1 Neutral:0 Increase:1 Decrease:2 2 10 Less disrupting 
(TS < Mean TS)

  p.G86E + p.SLIT2.D2(WT) Increase:2 Decrease:2 Neutral:0 Neutral:0 Increase:1 Decrease:2 2 9 Less disrupting 
(TS < Mean TS)

  p.N430K + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Decrease:2 Neutral:0 Decrease:2 Neutral:0 1 9 Less disrupting 
(TS < Mean TS)

  p.P322L + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Decrease:2 Neutral:0 Decrease:2 Neutral:0 1 9 Less disrupting 
(TS < Mean TS)

  p.R456H + p.ROBO4.IG1-2(WT) Increase:2 Decrease:2 Increase:1 Neutral:0 Decrease:2 Neutral:0 1 8 Less disrupting 
(TS < Mean TS)

  p.L398F + p.ROBO4.IG1-2(WT) Decrease:1 Decrease:2 Decrease:2 Neutral:0 Increase:1 Increase:1 1 8 Less disrupting 
(TS < Mean TS)

  p.G102C + p.SLIT2.D2(WT) Decrease:1 Increase:1 Increase:1 Decrease:2 Increase:1 Neutral:0 1 7 Less disrupting 
(TS < Mean TS)

(B) Protein–protein docking interactions

 (III) ROBO1 + SLIT2

    p.P54R + p.ROBO1(WT) Increase:2 Decrease:2 Increase:1 Decrease:2 Decrease:2 Increase:1 2 12 More disrupting 
(TS > Mean TS)

  p.P665S + p.ROBO1(WT) Increase:2 Decrease:2 Decrease:2 Decrease:2 Increase:1 Decrease:2 1 12 More disrupting 
(TS > Mean TS)

  p.G576R + p.ROBO1 (WT) Increase:2 Decrease:2 Increase:1 Decrease:2 Decrease:2 Decrease:2 1 12 More disrupting 
(TS > Mean TS)

  p.R635S + p.SLIT2 (WT) Increase:2 Decrease:2 Increase:1 Decrease:2 Increase:1 Decrease:2 1 11 More disrupting 
(TS > Mean TS)

  p.D312V + p.SLIT2 (WT) Increase:2 Increase:1 Decrease:2 Neutral : 0 Decrease:2 Decrease:2 2 11 More disrupting 
(TS > Mean TS)

  p.P176L + p.SLIT2 (WT) Increase:2 Decrease:2 Increase:1 Decrease:2 Increase:1 Decrease:2 1 11 More disrupting 
(TS > Mean TS)

  p.C476Y + p.SLIT2 (WT) Increase:2 Decrease:2 Increase:1 Increase:1 Decrease:2 Decrease:2 1 11 More disrupting 
(TS > Mean TS)

 Mean = 10.64

  p.R306I + p.SLIT2 (WT) Increase:2 Increase:1 Increase:1 Increase:1 Increase:1 Decrease:2 2 10 Less disrupting 
(TS < Mean TS)

  p.S636C + p.ROBO1 (WT) Increase:2 Increase:1 Increase:1 Decrease:2 Decrease:2 Neutral : 0 2 10 Less disrupting 
(TS < Mean TS)

  p.G337V + p.SLIT2 (WT) Increase:2 Increase:1 Increase:1 Neutral : 0 Increase:1 Decrease:2 2 9 Less disrupting 
(TS < Mean TS)

  p.C215Y + p.ROBO1 (WT) Increase:2 Increase:1 Increase:1 Increase:1 Increase:1 Increase:1 1 8 Less disrupting 
(TS < Mean TS)

 (IV) ROBO4 + SLIT2

  p.W397C + p.SLIT2 (WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Increase:1 2 11 More disrupting 
(TS > Mean TS)

  p.G425V + p.SLIT2(WT) Increase: 2 Decrease: 2 Increase: 1 Decrease: 2 Decrease: 2 Neutral : 0 2 11 More disrupting 
(TS > Mean TS)

Continued
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contribute to a more significant perturbation/disruption in the protein–protein interaction compared to their 
respective wild type docked complexes. The results of the analysis for both lung cancer and non-lung cancer 
datasets are depicted in (Table 4).

Finally, pairwise structural alignment of the mutant-to-wild type on wild type-to-wild type docked complexes 
followed by calculation of RMSD values of the alignment in UCSF-Chimera revealed true nature of the variants 
on structural distortions and alteration in the global conformation of the mutant complex and PPIs. Higher the 
RMSD value more significant is the deviation from the wild type conformation. Thus, to grade the variant, a 
mean score of the RMSD values of the docked complexes for ROBO1.IG1:SLIT2.D2 and ROBO4.IG1-2:SLIT2.
D2 complexes were calculated separately. The RMSD value of each alignment was categorised into three groups, 
i.e. ’Neutral’—RMSD same as the mean value, ’High disruptor’—RMSD higher than the mean value and ’Low 
disruptors-RMSD lower than the mean value. Each category is depicted pictorially in the following figure (Fig. 2). 
The residue-specific interactions for each of the domain-domain docked complexes mentioned in Fig. 2 are 
summarised in Supplementary Information, Table S5.

Similarly, mutant to wild type whole protein–protein interaction analyses were done following the same 
protocol for the prioritised variants residing outside the interaction domains of the receptors and ligands. Out 
of 15 variants and 20 docked complexes, all were found to have increased free energy change compared to the 
respective wild types. A decrease in binding affinity was found for 12 docked complexes of 9 distinct vari-
ants, while the remaining showed an increase in binding affinity. Analysis over ePISA webserver revealed 5 
docked complexes for 3 distinct variants to have decreased gain in solvation energy upon docking, 1 variant 
had a neutral effect on solvation energy. In comparison, 14 docked complexes with 11 distinct variants show an 
increase in solvation energy as compared to their respective wild type docked complexes of ROBO1.IG1:SLIT2.
D2 and ROBO4.IG1-2:SLIT2.D2. About 8 variants each in the categories of interactions mentioned above cause a 
decrease in the number of hydrogen bonds, van der Waals interactions, and salt bridges, respectively that confers 
more significant perturbation/disruption in protein–protein interaction of the receptor and ligand. Following 
the same protocol, superimposition analysis was performed in UCSF-Chimera by a pairwise structural align-
ment that revealed 4 variants of ROBO1 and 3 variants of SLIT2 to have a more significant disruptive effect on 
ROBO1:SLIT2 docking interaction while 2 variants of ROBO1 and 2 variants of SLIT2 have a lesser disruptive 
effect on ROBO1:SLIT2 docking interaction.

Similarly, 4 variants of ROBO4 and 2 variants of SLIT2 have a more significant disruptive effect on 
ROBO4:SLIT2 docking interaction whereas 3 variants of SLIT2 have a lesser disruptive effect on ROBO4:SLIT2 
docking interaction (Fig. 3). The residue-specific interactions for each of the protein–protein docked complexes 
mentioned in Fig. 3 are summarised in Supplementary Information, Table S6. The results for both lung cancer 
and non-lung cancer datasets are summarised (Table 4).

A cumulative weighted score of each post-docking analysis outcomes for each mutant was calculated, followed 
by the estimation of the mean score of a particular docking category (Table 1). The variant was graded as "more 
disruptive" when its cumulative score was above the mean and as "less disruptive" when its cumulative score was 
below mean tending towards ’0′ (wild type) (Table 4 and Fig. 4).

Discussion
Metastasis is the process of tumour cells migrating to secondary sites through blood or lymph vessels. In lung 
cancer, SLIT-ROBO pathway inhibits tumour cell metastasis through SLIT/ROBO/ Myo9b/RhoA signalling 
 axis28. Myosin 9b (Myo9b) is a RhoGAP protein, which modulates protrusion of lamellipodia and retraction of 
the tail by blocking RhoA activation in migrating immune  cells28. Myo9b is overexpressed in lung cancer tissue, 
and it interacts with ROBO1-ICD through its RhoGAP domain, which suppresses the Myo9b RhoGAP activ-
ity. Thus, the regular interaction of SLIT2 with ROBO1 suppresses Myo9b leading to inhibition of  metastasis28.

Protein–Protein Interactions
Changes in free 
energy (ΔG)

Changes in 
Binding affinity 
(ΔΔGBind)

Gain in 
Solvation 
energy (ΔiG)

H-bonds 
(N)

Van der Waals 
interactions 
(N)

Salt-bridges 
(N)

Super-
imposition 
(RMSD)

Total 
Score 
(TS)

Predictive 
outcome

  p.G876V + p.SLIT2(WT) Increase: 2 Decrease: 2 Increase: 1 Decrease: 2 Decrease: 2 Neutral : 0 2 11 More disrupting 
(TS > Mean TS)

  p.P665S + p.ROBO4(WT) Increase:2 Decrease:2 Decrease:2 Increase:1 Increase:1 Increase:1 2 11 More disrupting 
(TS > Mean TS)

  p.G829W + p.SLIT2 (WT) Increase:2 Increase:1 Increase:1 Decrease:2 Decrease:2 Neutral : 0 2 10 More disrupting 
(TS > Mean TS)

  p.G576R + p.ROBO4 (WT) Increase:2 Decrease:2 Decrease:2 Neutral : 0 Increase:1 Increase:1 2 10 More disrupting 
(TS > Mean TS)

 Mean = 9.222

  p.S636C + p.ROBO4 (WT) Increase:2 Increase:1 Increase:1 Increase:1 Increase:1 Increase:1 2 9 Less disrupting 
(TS < Mean TS)

  p.P54R + p.ROBO4(WT) Increase:2 Decrease:2 Neutral : 0 Neutral : 0 Decrease:2 Neutral : 0 0 6 Less disrupting 
(TS < Mean TS)

  p.C215Y + p.ROBO4 (WT) Increase:2 Increase:1 Increase:1 Neutral : 0 Neutral : 0 Neutral : 0 0 4 Less disrupting 
(TS < Mean TS)

Table 4.  Weighted score matrix for the analyses of docked complexes with the final gradation of the variants. 
An assessment of the protein–protein interaction influenced by somatic variants.
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Figure 2.  Domain-Domain interaction of wild type-to-wild type and mutant-to-wild type structures. (a) 
ROBO1.IG1(wt):SLIT2.D2(wt) docked complex, (a′) ROBO1.IG1(wt): SLIT2.D2(wt) interaction plot; (b) 
ROBO4.IG1-2(wt):SLIT2.D2(wt) docked complex, (b′) ROBO4.IG1-2(wt):SLIT2.D2(wt) interaction plot; (c) 
R119Q:SLIT2.D2(wt) docked complex, (c′) R119Q: SLIT2.D2(wt) interaction plot; (d) ROBO1.IG1(wt):Y323H 
docked complex, (d′) ROBO1.IG1(wt): Y323H interaction plot; (e) C207S:SLIT2.D2(wt) docked complex, 
(c′) C207S: SLIT2.D2(wt) interaction plot; (f) ROBO4.IG1-2(wt):R388W docked complex, (b′) ROBO4.IG1-
2(wt):R388W interaction plot; Red depicts ROBO.IG1 and ROBO4.IG1-2 of mutant complex, Green depicts 
wild type ROBO1.IG1 and ROBO4.IG1-2, Blue depicts wild type SLIT2.D2, and Yellow depicts SLIT2.D2 of the 
mutant complex.
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Figure 3.  Protein–Protein interaction of wild type-to-wild type and mutant-to-wild type structures. (a) 
ROBO1(wt):SLIT2(wt) docked complex, (a′) ROBO1(wt):SLIT2(wt) interaction plot; (b) ROBO4(wt):SLIT2(wt) 
docked complex, (b′) ROBO4(wt):SLIT2(wt) interaction plot; (c) D312V:SLIT2(wt) docked complex, (c′) D312V: 
SLIT2(wt) interaction plot; (d) ROBO1(wt):P54R docked complex, (d′) ROBO1(wt): P54R interaction plot; 
(e) G829W:SLIT2(wt) docked complex, (e′) G829W: SLIT2(wt) interaction plot; (f) ROBO4(wt):P665S docked 
complex, (b′) ROBO4(wt):P665S interaction plot; Red depicts ROBO1 and ROBO4 of mutant complex, Green 
depicts wild type ROBO1 and ROBO4, Blue depicts wild type SLIT2 and Yellow depicts SLIT2 of mutant complex.
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Tumour progression and survival depends on its ability to induce angiogenesis to get access to oxygen and 
nutrients for metabolism. ROBO1 and ROBO4 were found to express in the vascular endothelial cells and 
may have some role in tumour angiogenesis, but very little is known to date. Differential expression of SLIT/
ROBO has been found in various phenotypes of endothelial cells where ROBO1 induces long and thin actin 
fibres, whereas ROBO4 was found to induce short and thick actin fibres along with the membrane  ruffles65. 
SLIT2 interacts, with its cognate receptor ROBO1 in the human umbilical vein endothelial cells (HUVECs) and 
tumour-associated endothelial  cells9. Studies have shown that the ROBO4 receptor imparts inhibitory signal to 
endothelial migration, tube formation, and vascular permeability through its interaction with SLIT2, suggesting 
its negative regulatory role in angiogenesis in HUVEC  cells66–68 and an animal model for ocular  angiogenesis69.

Our study is the first report that involves the characterisation of somatic variants of ROBO1.IG1, ROBO4.
IG1-2 and SLIT2.D2 domains reported in various cancers including lung cancer, and their role in domain-domain 
interactions of the receptors (ROBO1.IG1 and ROBO4.IG1-2) and the ligand (SLIT2.D2).

The entire set of missense somatic variants was analysed using the tools mentioned in the materials and 
method segments, and the results were further categorised using a weighted scoring scheme. The method of 
variant prioritisation followed in this work conglomerates and assimilated predictions of multiple tools, thus 
reducing chances of biased misinterpretations. Our results showed that most of the variants were predicted to 
be "Passenger" in nature by the FATHMM algorithm for cancer driver identification. However, the same vari-
ants were predicted to be "Pathogenic" by the FATHMM algorithm for assessing pathogenicity of the coding 
variants. Thus, it indicates their potential role in the molecular interaction between the ROBO1/4 receptors with 
its cognate ligand SLIT2.

Figure 4.  Grading of the variants for their potential impact on the interaction of the receptors to its cognate 
ligand. The assessment of the deviations between the interaction of wild type-to-wild type and mutant-to-
wild type docked complexes. (a) ROBO1.IG1:SLIT2.D2 interaction, (b) ROBO4.IG1-2:SLIT2.D2 interaction, 
(c) ROBO1:SLIT2 interaction, and (d) ROBO4:SLIT2 interaction. The categorisation and distribution of the 
variants compared to wild types based on their cumulative scores were depicted.
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The Gromos ffG43a2 forcefield has been used previously to study the dynamics of Amyloidβ-Peptides70 in 
which the unstructured regions of the peptides have been found to exhibit high mobility in conformational 
sampling space which allows them better chances of interactions with cognate partners. In our study, we have 
also found that the unstructured residues though very minimal in number exhibit higher mobility and thus 
contribute towards the interaction dynamics of the proteins, which is following the observations of a previously 
published  report71. Further, structure-based analysis of the selected variants was done to assess their impact on 
conformational and structural changes within the protein models. The structural attributes analysed, includes 
a change in hydrogen bond and steric clash pattern and number between wild type and  mutants72–76. Thus, it 
substantiates the local structural distortion upon variants that might be detrimental to the integrity and func-
tionality of the proteins. Change in amino acid localisation within the respective domains correlating to its 
accessible surface area for solvent action depicts the severity of the variants on structure–function alterations. 
However, our analysis for variant-induced alteration in ligand binding potential of the domains revealed the 
impact of such variants on the global conformational distortion and modifications of the sub-regions/pockets 
within the protein structure for possible therapeutic interventions targeting the ROBO/SLIT pathway in cancer 
pathogenesis. The variants could create or ablate a ligand/drug-binding pocket, which further signifies the role 
of the variants as candidate molecular targets in lung cancer biology. Our weighted scoring and subsequent 
grading of the variants provided insight into their pathogenicity and probable disrupting effect on molecular 
docking. Post-docking comparative analysis revealed the disruptive effect of the variants on docking dynam-
ics by comparing the change in free energy, binding affinity, gain in solvation energy, bond numbers between 
mutant and wild type docked complexes. Some variants were found to increase the stability of the docking that 
indicates their potential role in altering the potential of downstream signal transduction. The pairwise structural 
alignment of the mutant docked complex over wild type docked complex provided more profound insight into 
the variant-induced structural distortions that are related to the changes in free energy, binding affinity, solva-
tion energy, and bond numbers. Recurrent variants (p.R119Q and p.R131C of ROBO1 and p.R462C, p.A340T, 
p.P322L, p.R461C, p.R388W, p.R420W, and p.G576R of SLIT2) found that implies the pathogenic significance of 
the variants across tumour types. Thus, it signifies the potential role of the variants in critical cancer regulatory 
pathways, such as metastasis and angiogenesis. Our observation mostly points out towards the inter-group amino 
acid substitutions with critical localisation within the loops and hinge regions of the protein structures to be 
responsible for its potential for docking disruption. Another aspect includes the differential surface electrostatic 
potential induced by the variants, like p.D312V, p.G154E, and p.D435V to be an essential determiner for their 
impact on molecular interaction between the cognate receptor and ligand. Often the amino acids belonging to 
the same group, viz. p.G82V, p.I78S, also imparts significant influence on the molecular interaction between the 
proteins, which could be due to their localisation with the protein structure and not because of the nature of the 
substitution. These variants could be the potential players for disruption in ROBO/SLIT interaction, leading to 
increased aggressiveness and metastasis in lung cancer.

Molecular dynamics simulation of the docked complexes for 40 ns using an explicit solvent system — TIP3P 
water  model77 in Gromos96  program78 followed by coarse-grained simulations was done to evaluate their stability. 
Once the simulated complexes were generated, the same was analysed for their structural similarities with the 
original docked complexes, and then the interaction data were also analysed. Majority of structural comparisons 
yielded averaged RMSD values of < 3.0 Å, which is an acceptable range for the comparisons of protein–protein 
interaction complexes which are generated through docking and then subjected to  simulation79. Apart from that, 
the residue-specific Root Mean Square Fluctuation Values (RMSF) (Supplementary Information, Table S7) were 
also generated for each of the complexes. All the results indicate that the original docked complexes, as well as 
the simulated complexes, were conformationally stable and thus, the interaction data and the residues and sites 
of interactions can be considered to be a good fit for understanding Robo-Slit complexes.

Differences in the mutational landscape exist across various cancer types among between the primary and 
metastatic cancers. Although there is an extensive commonality in the mutations between the primary and meta-
static tumours, some are specific for metastasis. Mutation sites in TP53 vary between primary and metastatic sites 
in Colorectal cancer, Glioma, NSCLC, and Prostate  Adenocarcinoma80. The approach of our work paves the way 
to predict if mutations in ROBO1/4 and SLIT2 have the potential to disrupt their cognate physical interaction 
that in turn, could regulate the crucial hallmarks of cancer viz. tumour spread and metastasis. Such mutations 
could be the potential driver or regulator mutations for metastasis and cancer progression. These mutations 
could serve as molecular targets to design effective novel anticancer therapeutic approaches by precision and 
personalised medicine. Further, investigations are needed to confirm the computational data in vitro and in vivo, 
which is beyond the scope of the work presented.

This study deals with the first-ever report on the structural insight of ROBO4.IG1-2 and SLIT2.D2 interaction 
in a computational model. The structure of ROBO4 is distinctively different from the other ROBO receptors 
with only two Immunoglobulin-like (Ig-like) domains and two fibronectin domains. The details of the molecular 
interaction of ROBO4.IG1-2 with SLIT2.D2 in our study could provide shreds of evidence for the ROBO4 medi-
ated angiogenesis in lung cancer pathogenesis.

The results of the present study validate a well designed computational pipeline to detect the pathogenic vari-
ants conferring disruption to molecular docking of candidate proteins and reduce the exorbitant expenses in the 
experimental determination of causal variants. With the advent of high-throughput sequencing technologies, 
new somatic variants have been identified in lung cancer tissue that was previously grouped under other cancers. 
Therefore, we considered all the variants for in silico assessment of their pathogenicity on docking disruption, 
which can be further explored for any real-time evidence in metastasis and angiogenesis associated with lung 
cancer pathophysiology.



16

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21909  | https://doi.org/10.1038/s41598-020-78882-2

www.nature.com/scientificreports/

Data availability
All data generated or analysed during this study are included in this published article and its Supplementary files.

Received: 21 August 2020; Accepted: 1 December 2020

References
 1. Park, K. S. et al. A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat. Med. 17, 1504–1508. https ://doi.

org/10.1038/nm.2473 (2011).
 2. Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292. https ://doi.

org/10.1016/j.cell.2011.09.024 (2011).
 3. Brantley-Sieders, D. M. et al. Angiocrine factors modulate tumor proliferation and motility through EphA2 repression of Slit2 

tumor suppressor function in endothelium. Cancer Res. 71, 976–987. https ://doi.org/10.1158/0008-5472.CAN-10-3396 (2011).
 4. Geutskens, S. B., Hordijk, P. L. & van Hennik, P. B. The chemorepellent Slit3 promotes monocyte migration. J. Immunol. 185, 

7691–7698. https ://doi.org/10.4049/jimmu nol.09038 98 (2010).
 5. Prasad, A., Qamri, Z., Wu, J. & Ganju, R. K. Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells. J. Leukoc. 

Biol. 82, 465–476. https ://doi.org/10.1189/jlb.11066 78 (2007).
 6. Wu, J. Y. et al. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 410, 948–952. 

https ://doi.org/10.1038/35073 616 (2001).
 7. Stella, M. C., Trusolino, L. & Comoglio, P. M. The Slit/Robo system suppresses hepatocyte growth factor-dependent invasion and 

morphogenesis. Mol. Biol. Cell 20, 642–657. https ://doi.org/10.1091/mbc.E08-03-0321 (2009).
 8. Koch, A. W. et al. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev. Cell. 20, 33–46. 

https ://doi.org/10.1016/j.devce l.2010.12.001 (2011).
 9. Marlow, R. et al. Vascular Robo4 restricts proangiogenic VEGF signaling in breast. Proc. Natl. Acad. Sci. U.S.A 107, 10520–10525. 

https ://doi.org/10.1073/pnas.10018 96107  (2010).
 10. Feng, Y., Feng, L., Yu, D., Zou, J. & Huang, Z. srGAP1 mediates the migration inhibition effect of Slit2-Robo1 in colorectal cancer. 

J. Exp. Clin. Cancer Res. 35, 191. https ://doi.org/10.1186/s1304 6-016-0469-x (2016).
 11. Fukuhara, N., Howitt, J. A., Hussain, S. A. & Hohenester, E. Structural and functional analysis of slit and heparin binding to 

immunoglobulin-like domains 1 and 2 of Drosophila Robo. J. Biol. Chem. 283, 16226–16234. https ://doi.org/10.1074/jbc.M8006 
88200  (2008).

 12. Hohenester, E. Structural insight into slit-robo signalling. Biochem. Soc. Trans. 36, 251–256. https ://doi.org/10.1042/BST03 60251  
(2008).

 13. Morlot, C. et al. Structural insights into the Slit-Robo complex. Proc. Natl. Acad. Sci. U.S.A. 104, 14923–14928. https ://doi.
org/10.1073/pnas.07053 10104  (2007).

 14. Seiradake, E. et al. Structure and functional relevance of the Slit2 homodimerisation domain. EMBO Rep. 10, 736–741. https ://
doi.org/10.1038/embor .2009.95 (2009).

 15. Ballard, M. S. & Hinck, L. A roundabout way to cancer. Adv. Cancer Res. 114, 187–235. https ://doi.org/10.1016/B978-0-12-38650 
3-8.00005 -3 (2012).

 16. Xu, F. et al. Whole-exome and targeted sequencing identify ROBO1 and ROBO2 mutations as progression-related drivers in 
myelodysplastic syndromes. Nat. Commun. 6, 8806. https ://doi.org/10.1038/ncomm s9806  (2015).

 17. Xian, J. et al. Inadequate lung development and bronchial hyperplasia in mice with a targeted deletion in the Dutt1/Robo1 gene. 
Proc. Natl. Acad. Sci. U.S.A. 98, 15062–15066. https ://doi.org/10.1073/pnas.25140 7098 (2001).

 18. Mehlen, P., Delloye-Bourgeois, C. & Chedotal, A. Novel roles for Slits and netrins: axon guidance cues as anticancer targets?. Nat. 
Rev. Cancer 11, 188–197. https ://doi.org/10.1038/nrc30 05 (2011).

 19. Nasarre, P., Potiron, V., Drabkin, H. & Roche, J. Guidance molecules in lung cancer. Cell Adh. Migr. 4, 130–145 (2010).
 20. Prasad, A., Paruchuri, V., Preet, A., Latif, F. & Ganju, R. K. Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in 

breast cancer cells. J. Biol. Chem. 283, 26624–26633. https ://doi.org/10.1074/jbc.M8006 79200  (2008).
 21. Huang, T., Kang, W., Cheng, A. S., Yu, J. & To, K. F. The emerging role of Slit-Robo pathway in gastric and other gastro intestinal 

cancers. BMC Cancer 15, 950. https ://doi.org/10.1186/s1288 5-015-1984-4 (2015).
 22. Zhou, W. J. et al. Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during 

colorectal epithelial cell carcinogenesis. Cell Res. 21, 609–626. https ://doi.org/10.1038/cr.2011.17 (2011).
 23. Dallol, A. et al. SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated 

in lung and breast cancers. Cancer Res. 62, 5874–5880 (2002).
 24. Kim, H. K. et al. Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma. Neoplasia 10, 1411–1420 

(2008).
 25. Yu, J. et al. The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer. Oncogene 29, 5370–5380. https ://

doi.org/10.1038/onc.2010.269 (2010).
 26. Tseng, R. C. et al. SLIT2 attenuation during lung cancer progression deregulates beta-catenin and E-cadherin and associates with 

poor prognosis. Cancer Res. 70, 543–551. https ://doi.org/10.1158/0008-5472.CAN-09-2084 (2010).
 27. Maiti, G. P. et al. Frequent inactivation of SLIT2 and ROBO1 signaling in head and neck lesions: clinical and prognostic implica-

tions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 119, 202–212. https ://doi.org/10.1016/j.oooo.2014.09.029 (2015).
 28. Kong, R. et al. Myo9b is a key player in SLIT/ROBO-mediated lung tumor suppression. J. Clin. Invest. 125, 4407–4420. https ://

doi.org/10.1172/JCI81 673 (2015).
 29. Wen, P. et al. USP33, a new player in lung cancer, mediates Slit-Robo signaling. Protein Cell 5, 704–713. https ://doi.org/10.1007/

s1323 8-014-0070-z (2014).
 30. Yuasa-Kawada, J., Kinoshita-Kawada, M., Rao, Y. & Wu, J. Y. Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling 

in inhibiting breast cancer cell migration. Proc. Natl. Acad. Sci. U.S.A. 106, 14530–14535. https ://doi.org/10.1073/pnas.08012 62106  
(2009).

 31. Taguchi, A. et al. Lung cancer signatures in plasma based on proteome profiling of mouse tumor models. Cancer Cell 20, 289–299. 
https ://doi.org/10.1016/j.ccr.2011.08.007 (2011).

 32. Park, K. W. et al. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev. Biol. 261, 251–267 (2003).
 33. Pircher, A. et al. Favorable prognosis of operable non-small cell lung cancer (NSCLC) patients harboring an increased expression 

of tumor endothelial markers (TEMs). Lung Cancer 81, 252–258. https ://doi.org/10.1016/j.lungc an.2013.04.014 (2013).
 34. Houlston, R. S. & Peto, J. The search for low-penetrance cancer susceptibility alleles. Oncogene 23, 6471–6476. https ://doi.

org/10.1038/sj.onc.12079 51 (2004).
 35. Bamford, S. et al. The COSMIC (catalogue of somatic mutations in cancer) database and website. Br. J. Cancer. 91, 355–358. https 

://doi.org/10.1038/sj.bjc.66018 94 (2004).
 36. Apweiler, R. et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 32, D115-119. https ://doi.org/10.1093/nar/

gkh13 1 (2004).

https://doi.org/10.1038/nm.2473
https://doi.org/10.1038/nm.2473
https://doi.org/10.1016/j.cell.2011.09.024
https://doi.org/10.1016/j.cell.2011.09.024
https://doi.org/10.1158/0008-5472.CAN-10-3396
https://doi.org/10.4049/jimmunol.0903898
https://doi.org/10.1189/jlb.1106678
https://doi.org/10.1038/35073616
https://doi.org/10.1091/mbc.E08-03-0321
https://doi.org/10.1016/j.devcel.2010.12.001
https://doi.org/10.1073/pnas.1001896107
https://doi.org/10.1186/s13046-016-0469-x
https://doi.org/10.1074/jbc.M800688200
https://doi.org/10.1074/jbc.M800688200
https://doi.org/10.1042/BST0360251
https://doi.org/10.1073/pnas.0705310104
https://doi.org/10.1073/pnas.0705310104
https://doi.org/10.1038/embor.2009.95
https://doi.org/10.1038/embor.2009.95
https://doi.org/10.1016/B978-0-12-386503-8.00005-3
https://doi.org/10.1016/B978-0-12-386503-8.00005-3
https://doi.org/10.1038/ncomms9806
https://doi.org/10.1073/pnas.251407098
https://doi.org/10.1038/nrc3005
https://doi.org/10.1074/jbc.M800679200
https://doi.org/10.1186/s12885-015-1984-4
https://doi.org/10.1038/cr.2011.17
https://doi.org/10.1038/onc.2010.269
https://doi.org/10.1038/onc.2010.269
https://doi.org/10.1158/0008-5472.CAN-09-2084
https://doi.org/10.1016/j.oooo.2014.09.029
https://doi.org/10.1172/JCI81673
https://doi.org/10.1172/JCI81673
https://doi.org/10.1007/s13238-014-0070-z
https://doi.org/10.1007/s13238-014-0070-z
https://doi.org/10.1073/pnas.0801262106
https://doi.org/10.1016/j.ccr.2011.08.007
https://doi.org/10.1016/j.lungcan.2013.04.014
https://doi.org/10.1038/sj.onc.1207951
https://doi.org/10.1038/sj.onc.1207951
https://doi.org/10.1038/sj.bjc.6601894
https://doi.org/10.1038/sj.bjc.6601894
https://doi.org/10.1093/nar/gkh131
https://doi.org/10.1093/nar/gkh131


17

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21909  | https://doi.org/10.1038/s41598-020-78882-2

www.nature.com/scientificreports/

 37. UniProt, C. The universal protein resource (UniProt). Nucleic Acids Res. 36, D190-195. https ://doi.org/10.1093/nar/gkm89 5 (2008).
 38. Buchan, D. W., Minneci, F., Nugent, T. C., Bryson, K. & Jones, D. T. Scalable web services for the PSIPRED protein analysis work-

bench. Nucleic Acids Res. 41, W349-357. https ://doi.org/10.1093/nar/gkt38 1 (2013).
 39. Meszaros, B., Erdos, G. & Dosztanyi, Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state 

and protein binding. Nucleic Acids Res. 46, W329–W337. https ://doi.org/10.1093/nar/gky38 4 (2018).
 40. Patthy, L. Protein Evolution (Blackwell Publishing, Hobken, 2008).
 41. Choi, Y. & Chan, A. P. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bio-

informatics 31, 2745–2747. https ://doi.org/10.1093/bioin forma tics/btv19 5 (2015).
 42. Ng, P. C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).
 43. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. 

Protoc. Hum. Genet. Chapter 7, Unit7 20 (2013). https ://doi.org/10.1002/04711 42905 .hg072 0s76
 44. Calabrese, R., Capriotti, E., Fariselli, P., Martelli, P. L. & Casadio, R. Functional annotations improve the predictive score of human 

disease-related mutations in proteins. Hum. Mutat. 30, 1237–1244. https ://doi.org/10.1002/humu.21047  (2009).
 45. Capriotti, E., Fariselli, P. & Casadio, R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or 

structure. Nucleic Acids Res. 33, W306–W310. https ://doi.org/10.1093/nar/gki37 5 (2005).
 46. Shihab, H. A. et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden 

Markov models. Hum. Mutat. 34, 57–65. https ://doi.org/10.1002/humu.22225  (2013).
 47. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https 

://doi.org/10.1016/S0022 -2836(05)80360 -2 (1990).
 48. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 

3389–3402 (1997).
 49. Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).
 50. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 47(56), 1–32. https 

://doi.org/10.1002/04712 50953 .bi050 6s47 (2014).
 51. Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS—a message-passing parallel molecular-dynamics implementa-

tion. Comput. Phys. Commun. 91, 43–56. https ://doi.org/10.1016/0010-4655(95)00042 -e (1995).
 52. Lindahl, E., Hess, B. & Van Der Spoel, D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 

7, 306–317. https ://doi.org/10.1007/s0089 40100 045 (2001).
 53. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta. Crystallogr. D. Biol. Crystal-

logr. 66, 12–21. https ://doi.org/10.1107/S0907 44490 90420 73 (2010).
 54. Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electro-

phoresis 18, 2714–2723. https ://doi.org/10.1002/elps.11501 81505  (1997).
 55. Ahmad, S., Gromiha, M., Fawareh, H. & Sarai, A. ASAView: database and tool for solvent accessibility representation in proteins. 

BMC Bioinform. 5, 51. https ://doi.org/10.1186/1471-2105-5-51 (2004).
 56. Volkamer, A., Kuhn, D., Rippmann, F. & Rarey, M. DoGSiteScorer: a web server for automatic binding site prediction, analysis 

and druggability assessment. Bioinformatics 28, 2074–2075. https ://doi.org/10.1093/bioin forma tics/bts31 0 (2012).
 57. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. PatchDock and SymmDock: servers for rigid and symmetric 

docking. Nucleic Acids Res. 33, W363-367. https ://doi.org/10.1093/nar/gki48 1 (2005).
 58. Dominguez, C., Boelens, R. & Bonvin, A. M. HADDOCK: a protein-protein docking approach based on biochemical or biophysical 

information. J. Am. Chem. Soc. 125, 1731–1737. https ://doi.org/10.1021/ja026 939x (2003).
 59. van Zundert, G. C. P. et al. The HADDOCK2.2 Web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. 

Biol. 428, 720–725. https ://doi.org/10.1016/j.jmb.2015.09.014 (2016).
 60. Laskowski, R. A., Jablonska, J., Pravda, L., Varekova, R. S. & Thornton, J. M. PDBsum: structural summaries of PDB entries. Protein 

Sci. 27, 129–134. https ://doi.org/10.1002/pro.3289 (2018).
 61. Dehouck, Y., Kwasigroch, J. M., Rooman, M. & Gilis, D. BeAtMuSiC: prediction of changes in protein-protein binding affinity on 

mutations. Nucleic Acids Res. 41, W333-339. https ://doi.org/10.1093/nar/gkt45 0 (2013).
 62. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797. https ://doi.

org/10.1016/j.jmb.2007.05.022 (2007).
 63. Pettersen, E. F. et al. UCSF Chimera–a visualisation system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612. 

https ://doi.org/10.1002/jcc.20084  (2004).
 64. Naganathan, A. N., Doshi, U., Fung, A., Sadqi, M. & Munoz, V. Dynamics, energetics, and structure in protein folding. Biochemistry 

45, 8466–8475. https ://doi.org/10.1021/bi060 643c (2006).
 65. Sheldon, H. et al. Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP 

and other actin nucleation-promoting factors. FASEB J. 23, 513–522. https ://doi.org/10.1096/fj.07-09826 9 (2009).
 66. Jones, C. A. et al. Robo4 stabilises the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. 

Nat. Med. 14, 448–453. https ://doi.org/10.1038/nm174 2 (2008).
 67. Tian, R. et al. Investigation of the regulation of Roundabout4 by hypoxia-inducible factor-1alpha in microvascular endothelial 

cells. Invest. Ophthalmol. Vis. Sci. 56, 2586–2594. https ://doi.org/10.1167/iovs.14-14409  (2015).
 68. Yang, Y. C. et al. The differential roles of Slit2-exon 15 splicing variants in angiogenesis and HUVEC permeability. Angiogenesis 

18, 301–312. https ://doi.org/10.1007/s1045 6-015-9467-4 (2015).
 69. Chen, H. et al. Slit-Robo signaling in ocular angiogenesis. Adv. Exp. Med. Biol. 664, 457–463. https ://doi.org/10.1007/978-1-4419-

1399-9_52 (2010).
 70. Olubiyi, O. O. & Strodel, B. Structures of the amyloid beta-peptides Abeta1-40 and Abeta1-42 as influenced by pH and a D-peptide. 

J. Phys. Chem. B 116, 3280–3291. https ://doi.org/10.1021/jp207 6337 (2012).
 71. Song, D., Luo, R. & Chen, H. F. The IDP-specific force field ff14IDPSFF improves the conformer sampling of intrinsically disordered 

proteins. J. Chem. Inf. Model. 57, 1166–1178. https ://doi.org/10.1021/acs.jcim.7b001 35 (2017).
 72. Chiappori, F., D’Ursi, P., Merelli, I., Milanesi, L. & Rovida, E. In silico saturation mutagenesis and docking screening for the 

analysis of protein-ligand interaction: the Endothelial Protein C Receptor case study. BMC Bioinform. 10(Suppl 12), 33. https ://
doi.org/10.1186/1471-2105-10-S12-S3 (2009).

 73. Heler, R., Bell, J. K. & Boland, L. M. Homology model and targeted mutagenesis identify critical residues for arachidonic acid 
inhibition of Kv4 channels. Channels (Austin) 7, 74–84. https ://doi.org/10.4161/chan.23453  (2013).

 74. Jubb, H. C. et al. Mutations at protein-protein interfaces: small changes over big surfaces have large impacts on human health. 
Prog. Biophys. Mol. Biol. 128, 3–13. https ://doi.org/10.1016/j.pbiom olbio .2016.10.002 (2017).

 75. Knape, K., Linder, T., Wolschann, P., Beyer, A. & Stary-Weinzinger, A. In silico analysis of conformational changes induced by 
mutation of aromatic binding residues: consequences for drug binding in the hERG K+ channel. PLoS ONE 6, e28778. https ://doi.
org/10.1371/journ al.pone.00287 78 (2011).

 76. Sonawane, P., Patel, K., Vishwakarma, R. K., Singh, S. & Khan, B. M. in Silico mutagenesis and docking studies of active site residues 
suggest altered substrate specificity and possible physiological role of Cinnamoyl CoA Reductase 1 (Ll-CCRH1). Bioinformation 
9, 224–232. https ://doi.org/10.6026/97320 63000 9224 (2013).

 77. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for 
simulating liquid water. J. Chem. Phys. 79, 926–935. https ://doi.org/10.1063/1.44586 9 (1983).

https://doi.org/10.1093/nar/gkm895
https://doi.org/10.1093/nar/gkt381
https://doi.org/10.1093/nar/gky384
https://doi.org/10.1093/bioinformatics/btv195
https://doi.org/10.1002/0471142905.hg0720s76
https://doi.org/10.1002/humu.21047
https://doi.org/10.1093/nar/gki375
https://doi.org/10.1002/humu.22225
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1002/0471250953.bi0506s47
https://doi.org/10.1002/0471250953.bi0506s47
https://doi.org/10.1016/0010-4655(95)00042-e
https://doi.org/10.1007/s008940100045
https://doi.org/10.1107/S0907444909042073
https://doi.org/10.1002/elps.1150181505
https://doi.org/10.1186/1471-2105-5-51
https://doi.org/10.1093/bioinformatics/bts310
https://doi.org/10.1093/nar/gki481
https://doi.org/10.1021/ja026939x
https://doi.org/10.1016/j.jmb.2015.09.014
https://doi.org/10.1002/pro.3289
https://doi.org/10.1093/nar/gkt450
https://doi.org/10.1016/j.jmb.2007.05.022
https://doi.org/10.1016/j.jmb.2007.05.022
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1021/bi060643c
https://doi.org/10.1096/fj.07-098269
https://doi.org/10.1038/nm1742
https://doi.org/10.1167/iovs.14-14409
https://doi.org/10.1007/s10456-015-9467-4
https://doi.org/10.1007/978-1-4419-1399-9_52
https://doi.org/10.1007/978-1-4419-1399-9_52
https://doi.org/10.1021/jp2076337
https://doi.org/10.1021/acs.jcim.7b00135
https://doi.org/10.1186/1471-2105-10-S12-S3
https://doi.org/10.1186/1471-2105-10-S12-S3
https://doi.org/10.4161/chan.23453
https://doi.org/10.1016/j.pbiomolbio.2016.10.002
https://doi.org/10.1371/journal.pone.0028778
https://doi.org/10.1371/journal.pone.0028778
https://doi.org/10.6026/97320630009224
https://doi.org/10.1063/1.445869


18

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21909  | https://doi.org/10.1038/s41598-020-78882-2

www.nature.com/scientificreports/

 78. Scott, W. R. P. et al. The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103, 3596–3607. https ://doi.
org/10.1021/jp984 217f (1999).

 79. Tsai, H. H., Tsai, C. J., Ma, B. & Nussinov, R. In silico protein design by combinatorial assembly of protein building blocks. Protein 
Sci. 13, 2753–2765. https ://doi.org/10.1110/ps.04774 004 (2004).

 80. Liu, G., Zhan, X., Dong, C. & Liu, L. Genomics alterations of metastatic and primary tissues across 15 cancer types. Sci. Rep. 7, 
13262. https ://doi.org/10.1038/s4159 8-017-13650 -3 (2017).

Acknowledgements
The authors acknowledge the support provided to Department of Genetics, University of Calcutta by The Depart-
ment of Science and Technology (DST), Government of India—Promotion of University Research and Scientific 
Excellence (DST-PURSE). The authors also acknowledge the technical help and support provided by the team 
members of The Biome Research Facility, AD60, Sector I, Salt Lake City, Kolkata, India.

Author contributions
D.S. and M.S.: Conceptualisation. G.B., D.S.: Data Curation. S.G., D.S., and G.B.: Methodology, Software, and 
Investigation. M.S.: Project Administration. S.G. and M.S.: Resources. M.S. and S.G.: Supervision. S.G., M.S., G.B. 
and D.S.: Formal analysis and Validation. D.S.: Writing-Original draft. D.S., S.G. and M.S.: Writing-Reviewing and 
editing. S.G., M.S.: Supervision. All the authors have reviewed the manuscript and have agreed for publication.

Funding
This research did not receive any specific financial assistance from funding agencies in the public, commercial, 
or not-for-profit sectors.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https ://doi.
org/10.1038/s4159 8-020-78882 -2.

Correspondence and requests for materials should be addressed to S.G. or M.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1021/jp984217f
https://doi.org/10.1021/jp984217f
https://doi.org/10.1110/ps.04774004
https://doi.org/10.1038/s41598-017-13650-3
https://doi.org/10.1038/s41598-020-78882-2
https://doi.org/10.1038/s41598-020-78882-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Structural insights and evaluation of the potential impact of missense variants on the interactions of SLIT2 with ROBO14 in cancer progression
	Methods
	Data mining. 
	Identification of the degree of disorder in the proteins. 
	Variant prioritisation by sequence-specific parameters. 
	Generation of Homology models for the wild type proteins. 
	Generation of Mutant Structures from wild type homology models. 
	Structural analyses of the mutant models. 
	Molecular docking. 
	Analyses of docked complexes. 
	Analyses of structural distortion. 
	Cumulative score and grading of variants from docked complex analysis. 


	Results
	Curation and categorisation of somatic variants. 
	Prioritisation of variants on sequence-based and structure-based parameters. 
	Structure validation and analysis. 
	Molecular docking and post-docking analysis. 

	Discussion
	References
	Acknowledgements


