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Genome‑wide correlation analysis 
to identify amplitude regulators 
of circadian transcriptome output
Evan S. Littleton, Madison L. Childress, Michaela L. Gosting, Ayana N. Jackson & 
Shihoko Kojima*

Cell‑autonomous circadian system, consisting of core clock genes, generates near 24‑h rhythms and 
regulates the downstream rhythmic gene expression. While it has become clear that the percentage of 
rhythmic genes varies among mouse tissues, it remains unclear how this variation can be generated, 
particularly when the clock machinery is nearly identical in all tissues. In this study, we sought to 
characterize circadian transcriptome datasets that are publicly available and identify the critical 
component(s) involved in creating this variation. We found that the relative amplitude of 13 genes 
and the average level of 197 genes correlated with the percentage of cycling genes. Of those, the 
correlation of Rorc in both relative amplitude and the average level was one of the strongest. In 
addition, the level of Per2AS, a novel non‑coding transcript that is expressed at the Period 2 locus, 
was also linearly correlated, although with a much lesser degree compared to Rorc. Overall, our study 
provides insight into how the variation in the percentage of clock‑controlled genes can be generated in 
mouse tissues and suggests that Rorc and potentially Per2AS are involved in regulating the amplitude 
of circadian transcriptome output.

Circadian clocks regulate the daily fluctuations of biochemical, physiological, and behavioral  rhythms1. In mam-
mals, signals originating in the suprachiasmatic nucleus (SCN) of the hypothalamus synchronize independent 
oscillators in other peripheral tissues, such as the brain and even in  fibroblasts2,3. The molecular circadian clock 
within each cell is comprised of interlocking transcriptional-translational feedback loops, whose coordinated 
action is essential to generating cell-autonomous circadian  oscillation4.

At its core mechanism, the BMAL1 (official gene name: Arntl) and CLOCK (or its paralogue NPAS2) form 
a heterodimer and activate the transcription of Period (Per) 1–3 and Cryptochrome (Cry)1–2, whose promot-
ers contain target DNA regulatory elements, called E-boxes. As the level of PER and CRY proteins increases, 
they form a heterodimer and translocate back to the nucleus to repress their own transcription. As repression 
of Per and Cry transcription progresses, the level of the PER/CRY protein decreases, thereby allowing ARNTL 
and CLOCK to begin a new cycle of transcription. As an auxiliary loop, ARNTL and CLOCK also activate the 
expression of Rev-erba/b (official gene name: Nr1d1 and Nr1d2), and Rora-c, all of which are nuclear receptors. 
REV-ERB and ROR proteins, in turn, repress or activate the target mRNA expression including Arntl, Clock, and 
Npas2, respectively, by recognizing DNA elements termed REV-ERB/ROR binding motifs (ROREs) in their pro-
moters. As an additional loop, ARNTL/CLOCK activates the expression of Dbp, which activates the transcription 
of target mRNAs that possess a DNA element, called a D-box, while REV/ROR proteins regulate the expression 
of Nfil3, which represses D-box containing genes. Targets include Rev-erbs, Rors, and Pers4.

Cell-autonomous circadian clocks also drive thousands of rhythmic output genes (i.e., clock-controlled genes) 
that, ultimately, produce daily rhythms of many types of physiology and  behavior5–10. Interestingly, the number 
of cycling genes is vastly different among mouse tissues. In some tissues, more than 10% of the entire transcrip-
tome is rhythmic, while only a few percent are rhythmic in other  tissues10–12. Nevertheless, it remains unclear 
how the core clock machinery drives different numbers of clock-controlled genes, even though the core clock 
mechanism is nearly identical in each tissue.

To gain mechanistic insights into how some tissues produce more cycling genes than others, we characterized 
the circadian transcriptome data from various mouse tissues and attempted to identify a parameter(s) that cor-
relates with the percentage of clock-controlled genes. We found that the differences in the percentage of cycling 
genes are not due to the difference in the overall gene expression level in each tissue. Interestingly, however, the 
relative amplitude of 13 genes as well as the average level of 197 genes correlated with the percentage of cycling 
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genes. Of our particular interest was Rorc, whose correlation in both the relative amplitude and the average level 
was one of the strongest. We also found that the level of Per2AS, a novel non-coding transcript that is expressed at 
the Period 2 locus, also showed a correlation. Based on these data, we propose that Rorc is involved in regulating 
the amplitude of circadian transcriptome output.

Methods
Microarray data processing. Microarray data were downloaded through NCBI GEO from series 
 GSE5465010. Data was originated from 12 different tissues, with 24 time points from each tissue in 2-h intervals 
over the course of 48 h. Extracted data was normalized by Robust Multichip Average (RMA)  normalization13 
and annotated by the Affymetrix Transcriptome Analysis Software package (http://www.affym etrix .com/suppo 
rt/techn ical/bypro duct.affx?produ ct=tac). Unannotated probesets, as well as those that had values lower than 
the average of all negative probesets across all timepoints in the respective tissue, were eliminated from the 
downstream analysis. For multiple probesets annotated to the same gene, the probeset with the highest average 
value was selected.

RNA‑seq data processing. Mouse RNA-seq data were downloaded as fastq files through the NCBI data-
base from SRA ID  SRP03618610. Data contained information from 12 different tissues, with 8 time points from 
each tissue in 6-h intervals over the course of 48 h. Reads were mapped to the Ensembl mouse genome release 95 
using STAR 2.7.0a14 with outFilterScoreMinOverLRead = 0.3 and outFilterMatchNMinOverLRead = 0.3 options. 
We added the option ‘Condensegenes’ to select the most abundant isoform as the representative of a gene, as well 
as the option ‘count exons’ to measure only mRNA. Baboon circadian transcriptomic datasets were downloaded 
from series  GSE5465012. Reads were mapped to the Ensembl baboon genome (Papio Anubis 2.0) release 90 using 
STAR 2.7.2b14 with outFilterScoreMinOverLRead = 0.3 and outFilterMatchNMinOverLRead = 0.3 options. The 
quantification of expression level was performed by  HOMER15 using the transcripts per million (TPM) option. 
Any transcript with an average TPM < 0.5 across all timepoints were eliminated from the downstream rhyth-
micity analysis. We also used TPM to normalize the expression levels of each transcript. We eliminated white 
adipose data from the downstream analysis because no transcripts were rhythmic with our statistical thresh-
old (BH. Q-value < 0.05), even though more than 13,500 transcripts were detected after applying the filter of 
TPM > 0.5. The expression of Per2AS was measured with the “strand-” option in HOMER. We did not apply the 
filter (TPM > 0.5 to call ‘expressed’) in quantifying the level of Per2AS, because non-coding transcripts generally 
have low expression  levels16–18.

Rhythmicity analysis. We used  MetaCycle19 to determine the rhythmicity of each gene. MetaCycle inte-
grates three different algorithms ARSER, JTK_CYCLE, and Lomb-Scargle and calculates the p-value, Benja-
mini–Hochberg q-value (BH.Q value), period, phase, baseline value, amplitude (AMP), and relative amplitude 
(rAMP), which is the ratio between amplitude and baseline expression level. We defined the expression rhythmic 
when meta2d BH.Q < 0.05.

Correlation analysis. Pearson and Spearman correlation tests were performed in R to determine the lin-
ear and non-linear correlation between the percentage of cycling transcripts in each tissue and the rhythmicity 
(using BH.Q value), phase, and relative amplitude of the 15 clock genes, as well as Per2AS, calculated by the 
MetaCycle package in R. A significant correlation was defined as a p-value < 0.05. For the transcriptome-wide 
correlation analysis of mouse and baboon data, we used the rcorr function from the Hmisc and tidyverse pack-
ages in R to perform Pearson or Spearman correlation tests and used the average gene expression of transcripts 
expressed in all 12 (microarray) or 11 tissues, excluding white adipose tissue (RNA-seq)20,21. Rat data expression 
values were Log2 normalized, and we then used JMP to perform Pearson or Spearman correlation tests. Fisher 
Z-scores were calculated from the Rho or  R2 with Fisher transformation. GO enrichment analysis of the signifi-
cantly correlated genes was performed using the Gene Ontology  Resource22,23.

Promoter motif analysis. We first retrieved the promoter sequences (− 1000 to + 100 bp with respect to 
the transcription start site: TSS) of all the cycling transcripts from the UCSC Genome Browser, and performed a 
motif search using Find Individual Motif Occurrence (FIMO) with a p-value = 1 × 10–4 as the  threshold24. Input 
motif matrices were downloaded from JASPER (RORA: MA0071.1, RORA(var.2): MA0072.1, RORB: MA1150.1, 
RORC: MA1151.1, NR1D1: MA1531.1, NR1D2: MA1532.1, ANRTL: MA0603.1, CLOCK: MA0819.1, NPAS2: 
MA0626.1, NFIL3: MA0025.1, and MA0025.2, DBP: MA0639.1)25.

Single value decomposition analysis. Matrix of clock gene expression values in 12 tissues (11 tissues for 
RNA-seq) were input into the la.svd function in R. Returned eigengenes 1 and 2 were projected onto expression 
values. Returned eigentissues 1 and 2 were also projected onto expression values.

Cell culture. Per2::LucSV (a gift from Dr. Yoo at the University of Texas Health Science Center at Houston), 
NIH3T3/Dbp-luc, or NIH3T3/Bmal1-luc cells (a gift from Dr. Schibler, University of Geneva) were grown in 
Dulbecco’s Modified Eagle Medium (DMEM) (Life Tech) with 10% fetal bovine serum (FBS) (ATLANTA bio-
logicals) at 37 °C with 5%  CO2.

Real‑time bioluminescence and gene expression measurements. Cells were grown in 35  mm 
dishes until confluent. Samples used for gene expression analysis were circadian synchronized by DMEM sup-
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plemented with 50% horse serum for 2 h. Cells were then treated with either 45 μM nobiletin (Toronto Research 
Chemicals), 10 μM SR1001 (Sigma), or DMSO (Thermo Fisher Scientific). 24 h after treatment, samples were 
collected every 4 h, and total RNA was extracted with TRIZOL reagent (Life Tech) according to the manufac-
turer’s instructions. RNAs were treated with TURBO DNaseI (Life Tech), then subjected to reverse transcrip-
tion using High Capacity cDNA Reverse Transcription Kits (Applied Biosystems). qPCR was performed using 
QuantStudio 6 (Life Tech) with SYBR Power Green (Applied Biosystems). Primers used in this study are as fol-
lows: 36B4_Fwd 5′-CAC TGG TCT AGG ACC CGA GAAG-3′, 36B4_Rev 5′-GGT GCC TCT GAA GAT TTT CG-3′, 
Rora_Fwd 5′-ACC GTG TCC ATG GCA GAA C-3′, Rora_Rev 5′-TTT CCA GGT GGG ATT TGG AT-3′, Rorc_Fwd 
5′-TCT ACA CGG CCC TGG TTC T-3′, Rorc_Rev 5′-ATG TTC CAC TCT CCT CTT CTC TTG -3′. 1 μM dexametha-
sone was added to media for 2 h in samples used for bioluminescence recordings. After 2-h dexamethasone 
treatment, media was changed to phenol red-free DMEM (Cellgro 90-013-PB) supplemented with 100 μM luci-
ferrin, 10 mM HEPES pH 7.2, 1 mM sodium pyruvate, 0.035% sodium bicarbonate, 2% FBS, 1 × Penicillin/Strep-
tomycin, and 2 mM l-glutamine. Samples for real-time bioluminescence recordings were treated with various 
concentrations of nobiletin (1.5, 5, 15, or 45 μM) or SR1001 (1, 5, or 10 μM), and measurements were performed 
for 7 days using a LumiCycle (Actimetrics, Inc. Wilmette, IL). The first 24 h were removed from measurements 
to quantify amplitude using JMP  software26.

Results
Characteristics of circadian transcriptomic output in various mouse tissues. To gain insight 
into what determines the number of clock-controlled genes in each tissue, we first retrieved existing circadian 
transcriptome datasets from various mouse  tissues10. We found this particular dataset best-suited to our study, 
because it covered the highest number of tissues (12 total) and provided the highest time resolution (2 h inter-
vals), compared to other  studies5,7–9.

Our in-house analysis was able to replicate the previous findings, in which the percentage of cycling genes 
was highest in liver, followed by kidney, lung, brown adipose, and heart, and lowest in brainstem (Fig. 1A, Sup-
plemental Data Files 1a and 1b). The ranks are slightly different from the original  study10, which is most likely 
due to the differences in the analytical methods and statistical criteria used in our study (see “Methods”). Dis-
tribution of Benjamini–Hochberg q-values from the rhythmicity analysis was also widest in liver, followed by 
kidney, lung, brown adipose, and heart, and was particularly narrow in white adipose and brainstem (Fig. 1B). 
These data indicate that the expression levels of transcripts in liver are most variable across different times of the 
day compared to other tissues such as white adipose or brainstem, regardless of their rhythmicity.

The difference in the percentage of rhythmic transcripts in each tissue was not due to the difference in the 
number of genes expressed, because the total number of transcripts detected in each tissue was comparable, 
irrespective of the percentage of rhythmic transcripts (Fig. 1C). It was not due to the median microarray signals 
per transcript in each tissue either, as it did not correlate with the percentage of rhythmic transcripts (Pearson 
 r2 = 0.115, p = 0.368; Spearman rho = − 0.042, p = 0.904) (Fig. 1D). When we focused only on the transcripts 
that were rhythmically expressed (Benjamini–Hochberg q < 0.05), the median of the relative amplitude (i.e., 
the ratio between amplitude and baseline expression level) (Fig. 1E) or the amplitude itself (Fig. 1F) of cycling 
gene expression did not correlate with the percentage of cycling genes in each tissue (relative amplitude: Pear-
son  r2 = 0.060, p = 0.189; Spearman rho = 0.070, p = 0.834, amplitude: Pearson  r2 = 0.439, p = 0.154; Spearman 
rho = 0.175, p = 0.588), indicating that the amplitude of gene expression is comparable in each tissue if they are 
rhythmic.

We also performed the same set of analyses using the RNA-seq  data10, which surveyed the same set of tis-
sues but with a lower time resolution (Microarray: 2 h, RNA-seq: 6 h)10. Even though the order of the tissues 
was slightly different than the microarray datasets (Fig. S1A), which was likely due to the differences in time 
resolution and the threshold to eliminate low-expressed transcripts (see “Methods”), the results were essentially 
the same: distribution of Benjamini–Hochberg q-values from the rhythmicity analysis was wider in tissues with 
a high percentage of rhythmic transcripts (Fig. S1B), the number of genes expressed was comparable among 
tissues (Fig. S1C, D), and the median of the relative amplitude or the amplitude of cycling gene expression was 
comparable in each tissue (Fig. S1E,F, Supplemental Data File 2).

Characterization of cycling gene expression in various mouse tissues. Because we did not observe 
any characteristics that had a correlation with the percentage of cycling genes at a genome-wide scale, we shifted 
our focus on single gene level analyses. We first analyzed a total of 15 core clock genes (Arntl, Clock, Npas2, Per1-
3, Cry1-2 Rora-c, Nr1d1-2, Dbp, Nfil3), and found that most of these genes were expressed ubiquitously across 
all tissues, except for Rorb, whose expression was restricted to brain and brown adipose tissue (Supplemental 
Data File 3). A majority of these genes were also rhythmically expressed, except for the Rors: Rora was rhythmic 
in four tissues (liver, lung, heart, and muscle) but not in the other eight tissues (kidney, BAT, adrenal, aorta, 
cerebellum, hypothalamus, WAT, and brainstem), Rorb was arrhythmic in all four tissues that it is expressed in 
(BAT, hypothalamus, cerebellum, and brainstem), and Rorc was rhythmic in most of the peripheral tissues but 
not in the hypothalamus, muscle, or brainstem (Supplemental Data File 3), which was consistent with previous 
 reports7,9,27,28. Clock and Cry1 were also arrhythmic in hypothalamus, making the hypothalamus the tissue with 
the lowest number of rhythmic core clock genes, even though hypothalamus ranked 9th out of 15 tissues in the 
percentage of cycling transcripts (Fig. 1A). Similar results were obtained from the RNA-seq data, although the 
number of rhythmic core clock genes were lower, most likely due to the lower time resolution of the RNA-seq 
data compared to the microarray data (Supplemental Data File 4).

As was previously reported, the phases of core clock gene expression were confined to a relatively narrow 
 window12,28–31, except for a few genes such as Cry2, Rorc, and Nfil3 (Fig. 2A). On the other hand, the relative 
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amplitude of core clock gene expression was more variable between tissues (Fig. 2B), and nine genes, Dbp, 
Npas2, Nr1d1, Arntl, Per3, Per2, Rorc, Cry1, and Cry2 had their relative amplitude positively correlated with the 

Figure 1.  Characteristics of the mouse circadian transcriptome (microarray) in various mouse tissues. (A) 
Percentage of cycling genes in each tissue from highest (left) to lowest (right) % cycling. Rhythmicity of a gene 
was defined as Benjamini–Hochberg q values < 0.05 by MetaCycle. (B) Distribution of Benjamini–Hochberg 
q values of all expressed genes in each tissue. (C) Numbers of genes expressed in each tissue. (D) Average 
microarray signals per gene for all the probesets. (E) Distribution of relative amplitude of cycling genes in each 
tissue calculated by MetaCycle. (F) Distribution of the amplitude of cycling genes in each tissue calculated by 
MetaCycle. (D–F) The central line represents the median, and each box represents the 25th and 75th percentiles, 
respectively. The notch represents the 95% confidence interval around the median. Numbers of expressed genes 
or rhythmic genes in each tissue can be found in the Supplementary Data File 1. Each color corresponds to a 
tissue; liver (purple), kidney (light purple), lung (blue), brown adipose (BAT) (light blue), heart (green), adrenal 
(light green), aorta (yellow), cerebellum (gold), hypothalamus (orange), muscle (coral), white adipose (WAT) 
(red), and brainstem (dark red).
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percentages of cycling transcripts in either Pearson and Spearman correlation analyses (Table 1). Additional 
ten clock-controlled genes were expressed and rhythmic in all tissues, for which we calculated the correlation 
between their relative amplitude and the percentage of cycling transcripts. Among those, the relative amplitude 
of three genes (P4ha1, Tsc22d3, and Lonrf3), or another set of three genes (Tsc22d3, Lonrf3, and Usp2) correlated 
significantly with the percentage of cycling transcripts in Spearman or Pearson analyses, respectively (Table 1). 
Notably, the strongest correlation was observed for Rorc (Pearson  r2 = 0.852, p = 0.004; Spearman rho = 0.917, 
p = 0.001). In addition, the number of rhythmic core clock genes also correlates with the percentages of cycling 
transcripts in Spearman analysis (rho = 0.728, p = 0.007), but not in Pearson analysis  (r2 = 0.510, p = 0.0906). 
The sum of relative amplitudes from rhythmic core clock genes also correlates with the percentages of cycling 
transcripts (Pearson  r2 = 0.653, p = 0.0212; Spearman rho = 0.734, p = 0.0091). It is unclear, however, whether the 
higher amplitude of core clock gene expression leads to a higher percentage of rhythmic transcripts in each tissue 
or vice versa. We also analyzed the data from RNA-seq and performed the same analyses. However, the lower 

Figure 2.  A positive correlation between the percentage of cycling transcripts and the mean level of Rorc. 
(A) The peak phase of core clock gene expression in CT (Circadian Time) determined by MetaCycle. (B) 
The relative amplitudes of core clock gene expression determined by MetaCycle. (C) Correlation between % 
rhythmic transcripts and the mean levels of each core clock gene determined by MetaCycle. (D) Correlation 
between % rhythmic transcripts and the mean levels of Per2AS in each tissue. Each color corresponds to a tissue; 
liver (purple), kidney (light purple), lung (blue), brown adipose (light blue), heart (green), adrenal (light green), 
aorta (yellow), cerebellum (gold), hypothalamus (orange), muscle (coral), white adipose (red), brainstem (dark 
red). Core clock gene expression that did not fulfill Benjamini–Hochberg q < 0.05 criteria for rhythmicity was 
not included. (E) Single value decomposition (SVD) of tissues (left) or core clock genes (right). Eigentissues and 
eigengenes 1 and 2 were projected onto clock gene expression values, Rorc indicated in red.
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number of rhythmic core clock genes detected in the RNA-seq dataset significantly compromised our ability 
to calculate the correlations between the percentage of rhythmic transcripts in each tissue and the phase and 
amplitude of core clock gene expression.

We also investigated the correlation between the mean levels of core clock gene expression across all time 
points and the percentage of cycling genes in each tissue, as non-cycling genes could contribute to the differences 
in the percentage of cycling genes. Interestingly, we again found that there was a positive correlation between the 
percentage of cycling transcripts and the mean level of Rorc, but not with any other core clock genes (Fig. 2C, 
Table 2). This correlation was also observed in the RNA-seq dataset (Fig. S2, Table 2). We also tested Per2AS, a 
newly identified non-coding  RNA32–34, because the expression of Per2AS is rhythmic and antiphasic to Per2 in 
liver, adrenal gland, lung, and  kidney10, and it was suspected that Per2AS is involved in regulating the circadian 
 system35. Indeed, we found a linear correlation between the mean levels of Per2AS and the percentages of rhyth-
mic transcripts in both microarray and RNA-seq datasets (Fig. 2D). Single value decomposition (SVD) analysis 
did not detect any clear clustering patterns for tissues (Fig. 2E). In contrast, all the clock genes were clustered 
together except for Rorc (Fig. 2E, Fig. S2B), indicating that the correlation between Rorc and the percentage of 
rhythmic transcripts is not due to innate differences between the tissues. Rather, it is most likely due to the dif-
ference in expression patterns of Rorc between tissues that are distinct from other clock genes.

To test how robust the correlation of Rorc is, we extended the analysis to the genome-wide scale. We found 
that among 12,024 genes expressed in all 12 tissues from microarray datasets, the mean level of 1131 and 400 
genes was correlated significantly with the percentage of rhythmic genes in each tissue from the Pearson (linear) 
and the Spearman (non-linear) correlation test, respectively (Supplemental Data File 5). Similarly, among 8269 
genes expressed in all 11 tissues from the RNA-seq datasets, we found the mean level of 925 and 1664 genes 
correlated significantly with the percentage of rhythmic genes from the Pearson and Spearman correlation tests, 
respectively (Supplemental Data File 5). Of those, 135 (Pearson) or 77 (Spearman) genes were found correlated 
in both microarray and RNA-seq datasets (Supplemental Data File 5), and we therefore considered those as 
more robustly correlated. Gene ontology (GO) analyses were then performed to assess whether a specific process 
contributes to the high percentage of rhythmic transcripts. No pathways were detected as statistically significant 
(FDR < 0.05) among those that correlated robustly in the Spearman analysis. Whereas numerous metabolic pro-
cesses were enriched among those that correlated robustly in the Pearson analysis (Supplemental Data File 6). 
We also calculated Fisher Z-scores from each test to evaluate the relative strength of Rorc correlation, compared 
to other genes. Rorc was ranked 5th (Pearson) or 14th (Spearman) when we used average Z-scores from both 
microarray and RNA-seq datasets. These data suggest that the correlation between the level of Rorc and the 
amplitude of the mouse circadian transcriptome is one of the strongest.

To further gain more mechanistic insights into how Rorc contributes to the increase in the number of cycling 
mRNAs without driving mRNA expression, we next tested the correlation between the mean levels of Rorc and 
other core clock genes. Not surprisingly, we found a linear correlation between the mean levels of Rorc and 
Per2AS in both the microarray and RNA-seq datasets (Table 3). The mean level of Rorc also linearly correlated 
with Nfil3 (Microarray) or Cry2 (RNA-seq) (Table 3); however, the biological significance of these correlations is 

Table 1.  Correlations between the percentage of rhythmic transcripts and the relative amplitude of core clock 
genes in each tissue. *Asterisks denote p < 0.05. a Rorb was excluded from our correlation analyses due to its low 
expression in all tissues except brain.

Pearson (linear) Spearman (non-linear)

R2 p-value Rho p-value

Arntl 0.5775568 0.04923* 0.8741259 0.0003089*

Clock 0.3962219 0.2277 0.3181818 0.3414

Npas2 0.6054532 0.04839* 0.7181818 0.0168*

Per1 0.4538226 0.1384 0.4685315 0.2175

Per2 0.6617942 0.01907* 0.7972028 0.0031161*

Per3 0.5899605 0.04347* 0.5944056 0.04575*

Cry1 0.7952259 0.003433* 0.7090909 0.01873*

Cry2 0.5342694 0.07355 0.6853147 0.01731*

Nr1d1 0.6248975 0.02981* 0.5944056 0.04575*

Nr1d2 0.5542365 0.06149 0.4405594 0.1542

Rora 0.3681567 0.5421 0.2 0.7833

Rorc 0.8522986 0.003518* 0.9166667 0.001312*

Dbp 0.6452423 0.02346* 0.6853147 0.01731*

Nfil3 0.4639099 0.1506 0.3272727 0.327

P4ha1 0.5738972 0.05103 0.6923077 0.01588*

Tsc22d3 0.677488 0.01549* 0.6293706 0.03239*

Lonrf3 0.74423 0.005506* 0.7972028 0.003161*

Usp2 0.5768827 0.04956* 0.4685315 0.1275
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unclear, as the correlations were not consistent between microarray and RNA-seq datasets. We did not detect any 
correlation between Rorc and Rorc-target genes such as Arntl, Cry1, Nfil3, and Nr1d1 (Table 3), whose promoter 
regions contain RORE motifs and the amplitude of their rhythmic mRNA expression was dampened in most of 
the Rorc−/−  tissues36–39. We did not find any correlations between the level of Per2AS and other core clock genes 
either, except for Per2 and Npas2 (Table 4). The significance of these correlations is also unclear, because they 
were found only in microarray but not in RNA-seq datasets.

The effect of RORC as a transcriptional activator in regulating the circadian transcrip‑
tome. Because Rorc directly activates the transcription of RORE-containing  genes27,29,40, we hypothesized 
that, if Rorc was directly driving rhythmic gene expression leading to a high number of cycling transcripts, then 
the number of rhythmic genes with RORE motifs in their promoter would be higher in tissues with a higher 
number of rhythmic genes. To test this, we first retrieved the promoter sequence of rhythmic genes in each tissue 

Table 2.  Correlations between the percentage of rhythmic genes and the mean expression level of core clock 
genes in microarray and RNA-seq datasets. *Asterisks denote p < 0.05. a Rorb was excluded from our correlation 
analyses due to its low expression in all tissues except brain.

Pearson (linear) Spearman (non-linear)

Microarray RNA-seq Microarray RNA-seq

R2 p-value R2 p-value rho p-value rho p-value

Arntl 0.00025806 0.9993649 − 0.2477924 0.46255259 − 0.0629371 0.8459309 − 0.3545455 0.28469274

Clock 0.20709174 0.5184007 − 0.3077513 0.35722663 − 0.020979 0.9484022 − 0.3818182 0.24655958

Npas2 0.13268917 0.6810054 NA NA 0.03496503 0.9140933 NA NA

Per1 0.07460386 0.8177602 − 0.4232656 0.19458479 − 0.2797203 0.3785687 − 0.4454545 0.1697326

Per2 0.4444646 0.1477156 − 0.3037159 0.36389063 0.25174825 0.4299188 − 0.1 0.769875

Per3 − 0.004058 0.9900137 − 0.5366997 0.08871493 − 0.3006993 0.3422595 − 0.6181818 0.04264557

Cry1 0.17502327 0.5863932 − 0.1887732 0.57828653 − 0.1258741 0.6966831 − 0.4272727 0.18994372

Cry2 − 0.0725671 0.8226649 − 0.469578 0.14504423 − 0.3636364 0.245265 − 0.6454545 0.0319628

Nr1d1 − 0.1931836 0.5474633 − 0.4214839 0.19667007 − 0.4055944 0.1908359 − 0.5818182 0.0604199

Nr1d2 − 0.1093403 0.7351637 − 0.3684187 0.26490747 − 0.3006993 0.3422595 − 0.5090909 0.10973723

Rora − 0.154493 0.6316449 − 0.0850269 0.8037002 − 0.2097902 0.5128409 − 0.4 0.22286835

Rorc 0.81551562 0.0012236* 0.80572369 0.0027537* 0.65734266 0.0201855* 0.8 0.0031104*

Dbp − 0.3043041 0.3362164 − 0.5439689 0.08366 − 0.4615385 0.1309481 − 0.4454545 0.1697326

Nfil3 0.2775392 0.3824536 0.18797349 0.57992718 − 0.1188811 0.7128842 0.4 0.22286835

Per2AS 0.8546421 0.0003983* 0.6079273 0.04723* 0.4545455 0.1404 0.07272727 0.8388

Table 3.  Correlations between the mean level of Rorc and the mean level of other clock genes in each tissue. 
*Asterisks denote p < 0.05. a Rorb was excluded from our correlation analyses due to its low expression in all 
tissues except brain.

Pearson (linear) Spearman (non-linear)

Microarray RNA-seq Microarray RNA-seq

R2 p-value R2 p-value Rho p-value Rho p-value

Arntl 0.1424678 0.6587 − 0.1930034 0.5696 0.2517483 0.4301 − 0.3 0.3711

Clock 0.2017612 0.5295 − 0.5247839 0.09743 0.2307692 0.4709 − 0.5636364 0.07594

Npas2 − 0.1087769 0.7341 − 0.1029352 0.8262 0 1 − 0.1071429 0.8397

Per1 − 0.1271442 0.6938 − 0.3823291 0.2459 0.02097902 0.9562 − 0.5727273 0.0706

Per2 0.2802252 0.3777 0.03352763 0.922 0.5244755 0.08388 0 1

Per3 − 1.93E− 01 0.5478 − 0.5847199 0.05884 − 0.1328671 0.6834 − 0.7818182 0.007012

Cry1 0.2039933 0.5248 − 0.3352892 0.3135 0.2237762 0.4849 − 0.5909091 0.06073

Cry2 − 0.1406772 0.6628 − 0.7071451 0.01495* − 0.020979 0.9562 − 0.8 0.005202

Nr1d1 − 0.1865557 0.5615 − 0.2836711 0.3979 − 0.013986 0.9737 − 0.5636364 0.07594

Nr1d2 − 0.075446 0.8157 − 0.6073742 0.4749 − 0.0489511 0.8863 − 0.6818182 0.02548

Rora 0.08273569 0.7982 − 0.2710108 0.4202 0.0979021 0.7663 − 0.4545455 0.1634

Dbp − 0.2537079 0.4262 − 0.2642677 0.4323 − 0.1608392 0.6194 − 0.4272727 0.1926

Nfil3 0.6783749 0.01531* 0.4541654 0.1605 0.4195804 0.1766 0.4727273 0.1456

Per2AS 0.858603 0.0003493* 0.6431022 0.0328* 0.5034965 0.09875 0.1454545 0.6734
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using the RNA-seq dataset (− 1000 to + 100 bp with respect to TSS), and then determined the number of DNA 
motifs that can be recognized by RORC in silico. We surveyed the recognition sequences of not only RORC, but 
also RORA, RORB, NR1D1, NR1D2, ARNTL, CLOCK, NPAS2, NFIL3, and DBP, because these proteins are all 
considered important to drive rhythmic gene  expression39,41. We found that the RORC binding motif was found 
in approximately 8% of the rhythmically expressed genes, and this was consistent in all 11 tissues we examined 
(Fig. 3). Of the genes with RORC motifs in their promoter region, we found 960 genes that were expressed in 
all 11 tissues and rhythmic in at least one tissue. Of these 960 genes, the mean level of 291 and 252 genes cor-
related with the mean level of Rorc by Spearman or Pearson analysis, respectively (Supplemental Data File 7). 
It is plausible that RORC regulates the expression and/or rhythmicity of these downstream RORC target genes. 
The binding sites for NPAS2, ARNTL, NR1D1, and NR1D2 were the most highly represented (~ 10–14%), and 
NFIL3 and DBP were the least represented (~ 3–6%) (Fig. 3).

Table 4.  Correlations between the mean Per2AS TPM and the mean level of other clock genes in each tissue. 
*Asterisks denote p < 0.05. a Rorb was excluded from our correlation analyses due to its low expression in all 
tissues except brain.

Pearson (linear) Spearman (non-linear)

Microarray RNA-seq Microarray RNA-seq

R2 p-value R2 p-value Rho p-value Rho p-value

Arntl 0.1072332 0.7401 − 0.1923029 0.5711 0.4405594 0.1542 0.4727273 0.1456

Clock 0.3049452 0.3351 − 0.102975 0.7632 0.5804196 0.05209 0.5272727 0.1001

Npas2 0.308457 0.3292 − 0.0209776 0.9644 0.6783217 0.01883* 0.5357143 0.2357

Per1 − 0.0469417 0.8848 − 0.3423037 0.3028 0.4125874 0.1845 0.0090909 0.9892

Per2 0.3363529 0.2851 0.03514764 0.9183 0.7202797 0.01102* 0.5636364 0.07594

Per3 − 6.68E− 02 0.8367 − 0.2394287 0.4783 0.4265734 0.1689 − 0.0454546 0.9029

Cry1 0.1160046 0.7196 − 0.1523629 0.6547 0.4125874 0.1845 0.2090909 0.5391

Cry2 − 0.0904382 0.7798 − 0.360859 0.2756 0.2727273 0.3912 0.1090909 0.7549

Nr1d1 − 0.2317755 0.4685 − 0.4086626 0.2121 0.1258741 0.6997 − 0.0545455 0.8815

Nr1d2 0.03833355 0.9058 − 0.2832654 0.3986 0.1188811 0.7162 − 0.0181818 0.9676

Rora − 0.027873 0.9315 − 0.1883284 0.5792 0.2447552 0.4435 0.1363636 0.6935

Dbp − 0.1331303 0.68 − 0.2910061 0.3853 0.2937063 0.3543 0.08181818 0.8177

Nfil3 0.357542 0.2539 − 0.1930106 0.5696 0.1468531 0.6511 − 0.3909091 0.2365

Figure 3.  The number of RORC-binding motifs does not correlate with the percentage of rhythmic genes in 
each tissue. Weighted scatterplot representing the percentage of rhythmic genes containing binding motifs 
of circadian transcription factors listed on the left. The size of each circle represents the % and each color 
corresponds to a tissue.
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To experimentally test the biological significance of Rorc, we utilized three independent luciferase reporter 
cell lines; Per2::LucSV cells (mouse embryonic fibroblasts derived from Per2::LucSV knockin mice)42 as well as 
Bmal1-luc and Dbp-luc cells (derived from NIH3T3 cells that stably express luciferase genes under the control 
of either a Dbp or Bmal1 promoter)43. We treated these cells with the Rora/c agonist nobiletin or inverse agonist 
SR1001 to determine whether it is the mRNA level or the transcriptional activity of RORC that is important for 
the amplitude of core clock genes expression patterns (Fig. 4A). We first analyzed the mRNA level of Rora/c in 
Per2::LucSV cells, as the level of Rorc cells was under the detection limit in Dbp-luc or Bmal1-luc cells, both of 
which derived from NIH3T3  cells44. We found that the mRNA levels of Rorc were unchanged in the presence of 
either nobiletin or SR1001, whereas the mRNA levels of Rora decreased when treated with nobiletin (Fig. 4B). 
We also found that nobiletin increased the amplitude of PER2::LUCSV and Dbp-luc reporter output compared 
to control cells (Fig. 4C). In contrast, SR1001 decreased the amplitude of Dbp-luc reporter output. Interestingly, 
neither nobiletin nor SR1001 altered the amplitude of Bmal1-luc despite Bmal1 being under direct control of 
Rora/c (Fig. 4C)27. Because both nobiletin and SR1001 have a higher inhibition constant for RORC compared to 
 RORA45,46, the changes in the amplitude of reporter output are likely due to their effect on RORC.

Discussion
Among the three key parameters for cycling systems (period, phase, and amplitude), the regulatory mechanisms 
of period and phase have been relatively well-characterized, whereas that of amplitude have remained much more 
enigmatic. Forward genetics or screening approaches using pharmacological or genetic perturbation have not 
been successful, as the variance of amplitude is much higher than that of period, compromising the statistical 

Figure 4.  The effect of nobiletin (NOB) and SR1001 on the clock gene expression. (A) Schematic representation 
of our study design. (B) Relative mRNA levels of Rorc and Rora in Per2::LucSV cells treated with 45 µM 
nobiletin, 10 µM SR1001, or DMSO. (C) Normalized luciferase activity measurements and quantified 
amplitudes of PER2::LUCSV, Dbp-luc, or Bmal1-luc cells treated with varying concentrations of nobiletin, 
SR1001., or DMSO as control (n = 2–4). All the data represent Mean ± SEM. *p-value < 0.05, **p-value < 0.01, 
***p-value < 0.001.
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ability to distinguish true positives from false  positives47–51. Furthermore, it is currently unclear whether it is a 
single gene, a combination of genes, one of the feedback loops, and/or topology of the network that is important 
for amplitude. To make things even more complicated, amplitude can be measured by various outputs, such as 
gene expression, firing patterns in neurons, body temperature, and locomotor activity, each of which can be under 
the regulation of both cell-autonomous (intracellular or local) and systemic (or extracellular) rhythms. It also 
remains unclear whether all the amplitude of various rhythms is regulated by the same mechanism.

In this study, we focused on the percentage of cycling genes in various mouse tissues and explored the pos-
sible mechanisms of amplitude regulation of circadian transcriptomic output. The circadian transcriptome can 
be influenced both by cell-autonomous and systemic cues in each tissue. However, the circadian gene expression 
is a common feature of the circadian clock system in various tissues and allows us to directly compare the dif-
ference in amplitude between tissues without relying on their respective physiology.

We found that 18 genes (eight core clock genes and ten clock-controlled genes) are rhythmically expressed in 
all tissues that we examined (Table 1, Supplemental Data File 3). This is consistent with previous observations that 
the rhythmicity of each gene is often tissue-specific, and while only a handful of genes are cycling in all or most 
tissues, others are rhythmic only in certain  tissues7–11. The mechanism that drives tissue-specificity of rhythmic 
gene expression still remains largely unknown. Nonetheless, recent studies demonstrated that the BMAL1 DNA 
binding is largely tissue-specific, and the tissue-specific rhythmic gene expression can be driven by rhythmic 
BMAL1 binding in coordination with the activity of enhancers nearby that form chromatin  looping52,53. It is 
possible that RORC drives tissue-specific rhythmic target gene expression using a similar mechanism. We also 
found that the relative amplitude of 13 genes (nine core clock genes and four clock-controlled genes) were cor-
related with the percentage of cycling genes, while the mean level of 197 genes correlated with the percentage of 
cycling genes. These genes are not necessarily expressed rhythmically, albeit about a half (100/197) are, and vast 
majority of these genes were involved in the metabolic processes (Supplemental Data Files 5, 6). Given that the 
energy cost for cycling genes are higher than non-cycling  genes54, it is reasonable that metabolism related genes 
are highly expressed in tissues that have higher number of cycling transcripts. Interestingly, metabolically active 
tissues, such as liver, brown fat, and skeletal muscle have rhythmic RNAs with higher amplitude (Fig. 1E), which 
is consistent with the previous  report53, suggesting that the metabolic activity in each tissue affects the amplitude 
of rhythmic RNA expression. It is also plausible that systemic cues, including metabolites, contributed to the 
differences in the percentage of rhythmic gene expression in each tissue, and these genes act as mediators to con-
nect systemic cues and rhythmic gene expression both independent and dependent on the core clock machinery. 
However, it is more tempting to postulate that the role of Rorc and/or Per2AS in the core-clock circuit gives it a 
more promising function in potentially regulating the amplitude of the circadian transcriptome, at least in the 
tissues where Rorc is expressed.

We also attempted to verify our findings using independent datasets. To achieve this, datasets must include 
gene expression data taken at multiple circadian time points (to detect rhythmicity) in at least three different 
tissues (to perform correlation analyses). To date, no other datasets are available in mouse. One study using rats 
analyzed gene expression patterns in four tissues (liver, lung, muscle, and adipose) at multiple circadian time 
 points11 (Supplemental Data File 8). Unfortunately, however, some of the microarray platforms used in this 
study did not include probes for Rorc and we were unable to calculate the correlation between the percentage of 
rhythmic genes and the level of Rorc. A recent study in Baboon also surveyed diurnal gene expression patterns 
in 64  tissues12. We analyzed 14 tissues from this dataset (Aorta, Adrenal Cortex, Adrenal Medulla, Bone Marrow, 
Heart, Hippocampus, Kidney Cortex, Kidney Medulla, Liver, Lung, Pancreas, Prostate, Smooth Muscle, and SCN) 
that closely mirror 12 mouse tissues (or 11 for RNA-seq) that we analyzed in our study.

When we used the MetaCycle p-value < 0.05 as a rhythmicity threshold, we did observe a positive correlation 
between the level of RORC with the percentage of rhythmic transcripts (Pearson:  r2 = 0.603, p = 0.029, Fig. S3A, 
Supplemental Data Files 9a, 9b). However, this correlation was not statistically significant when we used the 
JTK_CYCLE algorithm with p-value < 0.05 (Hughes et al., 2010) (Pearson:  r2 = 0.167, p = 0.587, Fig. S3B) or when 
we used q-value < 0.05 as a rhythmicity threshold. In contrast, the correlation between the Rorc level and the per-
centage of rhythmic transcripts in mouse was statistically significant with both MetaCycle (Table 2, Fig. 2C) and 
JTK_CYCLE (Pearson:  r2 = 0.738, p = 0.006, Spearman: rho = 0.678, p = 0.019) (Fig. S3C) with B.H. Q value < 0.05. 
Of note, we were also unable to detect PER2AS in any of these tissues we examined (Fig. S3D), indicating that 
either PER2AS does not exist in baboon, or the baboon reference genome we used (Papio Anubis 2.0) does not 
have high enough resolution to annotate and detect PER2AS. Overall, we concluded that it is unclear whether 
the RORC level and the percentage of rhythmic transcriptome correlate in baboon.

We have also found that the mRNA levels of 584 and 473 genes also correlated with the percentage of the 
rhythmic mRNAs in each tissue in rat and baboon, respectively (Supplemental Data File 7)11,12. Among these, 
40 and 4 genes also showed a correlation in mouse  dataset10 whereas none was commonly detected as correlated 
in all three datasets (Supplemental Data File 7). The significance of these genes in regulating the amplitude of 
circadian transcriptome output is unclear, however. Experimental parameters (sampling resolution, number of 
tissues examined, transcriptomic platform) are significantly different between studies, and these have a signifi-
cant impact on detecting rhythmicity of each gene as well as calculating the percentage of rhythmic transcripts 
(Supplemental Data Files 1a, 1b, 2, 8, 9a, 9b). It is also possible that the regulatory mechanism of amplitude is 
species-specific and not conserved.

The positive loop (Clock-Arntl-Rev-Ror) was originally considered to confer additional robustness to the 
system and, therefore, stabilizes the system. However, it is not required for circadian rhythm  generation37,55. 
Recent studies have also highlighted the role of the positive loop as the central axis of amplitude  regulation45,56. 
Our study is consistent with these findings and suggest that the positive loop, particularly the level of Rorc, is 
important in setting the amplitude of the circadian transcriptome. In addition, our study also suggested that 
Per2AS is involved in the positive loop, because the level of Per2AS positively correlated with the level of Rorc as 
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well as the percentage of cycling genes in each tissue, even though it was originally assumed to only interact with 
Per235. Interestingly, the mathematical model predicted the functional interaction between Ror and Per2AS, as 
Per2AS would restore stable circadian rhythms when they are disrupted by the overproduction of Ror or Rev-erb 
 mRNAs35. It is possible that Rorc and Per2AS function synergistically in the circadian clock system. Because long 
non-coding RNAs, such as Per2AS, can function in trans and interacts with DNAs, other RNAs, or proteins to 
regulate target gene  expression57,58, it is possible that Per2AS RNA interacts with RORC proteins to modify its 
transcriptional activity. Per2AS could also alter the level of Rorc by interacting with the promoter or enhancer 
sequences of Rorc (i.e., DNA), transcriptional regulators and/or epigenetic modifiers of Rorc or vice versa. Alter-
natively, the correlation between Rorc and Per2AS may simply indicate that their expression is regulated by the 
same or similar mechanism.

It is still unclear from our study whether the relationship between Rorc and the percentage of rhythmic 
transcripts is simply a correlation or causation. Because the molecular clock system is quite complex, and the 
expression of each clock gene is dependent on the expression/activity of other clock genes directly or indirectly, 
we think it is critically important to keep the network intact to fully understand the function of each component. 
In contrast to experimental approaches in which perturbation of each genetic component (i.e., gene knock-out, 
knock-down, or overexpression) would often disturb the network itself, a computational approach excels in 
this area to shed light into the function of a component within a network. To circumvent these issues, we used 
a pharmacological approach and altered the transcriptional activity of RORC without changing its levels. We 
found that the transcriptional activity of RORC alters the amplitude of reporter bioluminescence output (Fig. 4), 
suggesting that the transcriptional activity of RORC is important for regulating the amplitude of the circadian 
clock machinery and potentially the circadian transcriptome output. Regardless, we think the level of Rorc is 
still biologically relevant, because the changes in the Rorc mRNA level can lead to the changes in the level of 
RORC and/or its activity.

It still remains unclear why Rorc, but not Rora and Rorb, correlates with the amplitude of the circadian tran-
scriptome, as all the ROR proteins share significant sequence  similarities40,59. Unfortunately, the physiological 
relevance of each ROR paralogue has never been clarified in the mammalian circadian system. One notable 
difference among Ror paralogues, however, is their unique expression patterns (Supplementary Data Files 1a, 
1b, 2). It is possible that the systemic cues, which are, in theory, the same to all the tissues have a tissue-specific 
impact in regulating the level of Rorc. Understanding the difference in the regulatory mechanisms of Ror gene 
expression would provide insight into how their tissue-specific expression pattern is achieved and how Rorc 
specifically impacts the amplitude of the circadian transcriptomic output.

Overall, our study highlighted the potential role of Rorc in regulating the amplitude of the circadian tran-
scriptome, although it is unclear whether the correlation between the Rorc and the percentage of rhythmic 
transcriptome is specific to mouse. Follow-up experimental studies would further complement our observations 
from the rich transcriptomic datasets that are publicly available and delineate the mechanisms of circadian 
amplitude regulation.

Data availability
The datasets generated during and/or analyzed during the current study are available in the NCBI GEO reposi-
tory, from series GSE54650 (mouse), GSE98965 (baboon), or GSE8988, GSE8989, GSE20635, and GSE25612 
(rat).
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