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Gene expression network analysis 
provides potential targets 
against SARS‑CoV‑2
Ana I. Hernández Cordero1*, Xuan Li1, Chen Xi Yang1, Stephen Milne1,2,3, Yohan Bossé4, 
Philippe Joubert4, Wim Timens5, Maarten van den Berge6, David Nickle7, Ke Hao8 & 
Don D. Sin1,2

Cell entry of SARS-CoV-2, the novel coronavirus causing COVID-19, is facilitated by host cell 
angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). We aimed 
to identify and characterize genes that are co-expressed with ACE2 and TMPRSS2, and to further 
explore their biological functions and potential as druggable targets. Using the gene expression 
profiles of 1,038 lung tissue samples, we performed a weighted gene correlation network analysis 
(WGCNA) to identify modules of co-expressed genes. We explored the biology of co-expressed genes 
using bioinformatics databases, and identified known drug-gene interactions. ACE2 was in a module of 
681 co-expressed genes; 10 genes with moderate-high correlation with ACE2 (r > 0.3, FDR < 0.05) had 
known interactions with existing drug compounds. TMPRSS2 was in a module of 1,086 co-expressed 
genes; 31 of these genes were enriched in the gene ontology biologic process ‘receptor-mediated 
endocytosis’, and 52 TMPRSS2-correlated genes had known interactions with drug compounds. 
Dozens of genes are co-expressed with ACE2 and TMPRSS2, many of which have plausible links to 
COVID-19 pathophysiology. Many of the co-expressed genes are potentially targetable with existing 
drugs, which may accelerate the development of COVID-19 therapeutics.

The novel coronavirus SARS-CoV-2 is responsible for the current COVID-19 pandemic, which to date has 
infected over 44 million people and led to 1.1 million deaths worldwide1. Despite global efforts to study exist-
ing and novel therapeutics against the disease, there are currently no genuinely effective treatments. A better 
understanding of the biology of the virus and the host response to infection is essential if we are to improve 
clinical outcomes in COVID-19.

A number of genes expressed in lung tissue that are relevant to COVID-19 have been identified. These include 
genes that encode viral receptors (including ACE2 and BSG)2–4, host cell proteases (TMPRSS2, ADAM17 and 
FURIN)2,3,5, and factors related to the host response to infection (particularly the type I interferon response)6,7. 
However, identifying such genes experimentally is problematic since obtaining lung tissue samples from large 
numbers of COVID-19 patients is labour intensive, expensive, and may not be rapid enough to meet the urgency 
of the current pandemic. Moreover, the influence of severe lung inflammation may distort the expression of genes 
that are relevant to SARS-CoV-2 susceptibility or the earliest stages of COVID-19. However, existing large data 
sets of lung gene expression – derived from lung tissue samples that have been carefully collected, processed 
and analysed –provide an opportunity to explore genes relevant to the disease without the burden of collecting 
new samples under pandemic conditions.

Gene coexpression network analysis identifies genes whose expression is highly coordinated across the 
transcriptome8, suggesting that they are active simultaneously and thus active in the same biological process. 
Network analysis can be used for a number of purposes, including functional exploration and prioritisation of 
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candidate genes. It is therefore a useful discovery tool in situations where little is known about the disease of 
interest, and thus may be of use in the fight against COVID-19.

We have previously reported on a large gene expression data set known as the Lung eQTL Study9. This study 
collected non-cancerous lung tissue samples from over 1,000 participants across three centres, applied coordi-
nated processing and quality control standards, and collected detailed clinical information to accompany each 
specimen. This data set is therefore ideal for identifying genes that may be relevant to COVID-19, and examining 
the effects of various clinical risk factors on the expression of these genes.

Here we used the weighted gene coexpression network analysis (WGCNA)8 platform to identify genes con-
nected to two important components of COVID-19 biology: ACE2, which encodes the putative SARS-CoV-2 
receptor3,4; and TMPRSS2, which encodes a protease that primes the SARS-CoV-2 spike protein and facilitates 
entry of the virus into cells3,10. We used bioinformatics databases to explore the functional roles of coexpressed 
genes, and identified genes within these networks with known gene-drug interactions. Finally, we performed 
differential gene expression analysis on the most highly-correlated genes according to known clinical risk fac-
tors for severe COVID-19. These results may help direct future research on COVID-19 pathophysiology, drug 
repurposing, or the development of novel therapeutics.

Results
The Lung eQTL Consortium cohort used in this gene network analysis is described in Table 1. Supplementary 
Fig. S1 shows the expression levels of ACE2 and TMPRSS2 in the three centres that are part of the Lung eQTL 
Consortium (see Methods); ACE2 had low to moderate expression levels in lung tissue; whereas TMPRSS2 was 
highly expressed. Based on the study cohort lung expression profile, we determined that ACE2 and TMPRSS2 
were contained in distinct modules. The module containing ACE2 (ACE2 module) included 681 unique genes, 
while the modules containing TMPRSS2 (TMPRSS2 module) encompassed 1,086 unique genes. The hub gene 
for the ACE2 module was TMEM33, and hub gene for the TMPRSS2 module was PDZD2 (see Methods for the 
definition of ‘hub gene’). Figure 1 shows the top 50 genes with the highest connectivity to ACE2 and TMPRSS2 
within their respective modules, based on the WGCNA analysis. 

ACE2 module.  We filtered out the genes with consensus module membership (MM) (see Methods) < 0.20, 
which left 578 genes for the subsequent analyses. The MM for ACE2 was 0.25. We utilized genes in the ACE2 
module to execute a pathway enrichment analysis, which showed significant enrichment of two Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways (‘Lysosome’, ‘Metabolic pathways’) (Supplementary Table S3) 
and five Gene Ontology (GO) biologic processes (FDR < 0.05) (Supplementary Table S4).

ACE2‑correlated genes.  The expression of 561 genes in the ACE2 module was significantly correlated with 
ACE2 levels (FDR < 0.05), and only three of those genes were negatively correlated with ACE2. Although a large 
proportion of genes were significantly related to ACE2 expression levels, only 78 genes had moderate or high 
correlations (r > 0.3).

The PCCB gene was most strongly correlated with ACE2 expression (r = 0.45, Supplementary Table S1). Of the 
top 10 genes most strongly correlated with ACE2, three genes (PCCB, PIGN and ADK) were part of the KEGG 
‘metabolic pathway’ which showed enrichment with ACE2 module genes (Supplementary Table S3). Furthermore, 
out of the top 20 genes, only WDFY3 was found in ‘process utilizing autophagic mechanism’ GO process that 
was enriched with ACE2 module genes (Supplementary Table S4).

We identified 78 genes that showed moderate correlation (r > 0.3) with ACE2 expression. Of these, 46 genes 
had biological and/or druggability information available (details are presented in Supplementary Table S1). We 
used these genes to construct a ‘map’ of biological information (Supplementary Fig. S2). Based on the druggability 

Table 1.   Study cohort demographics. † Median (interquartile range). ‡Chronic obstructive pulmonary disease. 
Denominators for the percentages are based on the number of non-missing records.

Centre

Lung eQTL consortium cohort

Groningen Laval UBC

n 342 409 287

Age, years† 54 (44–62) 64 (57–71) 63 (55–71)

Females, n (%) 160 (46.78) 180 (44.01) 132 (45.99)

BMI, kg/m2† 22.65 (20.00–25.42) 26.10 (22.90–29.00) 24.90 (22.20–28.93)

COPD‡, n (%) 289 (86.27) 127 (31.13) 10 (100.00)

Asthma, n (%) 0 (0.00) 15 (3.68) 22 (10.78)

Cardiac disease, n (%) 26 (7.60) 120 (29.41) 46 (21.90)

Hypertension, n (%) 2 (22.22) 107 (26.23) 33 (100.00)

Diabetes, n (%) 27 (7.89) 41 (10.05) 13 (28.26)

Never smokers, n (%) 100 (29.24) 36 (8.80) 26 (9.06)

Former smokers, n (%) 185 (54.09) 283 (69.19) 163 (56.79)

Current smokers, n (%) 57 (16.67) 90 (22.00) 98 (34.15)
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scores, we identified 10 genes (GART, DPP4, PIGF, HDAC8, MDM2, ME1, SOAT1, IDE, BCAT1, ADK) that are 
known drug targets by a drug compound or are targets with a known bioactive drug-like small molecule (see 
Methods for details on druggability scores). The number of drug-gene interactions for the 10 genes are shown 
in Table 2.

TMPRSS2 module.  TMPRSS2 demonstrated a MM of 0.27 (Supplementary Table  S2). Genes in the 
TMPRSS2 module (genes with MM > 0.20) were enriched in 24 KEGG pathways (Supplementary Table S5) and 
144 GO biologic processes (Supplementary Table S6). The ‘Receptor-mediated endocytosis’ GO biologic process 
identified in this study (FDR = 1.07 × 10–04), also contained TMPRSS2.

TMPRSS2‑correlated genes.  We found that 771 unique genes (genes with MM > 0.20) in the TMPRSS2 
module were correlated with the TMPRSS2 expression level in lung tissue (FDR < 0.05), with FHDC1 expression 
showing the strongest relationship with TMPRSS2 (r = 0.72) (Supplementary Table S2). Next, we identified 325 
genes that were moderately or highly correlated with TMPRSS2 gene expression levels (r > 0.30), of these 67 were 
drug targets or were part of key pathways that could be targeted by drug compounds, including TMPRSS2 (see 
Methods), however we focused on those that are drug targets (Table 3). The genes are shown in Fig. 2, grouped 

Figure 1.   ACE2 and TMPRSS2 coexpression modules. The center of each graph represents ACE2 (a) or 
TMPRSS2 (b), the circles at the edges represent the top 50 genes with the highest connectivity to ACE2 
or TMPRSS2 based on the WGCNA analysis. The circle size represents the size of each gene node in their 
respective modules. The arm thickness represents the relative strength of the connection to the ACE2 or 
TMPRSS2 expression. Figure was created using R 3.6 (https​://www.r-proje​ct.org/)11.

Table 2.   Drug-gene interactions of ACE2-correlated genes. † From Finan et al.12‡From Drug-Gene Interaction 
Database (DGIdb)13. r(ACE2): Pearson correlation coefficient between gene and ACE2 expression (adjusted 
for sex age and centre). p: significance of the Pearson correlation coefficient (corresponds to Fisher’s Z score 
value), adjusted for false discovery rate (FDR).

Gene Druggability score† No. of known drug-gene interactions‡ r (ACE2) p FDR

ADK Tier 2 9 0.37 6.15 × 10–36 5.94 × 10–34

SOAT1 Tier 2 7 0.36 6.68 × 10–34 3.04 × 10–32

GART​ Tier 1 3 0.36 4.31 × 10–33 1.85 × 10–31

BCAT1 Tier 2 6 0.35 1.16 × 10–31 3.73 × 10–30

IDE Tier 2 5 0.33 6.45 × 10–29 1.20 × 10–27

MDM2 Tier 1 20 0.33 1.04 × 10–28 1.79 × 10–27

DPP4 Tier 1 58 0.33 4.99 × 10–28 8.03 × 10–27

PIGF Tier 1 2 0.32 4.75 × 10–26 5.83 × 10–25

HDAC8 Tier 1 48 0.32 1.16 × 10–25 1.30 × 10–24

ME1 Tier 2 2 0.31 4.40 × 10–24 3.86 × 10–23

https://www.r-project.org/
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based on the availability of biological information. The A6 group contained the genes with the largest amount of 
biological information in the explored bioinformatics databases. Most genes in Fig. 2 had information on drug-
gability scores, and mouse and human phenotypes (A3 group); details on the genes biological information are 
presented in the Supplementary Table S2. 

We later explored the drug-gene interactions of the genes described in Fig. 2; 52 of these genes were found 
to interact with known drugs. The genes with the highest druggability score (Tier 1) are presented in Table 3. 
Furthermore, Table 3 includes one of the genes (ADRB2) that is part of the GO biological process related to 
TMPRSS2 (‘Receptor-mediated endocytosis’).

Effects of clinical variables on ACE2‑ and TMPRSS2‑correlated genes.  We investigated the effects 
of risk factors for COVID-19 on the expression of the genes shown in Tables 2 and 3. A full list of differential 
expressed genes (FDR < 0.05) with known drug-gene interactions is presented in Supplementary Table S7. Some 
illustrative examples are shown in Fig. 3, including the effect of chronic obstructive pulmonary disease (COPD) 
on GART​ expression (Fig. 3a), the effect of diabetes on LRRK2 expression (Fig. 3b), and the effect of smoking on 
ADK, CD55, DPP4 and MET expression (Fig. 3c–f).

Discussion
There is a scarcity of therapeutic treatments specific for this virus and for severe COVID-19 pneumonia. ACE2 
and TMPRSS2 are key proteins involved in the cellular entry mechanism of SARS-CoV-2 to infect the lungs of the 
human host. Because one of the rate-limiting steps in this process is the overall availability of these proteins on 
the surface of lung epithelial cells15, careful evaluation of ACE2 and TMPRSS2 biology may enable identification 

Table 3.   Drug-gene interactions of TMPRSS2-correlated genes. ‡ from Drug-Gene Interaction Database 
(DGIdb)13. r(TMPRSS2): Pearson correlation coefficient between gene and TMPRSS2 expression (adjusted 
for sex, age and centre). p: significance of the Pearson correlation coefficient (corresponds to Fisher’s Z score 
value), adjusted for false discovery rate (FDR).

Gene No. of drug-gene interactions‡ r (TMPRSS2) p FDR

CDKL2 1 0.61 1.77 × 10–116 1.11 × 10–114

ITGB6 4 0.61 9.72 × 10–113 5.66 × 10–111

SCN1A 75 0.57 4.39 × 10–95 1.25 × 10–93

LRRK2 25 0.56 2.22 × 10–93 5.92 × 10–92

LAMA3 2 0.55 4.64 × 10–89 1.11 × 10–87

HMGCR​ 28 0.55 5.85 × 10–86 1.28 × 10–84

SLCO4C1 1 0.54 1.90 × 10–83 3.93 × 10–82

CLDN18 1 0.53 9.85 × 10–82 1.91 × 10–80

MGST1 2 0.52 4.12 × 10–77 6.81 × 10–76

CD55 3 0.51 6.88 × 10–72 1.00 × 10–70

DAPK2 1 0.47 6.68 × 10–61 7.62 × 10–60

SLC1A1 8 0.47 2.64 × 10–60 2.99 × 10–59

PDE4D 44 0.45 6.43 × 10–55 6.02 × 10–54

CA2 75 0.45 1.25 × 10–54 1.15 × 10–53

ADRB2 164 0.45 6.33 × 10–54 5.69 × 10–53

FGFR2 55 0.45 1.35 × 10–53 1.21 × 10–52

MET 118 0.44 1.11 × 10–52 9.48 × 10–52

DAPK1 3 0.44 3.86 × 10–51 3.05 × 10–50

FMO5 1 0.43 5.27 × 10–48 3.73 × 10–47

SLC22A3 4 0.40 1.95 × 10–41 1.08 × 10–40

ABCC4 30 0.40 3.30 × 10–41 1.80 × 10–40

NR3C2 29 0.38 4.28 × 10–38 2.16 × 10–37

CYP51A1 5 0.38 1.51 × 10–37 7.44 × 10–37

PDE8A 4 0.37 6.24 × 10–35 2.77 × 10–34

C5 10 0.36 4.38 × 10–33 1.81 × 10–32

MME 15 0.36 5.65 × 10–33 2.32 × 10–32

CYP4B1 2 0.34 1.08 × 10–29 4.00 × 10–29

PRKCI 12 0.33 2.57 × 10–28 9.10 × 10–28

PRKCE 16 0.33 3.55 × 10–28 1.24 × 10–27

CAMK2D 17 0.33 5.03 × 10–28 1.74 × 10–27

MAPK8 48 0.30 5.53 × 10–24 1.67 × 10–23

GRIA1 33 0.30 8.11 × 10–24 2.42 × 10–23
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of possible therapeutic targets against SARS-CoV-2 infection. In this study, by using a network analysis of 
genome-wide gene expression in lung tissue, we were able to identify a set of genes that interact with ACE2 and 
TMPRSS2, and thus may be drug targets.

Other investigators have explored lung gene coexpression in order to identify potential drug targets in 
COVID-1916. Recently, Cava et al. reported genes that are co-expressed with ACE2 using a series of pairwise 
correlations, and assembled the correlated genes into a protein–protein interaction network. In this way, they 

Figure 2.   Correlation level and annotation of TMPRSS2-correlated genes. Each bar represents a single gene 
(all with druggability scores Tier 1–312), and Pearson correlation coefficient (r) between the gene and TMPRSS2 
within the module is shown on the y axis. Colours of bars represent combined biological information: aqua 
(group A0) represents those genes with only druggability information; orange (group A1) represents genes that 
are related to human diseases based Online Mendelian Inheritance in Man (OMIM) and ClinVar databases; 
purple (group A2) represents genes with phenotypic information on knockdown or knockout mouse models 
based on Mouse Genome Informatics (MGI) database; pink (group A3) represents genes with phenotypic 
information on knockdown or knockout mouse models based on MGI database, and that are related to human 
diseases based OMIM and ClinVar data bases; green (group A4) represents genes related to human diseases 
based OMIM and ClinVar databases and with genetic variants associated to lung function traits14; yellow (group 
A5) represents genes with phenotypic information on knockdown or knockout mouse models based on MGI 
database, and with genetic variants associated to lung function traits14; brown (group A6) represents genes with 
phenotypic information on knockdown or knockout mouse models based on MGI database, and that are related 
to human diseases based OMIM and ClinVar data bases, and with genetic variants associated to lung function 
traits14. Figure was created using R 3.6 (https​://www.r-proje​ct.org/)11.

https://www.r-project.org/
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were able to identify 526 genes with significant (p < 0.01) correlation to ACE2 and 36 existing drugs known to 
interact with protein-coding, ACE2-related genes. While this approach was a useful exploration, we believe our 
approach has several advantages. First, WGCNA incorporates the coordinated expression of genes and thus is 
more reflective of the complex regulation of gene expression. Second, our analysis controls for the false discovery 
rate rather than setting a nominal p value cutoff that does not correct for multiple testing. Third, we also explored 
coexpression with the host cell protease gene TMPRSS2, which revealed many more targets with high druggabil-
ity and known drug-gene interactions than those related to ACE2. Finally, we used gene expression data from a 
large lung tissue data set with detailed clinical phenotype information, which allowed us to relate our findings 
to known risk factors for severe COVID-19. Despite the differences in approach, our results show some overlap 
with those of Cava et al.16—12 ACE2-correlated genes were identified by both approaches, suggesting that these 
may be some of the more robust targets for further investigation.

One notable gene that was confirmed by our study was ADK16. This gene is a key regulator of extracellular 
and intracellular adenine nucleotides17,18. ADK inhibition attenuates lung injury in mice19, while in humans, 
cigarette exposure upregulates expression of ADK in lung tissue. We posit a role for ADK in COVID-19. We 
believe that up-regulation of ADK expression may increase the concentration of adenosine in the lungs, which 
in turn can enhance viral replication. Previous work has shown that silencing ADK decreased influenza repli-
cation in an in vitro model20. Another study showed that ADK can activate didanosine21, a dideoxynucleoside 
analogue of adenosine that inhibits retro-transcription and is used in the treatment of HIV. Although this drug 
was recently nominated for drug repurposing as a potential treatment against COVID-1922, the biology of this 
drug is complex, particularly given the detrimental effect of ADK on lung injury.

Another ACE2-correlated gene that emerged from this study was DPP4. DPP4 encodes the dipeptidyl-pepti-
dase 4 (DPP-4) glycoprotein, which plays a major role in glucose and insulin metabolism and is linked to diabetes, 
now established as a key risk factor for severe COVID-19 including mortality23. DPP-4 is the functional recep-
tor for the Middle East Respiratory Syndrome (MERS) coronavirus and interacts with dozens of drugs. DPP-4 
inhibitors, which are used in the treatment of diabetes, appear to reduce macrophage infiltration and insulin 
resistance but have not been shown to increase the risk of infection in diabetic patients24. However, the effects of 
DPP-4 inhibitors on the immune response are not well understood. Because of the similarities between MERS 
and SARS-Cov-2, this is an interesting potential target, particularly for patients with diabetes. Thus, the DPP-4 
pathway poses an intriguing possibility for novel COVID-19 therapeutics.

The HDAC8 gene is an exciting potential target because of its role in pulmonary fibrosis (PF) and its inter-
action with histone deacetylase (HDAC) inhibitors. HDAC inhibitors have shown promise against fibrotic 

Figure 3.   Effects of COVID-19 risk factors on lung tissue gene expression. y axes represent the microarray 
gene expression level in lung tissue for ACE2-correlated genes (GART​ [a], ADK [c], DPP4 [e]) and TMPRSS2-
correlated genes (LRRK2 [b],CD55 [d], MET [f]). Boxes are median expression ± interquartile range respectively. 
Numbers at the top of each box plot are FDR obtained from the robust linear regressions. Figure was created 
using R 3.6 (https​://www.r-proje​ct.org/)11.

https://www.r-project.org/
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diseases25. The overexpression of HDACs is suggested to contribute to the process of bronchiolization in patients 
with IPF26. Viral infection increases the risk of PF27 and it is reported that HDAC8 inhibition ameliorates PF28; 
moreover we found that cigarette exposure, a known risk factor for both COVID-19 and IPF, increases the 
expression of HDAC8 in lung tissue. Therefore, targeting the PF mechanisms through HDAC inhibitors pose an 
interesting therapy to further explore.

Furthermore, the CD55 or complement decay-accelerating factor, an inhibitor of complement activation, 
is one of the few genes that was part of this process. The complement system has a major role in the immune 
response to viruses and triggers a proinflammatory cascade29. CD55, which is highly expressed in lung tissue, pre-
vents the formation of C3 convertase30 and therefore also inhibits the formation of C3 complement. C3-deficient 
mice show less respiratory dysfunction and lower levels of cytokines and chemokines in lungs in response to 
SARS-CoV31. Thus, it is possible that preventing the formation of C3 via CD55 could be beneficial in COVID-
19. Fortunately, known compounds such as chloramphenicol already exist that specifically target CD5529,32.

As noted above, we have identified a set of genes that interact with potential therapeutic targets, which could 
be explored as treatments against COVID-19. The main strength of our study is the large number of lung tissue 
specimens with detailed clinical phenotypic data. This allowed us to not only identify genes related to ACE2 and 
TMPRSS2 expression, but also to determine the effects of various clinical factors on the lung tissue expression of 
these genes. However, there were limitations to this study. First, we used an in-silico approach to identify ACE2 
and TMPRSS2 correlated genes, but we did not confirm these association in vivo or determine how these cor-
related genes physically interacted with ACE2 and TMPRSS2. Second, we identified the most promising drugs 
based on drug-gene interactions from bioinformatic databases, but we did not validate their effects on gene and/
or protein expression through in vitro experiments. Third, the lungs of our study cohort were not exposed to 
SARS-CoV-2, therefore it is possible that the gene expression of these key identified genes in lung tissue could be 
changed upon SARS-CoV-2 infection. Lastly, the cohort used for gene expression was of European ancestry and 
the results may not be generalizable to other ethnic groups, which is of critical importance in a global pandemic.

In summary, ACE2 and TMPRSS2 gene networks contained genes that could contribute to the pathophysiol-
ogy of COVID-19. These findings show that computational in silico approaches can lead to the rapid identifica-
tion of potential drugs, which could be repurposed as treatments against COVID-19. Given the exponential 
spread of COVID-19 across the globe and the unprecedented rise in deaths, such rapidity is necessary in our 
ongoing fight against the pandemic.

Methods
Lung expression quantitative trait loci (eQTL) Consortium cohort and gene expression.  Using 
microarray, gene expression profiles of 43,466 non-control probe sets (GEO platform GPL10379) were obtained 
from lung tissue samples in the Lung eQTL Consortium Cohort. Briefly, samples from this cohort included 
whole non-tumour lung tissue samples from 1,038 participants of European ancestry who underwent surgical 
lung resection. Tissue samples were collected based on the Institutional Review Board guidelines at three differ-
ent institutions: The University of British Columbia (UBC), Laval University and University of Groningen. This 
study was approved by the ethics committees within each institution. A full description of the cohort and quality 
controls is provided by Hao and colleagues9.

Gene expression network analysis.  Using the WGCNA8 R package, we explored gene networks cor-
related to ACE2 and TMPRSS2 in order to identify potential interactions in the Lung eQTL Consortium cohort. 
WGCNA clusters co-expressed genes into networks and creates “modules”, which are defined as groups of highly 
interconnected genes. For this analysis we identified signed consensus modules among the three centres in our 
study cohort. Briefly, WGCNA generated a signed coexpression matrix based on the correlation between genes, 
which later was transformed into an adjacent matrix by raising the coexpression to a soft threshold power (β). 
For our study we used a β = 6 and a minimum module size of 100 probe sets. For each probe set in the modules 
a ‘Module Membership’ (MM) was calculated by correlating the gene’s expression with the respective module’s 
expression (eigengene), i.e. the first principal component of each module gene expression profile; the gene with 
the highest MM was termed the ‘hub gene’. Note that the modules were determined at a gene probe level and 
some of the genes mapped to more than one probe; the slight overlap of genes between modules suggested het-
erogeneity between the gene probes, thus we did not consider these genes as relevant candidates in our study.

Enrichment analysis and correlations of ACE2 and TMPRSS2 modules.  Enrichment analysis 
of KEGG pathways and GO biological processes was performed using the R package WebGestaltR (0.4.3)33. 
This analysis was applied to the genes (with MM > 0.20) in the modules containing ACE2 (ACE2 module) and 
TMPRSS2 (TMPRSS2 module). Significant enrichment was established at FDR < 0.05. For each gene in the ACE2 
and TMPRSS2 modules with MM > 0.20, we determined the Pearson correlation between the expression level 
of the gene and that of ACE2 or TMPRSS2. First the expression was adjusted for age and sex by using a robust 
linear module, and the residuals were extracted (for each centre separately), we then used these to calculate the 
correlation coefficients for the three centres separately, and then combined them using correlation meta-analysis 
via the R package metafor34. Significant correlations were set at FDR < 0.05 and in the downstream analyses, we 
focused on genes that correlated to ACE2 or TMPRSS2 with r > 0.30.

Drug‑gene interactions and biological information of ACE2 and TMPRSS2 correlated 
genes.  We cross-referenced the ACE2 and TMPRSS2 correlated genes with the Mouse Genome Informatics 
(MGI), the Online Mendelian Inheritance in Man (OMIM), and the ClinVar databases in order to identify bio-
logically relevant genes. We determined druggability scores according to methods of Finan et al.12. Tier 1 refers 
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to genes that are targets of small molecules and/or biotherapeutic drugs; Tier 2 score indicates gene encoding 
targets with a known bioactive drug-like small molecule binding partner and ≥ 50% identity (over ≥ 75% of the 
sequence) with an approved drug target; and Tier 3 denotes protein coding genes with similarities to drug tar-
gets and are members of key druggable gene families. We also interrogated the Drug-Gene Interaction database 
(DGIdb)13 of the genes. DGIdb defines drug-gene interaction as a known interaction (i.e.: inhibition, activation) 
between a known drug compound and a target gene.

Differential expression of ACE2 and TMPRSS2 correlated genes.  We investigated the effects of 
possible risk factors for COVID-19 severity (e.g. smoking, diabetes, asthma, COPD, cardiac disease, and hyper-
tension) on the expression of druggable genes that were correlated with ACE2 or TMPRSS2. Then, the differen-
tial expression was assessed for each gene-risk factor pair by a robust linear regression using the package MASS35 
in R, in which the dependent variable was the gene expression and the explanatory variable was the risk factor. 
The differential expression analysis on smoking was adjusted for sex, age and centre, and the analyses on diabe-
tes, COPD and cardiac disease and hypertension were adjusted for sex, age, smoking status and centre. We set 
statistically significant differential expression FDR < 0.05.

Data availability
The full results obtained in this analysis are provided in the Supplementary Tables associated to this manuscript. 
Lung eQTL study data used for this study can be obtained through GEO platform accession number GSE23546 
and the dbGaP Study Accession phs001745.v1.p1.
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