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Evaluation of primary breast 
cancers using dedicated breast PET 
and whole‑body PET
Deep K. Hathi1, Wen Li1, Youngho Seo1, Robert R. Flavell1, John Kornak2, Benjamin L. Franc3, 
Bonnie N. Joe1, Laura J. Esserman4, Nola M. Hylton1 & Ella F. Jones1*

Metabolic imaging of the primary breast tumor with 18F‑fluorodeoxyglucose  ([18F]FDG) PET may 
assist in predicting treatment response in the neoadjuvant chemotherapy (NAC) setting. Dedicated 
breast PET (dbPET) is a high‑resolution imaging modality with demonstrated ability in highlighting 
intratumoral heterogeneity and identifying small lesions in the breast volume. In this study, we 
characterized similarities and differences in the uptake of  [18F]FDG in dbPET compared to whole‑body 
PET (wbPET) in a cohort of ten patients with biopsy‑confirmed, locally advanced breast cancer at the 
pre‑treatment timepoint. Patients received bilateral dbPET and wbPET following administration of 
186 MBq and 307 MBq  [18F]FDG on separate days, respectively.  [18F]FDG uptake measurements and 20 
radiomic features based on morphology, tumor intensity, and texture were calculated and compared. 
There was a fivefold increase in  SULpeak for dbPET (median difference (95% CI): 4.0 mL−1 (1.8–6.4 mL−1), 
p = 0.006). Additionally, spatial heterogeneity features showed statistically significant differences 
between dbPET and wbPET. The higher  [18F]FDG uptake in dbPET highlighted the dynamic range of 
this breast‑specific imaging modality. Combining with the higher spatial resolution, dbPET may be 
able to detect treatment response in the primary tumor during NAC, and future studies with larger 
cohorts are warranted.

Breast cancer is a heterogeneous disease defined by the underlying genomic and proteomic expression profiles 
that affect treatment outcomes, recurrence risk, and response to  therapy1–4. The identification of the four primary 
subtypes has enabled increasingly personalized treatment tailored to the molecular signature of breast cancers, 
resulting in improved prognoses and quality of  life5,6. In particular, imaging of the primary tumor may provide 
critical predictive information for early response to targeted systemic therapies in patients receiving neoadjuvant 
chemotherapy (NAC)7,8.

Uptake of the glucose analog 18F-fluorodeoxyglucose  ([18F]FDG) in tumor tissues provides an opportunity to 
assess the tumor’s viability and glycolytic potential. Whole-body positron emission tomography (wbPET) with 
 [18F]FDG is the primary tool for disease staging, with demonstrated sensitivity in detecting early response to 
 NAC9–12. However, the effectiveness of wbPET in the quantitative measurement of  [18F]FDG uptake in primary 
breast tumors is hampered due to significant partial volume effects caused by limited spatial resolution, especially 
in small  tumors13,14. Additionally, wbPET is primarily performed with the patient in a supine position, resulting 
in the collapse of the breast volume and blurring due to respiratory  motion15. A complementary method for 
functional 3D imaging of the primary breast tumor is the use of dedicated breast PET (dbPET)16.

Studies with  [18F]FDG-dbPET have qualitatively demonstrated its improved spatial resolution and uptake 
sensitivity within the primary tumor, at the expense of not being able to image metastatic  lesions17,18. Com-
pared to wbPET-CT, dbPET may also provide an opportunity for longitudinal imaging using a lower dose of 
the radiotracer (185 vs. 370 MBq) and lower radiation exposure without CT. The dbPET scanner in the cur-
rent study consists of a single ring detector that translates axially over the length of the  breast19,20. Because the 
patient is in a prone position, there is no breast compression, allowing for full breast volume imaging. We have 
also previously demonstrated this system’s robustness for experimental imaging tracers, such as the radiotracer 
18F-fluoroestradiol in a pilot study of estrogen receptor-positive breast cancer  patients21. However, there is a 
need for validating the uptake, and tumor volume measurements generated from dbPET against the standard, 
clinically recognized wbPET. In this study, we assessed  [18F]FDG uptake in pre-treatment breast cancer patients 
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that received both dbPET and wbPET to characterize the similarities and differences in standard descriptive 
metrics, including standardized uptake values (SUVs), metabolic measures, and spatial heterogeneity statistics.

Results
Patient and tumor characteristics. This cohort consisted of ten patients with biopsy-confirmed, locally 
advanced, stage II-III invasive ductal carcinoma (Table 1). Patients in the study cohort had a median age of 46.5 
with an interquartile range (IQR) of 39.3–57.8. 60% of the patients were pre-menopausal (≤ 50 years, N = 6), and 
40% were post-menopausal (> 50 years, N = 4). Based on the hormone receptor (estrogen receptor (ER), proges-
terone receptor (PR)), and human epidermal growth factor receptor 2 (HER2) status, the primary breast tumors 
(N = 10) were mostly hormonal positive (ER+/PR+/HER2+ and ER+/PR+/HER2−, N = 6, 60%) and triple-neg-
ative (ER−/PR−/HER2−, N = 3, 30%). The median longest diameter measured by magnetic resonance imaging 
(MRI) was 3.4 cm (IQR 2.4–5.6 cm). The majority of patients (80%, N = 8) also had positive nodal involvement.

Comparison of [18F]FDG‑dbPET and [18F]FDG‑wbPET. Representative  [18F]FDG-wbPET and -dbPET 
images of a 39-year-old breast cancer patient with an agglomerate of ER+/PR+/HER2+ tumors are shown in 
Fig. 1. The primary tumor was highlighted in the left breast, with comparable maximum standardized uptake 
value normalized to lean body mass  (SULmax) for both methods (wbPET 13.25 mL−1 vs dbPET 10.57 mL−1). The 
primary difference observed between the dbPET and wbPET was the heterogeneity of the tumor in the ipsilat-
eral breast. Due to the lower post-reconstruction voxel resolution (4 × 4 × 4 mm) and the smaller breast tumor 
tissue size relative to the total field of view (FOV), the primary tumor in the wbPET comprises a relatively small 
fraction of the total voxel volume (Fig. 1a, a inset). By contrast, dbPET had a higher in-tumor resolution (1 × 
1 × 1 mm post-reconstruction) and highlighted the spatial heterogeneity (Fig. 1b). Signal intensity histograms 
of the tumor volume of interest (VOI) with fixed bin number (50 bins) were generated for wbPET (Fig. 1c) and 
dbPET (Fig. 1d). The observed qualitative differences in spatial and signal intensity heterogeneity in dbPET may 
be largely driven by the higher voxel resolution and tumor tissue fraction.

Uptake and metabolically active tumor volume statistics were calculated and compared for both modalities 
(Fig. 2).  SULmax (median difference (95% CI): 5.88 mL−1 (2.88, 8.87 mL−1), p = 0.006),  SULmean (1.76 mL−1 (0.89, 
2.58 mL−1), p = 0.002), and  SULpeak (4.01 mL−1 (1.80, 6.40 mL−1), p = 0.006) were all statistical significantly higher 
for dbPET relative to wbPET (Fig. 2a–c). The tumor-background ratios with contralateral breast normalization 
were similar [− 2.28 (− 9.14, 1.56), p = 0.16] for both modalities, although normalization of the wbPET tumor 
uptake by the liver VOI resulted in a statistically significant higher tumor-background ratio in dbPET relative to 
wbPET [7.87 (2.17, 13.71), p = 0.004]. The metabolic tumor volume (MTV) was reduced in dbPET [− 4.62 mL 
(− 23.91, 1.72 mL), p = 0.43], while the total lesion glycolysis (TLG) was higher in dbPET [17.63 (− 8.41, 49.15), 
p = 0.27] (Fig. 2e,f). The broad distribution of uptake and tumor volume statistics may be driven by inter-patient 
heterogeneity.

Since the partial volume effect is driven by the lesion size and spatial resolution of reconstructed images, 
the cohort was also examined based on the MRI longest diameter (dMRI) with a cutoff of 2.5 cm [median (IQR) 

Table 1.  Summary of patient and tumor characteristics. ER estrogen receptor, PR progesterone receptor, HER2 
human epidermal growth factor-2, MRI magnetic resonance imaging.

Characteristics Value

Number of patients (N) 10

Tumor characteristics

Number of unique tumors (N) 10

Longest diameter by MRI (cm) [median (interquartile range)] 3.4 (2.3–5.6)

Stage II (N) 6

Stage III (N) 4

Age (years) [median (interquartile range)] 46.5 (39.3–57.8)

Body weight (kg) [median (interquartile range)] 66.6 (63.0–68.2)

Menopause status (N)

Pre-menopause (< 50 years) 6

Post-menopause (> 50 years) 4

Subtypes (N)

ER+/PR+/HER2+ 2

ER+/PR+/HER2− 4

ER−/PR−/HER2+ 1

ER−/PR−/HER2− 3

Nodal status

Number of positive nodes (N) 15

Patients with positive involvement (%) 80%

Patients without positive involvement (%) 20%
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2.23 (2.2–2.33) cm, N = 4; 5.45 (3.9–6.48) cm, N = 6] (Table 2). There was a 2.71-fold and 1.58-fold increase in 
 SULpeak in dbPET compared to wbPET in the dMRI ≤ 2.5 cm and dMRI > 2.5 cm groups, respectively. The smaller 
difference in uptake for the lesions with dMRI > 2.5 cm was expected as the impact on partial volume effect due 
to the spatial resolution difference between dbPET and wbPET is smaller for larger  lesions14,22. The differences 
between dbPET and wbPET in the uptake (SUL) and volume-derived measurements (MTV, TLG) generally 
increased in the smaller lesions (dMRI ≤ 2.5 cm) than larger tumors (dMRI > 2.5 cm).

Finally, 20 tumor morphology, tumor signal intensity, and textural features were generated from both modali-
ties (Table 3). Spatial heterogeneity features, specifically the gray-level co-occurrence matrix (GLCM) correlation 
[median difference (95% CI) − 0.42 (− 0.60, − 0.25), p = 0.002], normalized inverse difference [− 0.05 (− 0.08, 
− 0.02), p = 0.002], and joint entropy [− 0.71 (− 2.30, − 0.15), p = 0.01], showed statistically significant difference 
between dbPET and wbPET. There was also a statistically significant decrease in mesh volume [− 11.00 mL 
(− 22.59, − 2.13 mL), p = 0.006] in dbPET relative to wbPET.

Discussion
The motivation for this study was to compare the performance of primary tumor characterization between 
 [18F]FDG-dbPET and  [18F]FDG-wbPET in a pilot study of breast cancer patients. WbPET is primarily used for 
staging and can detect metastases and nodal involvement, which are necessary to devise treatment strategies. 
However, due to the collapsed breast volumes and low relative tumor tissue fraction, wbPET may be limited 

Figure 1.  An example of a 39-year-old breast cancer patient with an agglomerate of ER+/PR+/HER2+ tumors 
imaged by  [18F]FDG-wbPET and -dbPET at the pre-treatment timepoint. (a) A maximum intensity projection 
of  [18F]FDG-wbPET with primary lesions in the left ipsilateral breast (inset). (b) A maximum intensity 
projection of  [18F]FDG-dbPET with corresponding highlighted tumors in the left ipsilateral breast (white 
arrows). (c) Histogram of SULs in the tumor VOI for wbPET. (d) Histogram of SULs in the tumor VOI for 
dbPET. Number of bins in (c,d) were restricted to 50.
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in precise and quantitative characterization of the primary tumor for studying therapeutic response. Here, we 
examine the similarities and differences in the distribution of  [18F]FDG uptake in dbPET and wbPET at the 
pre-treatment time point.

Steady-state uptake metrics were used to characterize  [18F]FDG-wbPET and -dbPET. As suggested by the 
PET Response Criteria in Solid Tumors (PERCIST), the lean body mass was used to generate SULs to account 
for the dual effects of body weight and height on  uptake23. In general, overall  [18F]FDG uptake values  (SULmax, 
 SULmean, and  SULpeak) in the primary tumor were higher in dbPET compared to wbPET.  SULpeak is considered 
more robust than  SULmax and  SULmean due to its insensitivity to voxel-wise variations. The higher dbPET  SULpeak 
reflects the sensitivity and dynamic range required for detecting changes in tumor uptake following treatment, 

Figure 2.  Comparison of  [18F]FDG uptake in lesions with dbPET and wbPET. (a)  SULmax; (b)  SULmean; (c) 
 SULpeak; (d) Ratio of  SULpeak in tumor to  SULmean in the background. For wbPET, the background VOIs were 
defined separately on the liver and the contralateral breast. Background VOI was defined in the contralateral 
breast for dbPET. (e) Metabolic tumor volume (MTV); and (f) Total lesion glycolysis (TLG).

Table 2.  Summary of dbPET and wbPET uptake metrics for MRI longest diameter (dMRI) ≤ 2.5 cm and 
dMRI > 2.5 cm.

dbPET [Median (IQR)] wbPET [Median (IQR)]

dMRI ≤ 2.5 cm dMRI > 2.5 cm dMRI ≤ 2.5 cm dMRI > 2.5 cm

SULmax 12.39 (10.23–14.6) 14.22 (9.46–17.92) 7.52 (5.17–8.78) 8.04 (5.23–11.38)

SULmean 5.78 (4.37–7.01) 4.00 (3.45–5.32) 3.56 (2.65–4.08) 3.35 (2.87–4.18)

SULpeak 11.05 (8.15–12.22) 7.11 (5.38–10.05) 4.07 (3.07–4.29) 4.50 (3.51–6.81)

Tumor-Background (Liver) N/A N/A 2.39 (1.87–2.64) 2.71 (2.07–3.92)

Tumor-Background (Contralateral breast) 4.01 (3.65–7.17) 13.41 (8.97–18.78) 16.64 (7.09–24.44) 14.22 (5.20–20.45)

MTV 9.00 (5.39–12.02) 17.25 (10.39–44.53) 5.8 (4.26–7.26) 24.85 (16.49–79.56)

TLG 54.84 (24.51–84.43) 83.57 (47.66–145.2) 25.06 (16.19–30.34) 64.53 (62.24–95.4)
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although the relative increase in the dynamic range and sensitivity is likely paired with increased background 
noise. To minimize the effect of background noise, a threshold for dbPET with SUV ≥ 3.0 was applied to define 
tumor boundaries. The calculation of  SULpeak involves mean filtering with a 1.2 cm spherical kernel, which may 
further reduce the effect of the increased background signal on the presented  SULpeak. Although the results did 
not reach statistical significance, MTV and TLG were estimated to be higher in wbPET compared to dbPET. 
These trends suggest a role for the partial volume effect, due to lower spatial resolution and tumor tissue fraction 
in  wbPET14. Post hoc analysis of SULs and tumor volume supports this analysis, with the observed increases in 
dbPET-measured  SULpeak, MTV, and TLG in lesions with dMRI ≤ 2.5 cm.

To account for variability introduced by the surrounding tissue, the tumor signal is often normalized by 
the background VOI. In  [18F]FDG-wbPET, the background VOI is defined in the liver in the absence of liver 
metastases, due to its perfused and homogenous uptake of  [18F]FDG. However, this normalization method was 
not available for dbPET and the contralateral breast was used. This method resulted in a fourfold increase of 
tumor-background ratio in dbPET compared to wbPET using liver as the background. While the contralateral 
tissue is a logical background tissue for dbPET, careful consideration should be taken if there is bilateral disease. 
We observed inter-patient heterogeneity in the contralateral breast background signal in both modalities, which 
resulted in minimal difference in tumor-background ratio following normalization by the contralateral breast 
in wbPET. Similar variation in background parenchymal FDG uptake have been observed in other  studies24,25. 
While limiting the PET scans at the early follicular phase of the menstrual cycle may minimize the background 
parenchymal  signal26, the patient’s treatment planning should be taken into consideration for scheduling without 
imposing additional burden. Finally, radiomic features pertaining to heterogeneity and tumor morphology were 
calculated within the tumor VOI for dbPET and wbPET. The improved spatial resolution within the primary 
breast tumor and increased tumor tissue fraction in dbPET relative to wbPET have been previously reported, 
and qualitatively represented in an increase of metabolic heterogeneity in the tumor in a cohort of 35  patients27. 
While textural features of the primary tumor from dbPET images have been analyzed based on breast cancer 
 subtypes28, the similarities and differences of these features have not been assessed between dbPET and wbPET. 
The chosen features have been identified in the literature to be most reflective of changes in spatial and intensity 
 heterogeneity29 and robust to imaging conditions and reconstruction  parameters30. To prevent resolution biases 
from affecting feature calculations, dbPET and wbPET images were down-sampled and up-sampled, respectively, 
to an isotropic voxel size (2 × 2 × 2 mm). Morphological features were concordant with standard uptake volume 
metrics (MTV and TLG), especially mesh volume, which was found to be significantly different between the two 
modalities. Statistically significant difference was also observed in features corresponding to spatial heterogene-
ity, specifically GLCM normalized inverse difference, joint entropy, and correlation. The differences in textural 
heterogeneity features correlate to the observed, qualitative differences between dbPET and wbPET and may be 
primarily driven by the increased sensitivity in dbPET.

Table 3.  Summary of radiomics features for dbPET and wbPET. Statistical significance, median difference, 
and 95% confidence intervals were assessed using the Wilcoxon signed-rank test. GLCM gray-level 
co-occurrence matrix, NGTDM neighborhood gray-tone difference matrix.

Features
dbPET
Median (IQR)

wbPET
Median (IQR)

Median difference (95% 
CI) P-Value

Morphology

Mesh volume  (cm3) 6.08 (2.94–13.65) 19.19 (7.36–26.87) − 11.00 (− 22.59, − 2.13) 0.006

Surface area  (cm2) 26.12 (15.46–68.29) 51.59 (25.28–92.57) − 17.76 (− 150.57, 2.66) 0.77

Sphericity 0.65 (0.54–0.69) 0.70 (0.58–0.74) − 0.03 (− 3.06, 0.90) 0.43

Maximum 3D Diameter 
(cm) 4.24 (2.63–4.80) 43.72 (34.37–72.71) − 1.13 (− 43.07, 0.22) 0.28

Tumor Intensity

Entropy 7.96 (7.49–9.12) 8.89 (8.02–10.33) − 1.12 (− 2.53, 0.3) 0.28

Uniformity 5.1e−3 (2.1e−3–6.5e−3) 2.4e−3 (9.5e−4–4.6e−3) 6.3e−4 (− 0.003, 0.005) 0.70

Skewness 0.90 (0.83–1.07) 0.59 (0.43–0.76) 0.32 (− 0.11, 0.65) 0.13

Kurtosis 3.31 (2.74–3.62) 2.69 (2.57–3.31) 0.53 (− 0.63, 2.93) 0.19

Standard Deviation 1.42 (0.99–2.09) 1.7 (1.22–2.82) − 0.60 (− 3.06, 0.90) 0.43

GLCM

Contrast 2.6e4 (1.4e4–7.7e4) 1.9e4 (7.2e3–2e5) 6.8e3 (− 3.6e5, 1.1e5) 0.92

Correlation 0.43 (0.27–0.54) 0.78 (0.76–0.84) − 0.42 (− 0.60, − 0.25) 0.002

Inverse Difference 0.03 (0.02–0.04) 0.03 (0.01–0.05) − 0.01 (− 0.11, 0.01) 0.56

Normalized Inverse Dif-
ference 0.87 (0.84–0.90) 0.92 (0.90–0.93) − 0.05 (− 0.08, − 0.02) 0.002

Joint Energy 9.01e−4 (4.5e−4–0.002) 6.5e−4 (2.4e−4–9.7e−4) 5.14e−4 (− 1.86e−5, 
8.37e−3) 0.084

Joint Entropy 10.17 (8.93–11.13) 10.97 (10.03–12.06) − 0.71 (− 2.30, − 0.15) 0.01

NGTDM

Busyness 0.008 (0.003–0.019) 8.2e−4 (2.8e−4–1.4e−3) 0.004 (− 0.04, 0.01) 0.0840

Coarseness 0.003 (0.002–0.007) 0.006 (0.003–0.009) − 0.002 (− 0.005, 0.007) 0.2324

Complexity 4.6e6 (2e6–3.7e7) 8.7e6 (1.7e6–2.8e8) − 4.69e6 (− 1.97e9, 
5.37e7) 0.7695

Contrast 31.52 (10.06–116.78) 10.8 (8.05–49.11) 42.24 (− 26.82, 242.48) 0.2754

Strength 490.9 (248.9–1.6e3) 2.4e3 (1.4e3–6.6e3) − 0.001 (− 1.4e4, 176.6) 0.1602
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The  [18F]FDG-dbPET results in this study are concordant with literature of positron emission mammography 
(PEM, NaviScan, CA) and previous cohorts with the MAMMI and Elmammo (Shimadzu, Japan) dbPET systems. 
In a cohort of 388 patients with primary breast lesions, PEM showed comparable accuracy to MRI with improved 
sensitivity compared to wbPET for quantifying primary  lesions31,32. Similar to dbPET, PEM had a smaller FOV 
focusing on the primary lesion at the expense of metastatic lesions, although breast compression and hardware 
design resulted in limited resolution with maximum intensity projection of 2D  images16. The sensitivity, spatial 
resolution, and dose for dbPET in our study recapitulated observations in a cohort of 234 breast cancer patients 
who received  [18F]FDG-dbPET and wbPET/CT for  staging17. In that study, sub-centimeter lesions in the ipsilat-
eral breast were identified by dbPET that were not resolved in the wbPET images. Similarly, using the Elmammo 
system, Sasada et al. compared bilateral  [18F]FDG-dbPET to  [18F]FDG-wbPET in a 47-patient cohort following 
NAC and observed that the tumor-background ratio was more sensitive than  SUVmax to treatment  response33. 
Nishimatsu et al. also observed higher tumor-background ratios in dbPET relative to wbPET in a cohort of 150 
patients, although there was no observable difference in sensitivity to lesion  detection34. In our study, the  SULpeak 
was higher in dbPET, suggesting a larger dynamic range and potentially, higher sensitivity to treatment-induced 
changes in  [18F]FDG uptake. Furthermore, analysis of radiomic features identified statistically significant differ-
ences in GLCM-derived textural heterogeneity markers between dbPET and wbPET.

The limitations of our study are largely driven by hardware design and cohort construction issues. Lesions 
adjacent to the chest wall experienced limited resolution and incidental scatter from the heart, resulting in inac-
curate quantification of uptake. This issue may be mitigated in future studies by using an enlarged aperture on the 
scan bed, a thinner chest resting area, and a flexible silicone sleeve to gain more breast tissues near the chest wall 
to be scanned within the detector field of view. An improved reconstruction algorithm as described by O’Connor 
et al.18 will be installed to reduce the presence of crosstalk in the breast from FDG signals in the myocardium.

In addition, this pilot study had a limited sample size that prohibited additional analyses based on breast 
cancer subtypes. While our objective was to compare the  [18F]FDG signal distribution in dbPET and wbPET, 
results from this small cohort cannot be generalized. Study inclusion criteria placed a lower bound on tumor 
sizes at 2 cm, which limited the study of smaller lesions with high potential for partial volume effect. Since the 
wbPET was part of a routine clinical procedure, wbPET data included in this report were acquired using differ-
ent systems with various reconstruction algorithms, depending on clinical availability. SUVs generated across 
vendors at multiple sites are known to possess coefficients of variation of up to 5%, although this error may be 
reduced through frequent  calibrations35. The different wbPET scanners and reconstruction algorithms may 
also affect radiomics feature stability. To prevent undue adverse effect on reproducibility for wbPET features, 
we selected more robust and repeatable GLCM  features36,37 in this study. Additionally, tumor-masked images 
were rescaled to an isotropic resolution and quantized to discrete gray-levels with a fixed bin  width38 to prevent 
intensity-driven heterogeneity from affecting the radiomics results. Finally, the patient cohort was mostly locally 
advanced stage II/III patients from a single institution, which may not be representative of the general breast 
cancer patient population.

In this study, we assessed similarities and differences in  [18F]FDG uptake between wbPET and dbPET.  SULpeak 
and  SULmax are well recognized as predictors of treatment response and showed consistently higher values 
measured by dbPET compared to wbPET. While dbPET is not designed to detect metastatic disease for staging, 
it serves as an adjunct to wbPET and breast MRI for breast tumor  characterization20. Compared to wbPET, the 
higher dbPET readout also reflects the higher sensitivity and broader dynamic range for detecting treatment-
induced changes in the primary non-metastatic tumor, providing powerful molecular insights to guide treatment 
selection and to better assess early molecular changes in response to treatment.

The increased spatial resolution and reduced  [18F]FDG dose used in dbPET makes it an attractive modal-
ity for treatment monitoring and supports further analyses using higher-order radiomic features to quantify 
changes in tumor burden and intratumoral heterogeneity for treatment stratification and prediction of survival 
outcomes. Future studies with this technology would utilize larger cohorts and receptor-specific radiotracers to 
improve stratification.

Methods
Ethics statement. Ten patients with biopsy-confirmed breast cancer were recruited to participate in an 
imaging study with  [18F]FDG-dbPET (MAMMI, General Equipment and Medical Imaging SA (OncoVision), 
Valencia, Spain). This study was in compliance with the HIPAA-compliant study protocol that was reviewed by 
the UCSF Institutional Review Board and approved by the Committee of Human Research under the institution 
Human Research Program. All procedures performed were in compliance with relevant guidelines and regula-
tions. All patients were required to provide written informed consent to participate.

Study population. Patient eligibility was established on the basis of histopathological evaluation of biopsy 
samples. Breast MRI was performed as a standard of care to measure the extent of the tumor burden and size, 
while  [18F]FDG-wbPET was used for staging.

[18F]FDG‑dbPET acquisition. DbPET was performed with  [18F]FDG (range 121.0–199.8  MBq, median 
185.7 MBq). Patients fasted 6 h prior to imaging and blood glucose was measured before intravenous  [18F]FDG 
administration. Following 45 min of incubation, the subjects were scanned in a prone position, with a single 
breast positioned through the aperture into the detector ring. The detector ring translated axially from inferior to 
superior for approximately 15 min, with the frame duration determined by the total length of the breast. DbPET 
images were reconstructed in 3D using manufacturer-provided maximum-likelihood expectation maximization 
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with a 1 mm kernel and 16 iterations. The post-reconstruction resolution was standardized to 1 × 1 × 1 mm. Both 
breasts were scanned consecutively in the same imaging session.

[18F]FDG‑wbPET acquisition. WbPET with computed tomography (wbPET/CT) was performed as part 
of disease staging and routine clinical procedure. As with dbPET, patients fasted for approximately 6 h prior to 
the scan, and blood glucose levels were measured before intravenous  [18F]FDG administration (range 229.4–
392.6 MBq, median 301.6 MBq). After approximately 50–60 min of incubation, patients were scanned in the 
supine position through the PET/CT gantry, translating anterior to posterior for approximately 30 min. Depend-
ing on the clinical availability, wbPET data included in this report were acquired using three PET/CT scanners: 
GE Discovery VCT PET/CT (GE Healthcare, WI), Philips Gemini TF PET/CT, and Philips Vereos PET/CT 
(Philips Healthcare, MA). All wbPET images were acquired in 3D and reconstructed using manufacturer-pro-
vided iterative reconstruction algorithms that included CT-based attenuation and scatter corrections. The stand-
ard whole-body image reconstruction algorithms were: 3D ordered subsets expectation maximization (OS-EM) 
with 28 subsets and 2 iterations for GE Discovery VCT PET/CT; Blob-based iterative time-of-flight reconstruc-
tion algorithm (BLOB-OS-TF) with 3 iterations and 33 subsets for Philips Gemini TF PET/CT; Time-of-flight 
OS-EM with 3 iterations and 15 subsets for Philips Vereos PET/CT. The most common post-reconstruction 
voxel resolution across systems was 4 × 4 × 4 mm (other voxel resolutions in the study: 5.5 × 5.5 × 3.3 mm, 3.6 
× 3.6 × 3.3 mm).

PET data analysis. To compare wbPET and dbPET  [18F]FDG uptake, reconstructed images were first con-
verted to decay-corrected standardized uptake values normalized by body weight (SUV) and lean body mass 
(SUL). Semi-automated segmentation of the tumor volume of interest (VOI) was performed over the entire 
volume of the high uptake lesion (OsiriX, Pixmeo, Switzerland) with a threshold of SUV ≥ 2.5 and 3.0 for wbPET 
and dbPET, respectively. Background SUVs were measured by placing a 1.2 cm cylindrical mask at the centroid 
of the contralateral breast for dbPET and a 1.2 cm spherical mask in the liver and contralateral breast for wbPET. 
Following segmentation, the single voxel maximum, average, and peak uptake  (SULmax,  SULmean,  SULpeak) were 
computed as per the standard PET Response Criteria in Solid Tumors (PERCIST), while the metabolic tumor 
volume (MTV) was calculated as the summing of voxel volumes with SUV ≥ 40%  SUVmean

39. The total lesion 
glycolysis (TLG) was computed as the product of the MTV and  SUVmean.

Radiomic features were computed within the tumor VOIs using Python 3.7. Images were first re-segmented 
in 3D Slicer 4.1140 and resampled to an isotropic resolution (2 × 2 × 2 mm3) using linear interpolation and 
quantized to discrete gray-levels using a fixed bin  width38,41. Radiomics calculation was performed on these 
discretized images.

A total of 20 features describing tumor morphology and heterogeneity were calculated using the PyRadiom-
ics package according to the Image Biomarker Standardization Initiative  recommendations42–44. In particular, 
heterogeneity features were evaluated from intensity distribution and texture analysis, specifically the grey-
level co-occurrence matrix (GLCM) and neighborhood grey-tone difference matrix (NGTDM)45,46. Prior to the 
calculation of textural features, SUV images were harmonized in accordance to literature  methods41. The data 
were rescaled to discretized grey levels with a bin width of 0.5. GLCM and NGTDM features were calculated on 
the 3D volume masked by the tumor VOI with nearest neighbor distances (d = 1) and averaging of each angle-
specific matrix. The GLCM and NGTDM classes describe neighboring pixel and regional textures, respectively.

All statistical analyses were performed using R v. 3.6.2 (R Foundation for Statistical Computing, Vienna, 
Austria). Statistical significance, median difference, and 95% confidence intervals (CI) were assessed using the 
non-parametric Wilcoxon signed-rank test. p-values less than 0.05 were considered significant.

Consent to participate. All patients provided written informed consent to participate.

Consent for publication. All patients provided written informed consent for publication.

Data availability
Data will be available upon request.
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