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Detection of oriented fractal 
scaling components in anisotropic 
two‑dimensional trajectories
Ivan Seleznov1,2,7, Anton Popov2,3, Kazuhei Kikuchi4, Elena Kolosova5, Bohdan Kolomiiets2, 
Akio Nakata1,6, Miki Kaneko1 & Ken Kiyono1,7*

We propose a novel class of mixed fluctuations with different orientations and fractal scaling features 
as a model for anisotropic two-dimensional (2D) trajectories hypothesized to appear in complex 
systems. Furthermore, we develop the oriented fractal scaling component analysis (OFSCA) to 
decompose such mixed fluctuations into the original orientation components. In the OFSCA, the 
original orientations are detected based on the principle that the original angles are orthogonal to 
the angles with the minimum and maximum scaling exponents of the mixed fluctuations. In our 
approach, the angle-dependent scaling properties are estimated using the Savitzky–Golay-filter-
based detrended moving-average analysis (DMA), which has a higher detrending order than the 
conventional moving-average-filter-based DMA. To illustrate the OFSCA, we demonstrate that the 
numerically generated time-series of mixed fractional Gaussian noise (fGn) processes with non-
orthogonal orientations and different scaling exponents is successfully decomposed into the original 
fGn components. We demonstrate the existence of oriented components in the 2D trajectories by 
applying OFSCA to real-world time-series, such as human postural fluctuations during standing and 
seismic ground acceleration during the great 2011 Tohoku-oki earthquake.

Noise and fluctuations frequently display fractal-like scaling properties associated with long-range correlations in 
real-world complex systems, such as biological, geophysical, and economical systems1,2. The appearance of such 
fluctuations has been considered as a key marker associated with a universal principle hidden in the complex 
system dynamics3. Hence, various analysis methodologies have been developed to provide a detailed characteri-
sation of such complex fluctuations. These methods have demonstrated that the scaling properties emerge not 
only in an auto-correlation of the time series4–6, but also in higher moment correlation (e.g. multi-fractality)7–9 
and in a cross-correlation between multivariate time series10,11.

The fractal scaling behaviour in two-dimensional (2D) trajectories is also of interest in real-world applica-
tions. For instance, human postural fluctuations during quiet standing12 and animal movement patterns13 have 
been modelled using 2D fractional Brownian motion (fBm) and fractional Gaussian noise (fGn). Most of the 
previous studies have characterised the 2D trajectories using the projections onto the orthogonal directions and 
otherwise under the assumption of 2D isotropic properties12,13. Such approaches cannot provide any information 
on geometrically anisotropic structure of the system. In this study, we hypothesise that real-world 2D trajecto-
ries display anisotropy that is different from conventional, isotropic 2D fBm and fGn14. Moreover, we propose a 
novel class of mixed fluctuations with different orientations and scaling features as a model for anisotropic 2D 
trajectories. In our model, the mixed fluctuations are assumed to consist of two independent components with 
non-orthogonal orientations as shown in Fig. 1. Such anisotropy has not yet been systematically investigated. 
The open problem here is to detect the hidden orientation components in the observed trajectories. To solve this 
problem, we develop the oriented fractal scaling component analysis (OFSCA) to characterise the directional 
properties of such trajectories and decompose the mixed fluctuations into the original components. In the 
OFSCA, the original orientations are detected based on the principle that the original angles are orthogonal to 
the angles with the minimum and maximum scaling exponents of the mixed fluctuations.
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In our approach, we introduce an extension of the detrended moving-average analysis (DMA)15: the direc-
tional DMA (DDMA). The purpose of DDMA is to estimate the Hurst scaling exponent associated with the 
fBm- and fGn-like property in the projection of the observed time-series onto an axis forming angle θ with the 
abscissa axis. In real-world time-series analysis, it has been shown that non-stationary trends embedded in the 
time series harmfully affect the scaling exponent estimation and induce a misinterpretation of the correlation 
properties16. Therefore, scaling analysis methods such as detrending procedures have been widely used instead 
of conventional Fourier power spectral, rescaled range4, and structure-function17 analyses. For instance, the 
practical options are the wavelet-decomposition-based method with a wavelet having vanishing moments5 and 
detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA)16,18 and 
DMA19. Recently, we have established the theoretical foundation for DMA including higher-order DMA6,15,20 
and developed a fast implementation algorithm for DMA21 to increase the reliability and applicability of DMA. 
In this study, we further extend the application of DMA to 2D trajectory analysis.

The remainder of this paper is organised as follows. First, we introduce the analysis procedure of anisotropic 
2D trajectories. We illustrate our approach using a numerical sample, assuming a mixed fGn model displaying 
anisotropic long-range correlations. We then analyse real-world time-series, such as human postural fluctuations 
during standing and seismic ground acceleration during the great 2011 Tohoku-oki earthquake and discuss the 
interpretation of the oriented scaling components in the 2D trajectories. Finally, we provide a summary and 
some perspectives on future research.

Analysis method for anisotropic 2D trajectories
Let us consider a 2D time-series (trajectory) represented as the ordered series of points in the Cartesian coordi-
nate plane, 

{
(x(1)[i], x(2)[i])

}
 ( i = 1, 2, . . .N , where N is the length of the time series). If the time series is a sample 

path of 2D fGn given by two independent fGn sample paths, 
{
x(1)[i]

}
 and 

{
x(2)[i]

}
 , which are two series of fBm 

increments with the same Hurst exponent H, the auto-correlation properties are isotropic, independent of the 
orientation. Thus, the scaling property of each angular component (projection onto a rotated axis) is identical 
and not affected by any rotational transform. We introduce methods for detailed anisotropic characterisation 
assuming an anisotropic 2D time-series different from such 2D fGn. In our approach, we first evaluate the angle-
dependent scaling properties using higher-order DMA21 (henceforth, called DDMA) and then decompose the 
observed 2D time series into two components with different orientations and scaling properties.

Angle‑dependent scaling analysis.  The observed time series is projected onto an axis forming angle θ 
with the positive direction of the abscissa axis to detect the anisotropic scaling behaviour. Projected time series {
x(θ)[i]

}
 is given as

where θ is varied across the range of 0 ≤ θ < π.
Time series 

{
x(θ)[i]

}
 for each θ is analysed using the Savitzky–Golay-filter-based DMA6,22. In the DDMA, we 

first calculate the integrated series of 
{
x(θ)[i]

}
.

(1)x(θ)[i] = x(1)[i] cos θ + x(2)[i] sin θ ,

(2)y(θ)[i] =

i∑

j=1

x(θ)[j].

Figure 1.   Illustration of a mixed fGn model with H1 = 0.8 , θ1 = π/6 , H2 = 0.6 , and θ1 = 4π/9 . (a,b) Original 
components {ǫ1[i]} and {ǫ2[i]} . (c,d) The orientations of {ǫ1[i]} and {ǫ2[i]} in (x(1), x(2)) plane. (e–g) Mixed 
fluctuations of {ǫ1[i]} and {ǫ2[i]} using Eq. (6) in the (x(1), x(2)) plane.
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Note that, if 
{
x(θ)[i]

}
 is an fBm trajectory, we can skip this integration procedure and analyse 

{
x(θ)[i]

}
 instead 

of 
{
y(θ)[i]

}
 in the following calculation.

We then calculate the directional fluctuation function, F(θ)(s) , defined as

where ỹ(m,s)
SG  represents the smoothed version of y(θ)[i] obtained after applying the Savitzky–Golay filter with a 

polynomial of degree m and window length s. In Eq. (3), the signals 
{
ỹ
(m,s)
SG [i]

}
 locally smoothed using the 

Savitzky–Golay filter are removed from the time series22 to attenuate the baseline non-stationarity embedded in 
the observed time series 

{
y(θ)[i]

}
 . The Savitzky–Golay filter smoothes a noisy signal by adjusting a piecewise 

polynomial function with degree m to the signal and can remove the polynomial trends up to the order (m+ 1).
Anisotropic properties can be evaluated using the θ-dependent heterogeneity in F(θ)(s) . In addition, the 

long-range correlation observed in each orientation, θ , is evaluated using the power-law increase of F(θ)(s) as

and quantified using scaling exponent α(θ) estimated as the slope of the double-logarithmic plot of F(θ)(s) 
against s.

Note that F(θ)(s) can be directly linked with auto-correlation function C(θ)(k) and power spectrum S(θ)(f ) 
of 
{
x(θ)[i]

}
11,23. That is, we have

The analytical forms of kernels L(k, s) and 
∣∣Gs(f )

∣∣2 were demonstrated in11,23. Using these relations and assuming 
Eq. (4), we can show the scaling relations, α = 1− γ /2 when C(θ)(k) ∼ k−γ ( 0 < γ < 1 ) and α = (β + 1)/2 
when S(θ)(f ) ∼ f −β ( −1 < β < 2m+ 3 ). In particular, when C(θ)(k) decays exponentially to zero and S(θ)(f ) 
shows the low-frequency plateau indicating short-term correlation, the scaling exponent results asymptotically 
in α = 0.5.

In a previous study11, it was analytically shown that time-scale distortion between the scale in the time domain 
of DMA and the frequency in the Fourier spectral domain is induced by the higher-order DMA. Thus, we use the 
corrected time scale, s̃ , instead of s. Although scale s in the zeroth-order DMA corresponds well to frequency f in 
the Fourier spectral domain, i.e., s̃ = s/1.00 , s̃ are given by s̃ = s/1.93 and s̃ = s/2.74 in the second- and fourth-
order DMAs, respectively. Note that a straightforward implementation of the aforementioned procedure has a 
high computational complexity. Thus, a fast algorithm of DMA should be employed in the practical analysis21.

Decomposition of mixed long‑range correlated fluctuations.  We introduce a new class of 2D long-
range correlated processes displaying special orientations and an orientation decomposition method for such 
processes. We illustrate our approach by assuming a mixed fGn model displaying anisotropic long-range correla-
tions (Fig. 1). Our model consists of two independent fGn processes {ǫ1[i]} and {ǫ2[i]} with two different Hurst 
exponents H1 and H2 ( H1 > H2 ), respectively (Fig. 1a,b). It mixes these processes oriented at angles θ1 and θ2 to 
the x-axis (Fig. 1c,d) as

Now, we consider the problem of decomposing the observation of 
{(

x(1)[i], x(2)[i]
)}

 (Fig. 1e,g,f) into the original 
fGn time series, {ǫ1[i]} and {ǫ2[i]} . Notably, the independent component analysis (ICA) is not properly applicable 
to our model, because both x(1)[i] and x(2)[i] in our model follow Gaussian distributions. Two linearly mixed 
independent Gaussian processes cannot be separated uniquely into two independent components (ICA for 
Gaussian processes is equivalent to principal component analysis).

Our approach is described as follows (Fig. 2). In this model [Eq. (6)], the projected time series is given by

This equation indicates that, when θ = θ1 ± π/2 , x(θ)[i] is orthogonal and independent of ǫ1[i] (see Fig. 2c). 
That is, we obtain

which is proportional to the original ǫ2[i] with H2 . For the same reason, x(θ2±π/2)[i] is orthogonal to ǫ2[i] and pro-
portional to ǫ1[i] with H1 . In contrast, when θ  = θ1 ± π/2 and θ  = θ2 ± π/2 , F(θ)(s) shows a crossover of scaling 
exponents (see Fig. 2b). The forced linear fit to the broken lines in the log–log plot of F(θ)(s) vs. s yields a slope 
in the range (H1,H2) . Therefore, seeking two main orientations, θ̂min and θ̂max , respectively, with the minimum 
and maximum values of α(θ) , we can estimate the original orientations of ǫ1[i] and ǫ2[i] as θ̂1 = θ̂min ± π/2 and 

(3)F(θ)(s) =

√√√√√ 1

N − s + 1

N−(s−1)/2∑

i=(s+1)/2

(
y(θ)[i] − ỹ

(m,s)
SG [i]

)2
,

(4)F(θ)(s) ∼ sα(θ),

(5)F(θ)(s) =

√√√√
s∑

k=−s

C(θ)(k) L(k, s) =

√∫ 1/2

−1/2

∣∣S(θ)(f )
∣∣∣∣Gs(f )

∣∣2df .

(6)
[
x(1)[i]

x(2)[i]

]
=

[
cos θ1 cos θ2
sin θ1 sin θ2

] [
ǫ1[i]
ǫ2[i]

]
.

(7)x(θ)[i] = ǫ1[i] cos (θ − θ1)+ ǫ2[i] cos (θ − θ2).

(8)x(θ1+π/2)[i] = ǫ2[i] cos (θ1 − θ2 + π/2),
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θ̂2 = θ̂max ± π/2 , respectively. In this paper, the hat denotes an estimate of the corresponding quantity. Using 
the angles θ̂1 and θ̂2 , we can estimate the original signals as

We refer to this approach as the OFSCA.

Numerical test.  We analyse the sample time series (Fig.  3a) of the mixed fGn model with H1 = 0.8 , 
θ1 = π/6 = 30◦ , H2 = 0.6 , and θ1 = 4π/9 = 80◦ as a numerical demonstration of the OFSCA. The angle 
dependence of F(θ)(s̃) is evaluated over the range of 0 ≤ θ < π in increments of π/64 rad. The estimated F(θ)(s̃) 

(9)
�
ǫ̂1[i]
ǫ̂2[i]

�
=


sin θ̂2/sin

�
θ̂2 − θ̂1

�
cos θ̂2/sin

�
θ̂1 − θ̂2

�

sin θ̂1/sin
�
θ̂1 − θ̂2

�
cos θ̂1/sin

�
θ̂2 − θ̂1

�


�
x(1)[i]

x(2)[i]

�
.

Figure 2.   Principle illustration of the orientation detection of angle-dependent long-range correlated 
components {ǫ1[i]} and {ǫ2[i]} in the (x(1), x(2)) plane. (a) Relation between (x1, x2) and (ǫ1, ǫ2) . (b) θ-dependent 
slope estimation of log10 F(θ)(s) vs. log10 s . (c) Relation between minimum and maximum slope angles 
(θmin, θmax) and original component angles (θ1, θ2).

Figure 3.   Orientation decomposition of the mixed fGn model (Eq. (6)) with H1 = 0.8 , θ1 = π/6 = 30◦ , 
H2 = 0.6 , and θ2 = 4π/9 = 80◦ . (a) Sample path of (x1, x2) . (b) Angle dependence of log10 F(θ)(s̃) vs. log10 s̃ , 
where s̃ = s/1.93 in the second-order DDMA. (c) Angle dependence of the local slopes of log10 F(θ)(s̃) vs. 
log10 s̃ . (d) Angle dependence of the slope in the range of 1 < log10 s̃ < 3 . (e) Reconstructed components 
(ǫ̂1, ǫ̂2) . (f) Fluctuation functions of the reconstructed components of ǫ̂1 with θ1 = 31◦ and ǫ̂2 with θ2 = 82◦ ; the 
slopes in the range of 1 < log10 s̃ < 3 were 0.8 and 0.6, respectively, in the second-order DDMA.
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are plotted in a circular cylindrical coordinate (ρ,φ, z) = (log10 s̃, θ , log10 F
(θ)(s̃)) , where ρ is the distance of a 

coordinate point from the Cartesian z-axis, and φ is its azimuthal angle. In Fig. 3b, log10 F(θ)(s̃) are plotted using 
the colour scale. In addition, the local slopes of log10 F(θ)(s̃) vs. log10 s̃ at each θ are plotted in Fig. 3c.

Although Fig. 3b,c show anisotropic scaling properties, the apparent orientations are observed in the major 
and minor axes of the ellipse-shaped fluctuations in Fig. 3a. Therefore, the conventional principal component 
analysis cannot decompose the observed time-series into the original orientations. In contrast, our approach 
makes it possible to estimate the original orientations of the two component time-series and to reconstruct 
the original time-series. In our approach, we first estimate θ̂min = 121◦ and θ̂max = 172◦ based on the angle 
dependence of the least-squares-fit slope as shown in Fig. 3d. Using Eq. (9) with θ̂1 = θ̂min − 90◦ = 31◦ and 
θ̂2 = θ̂max − 90◦ = 82◦ , we decompose 

{(
x(1)[i], x(2)[i]

)}
 into {ǫ̂1[i]} and {ǫ̂2[i]} (Fig. 3e). The isotropic scatter-

ing behaviour in Fig. 3f indicates that the decomposed {ǫ̂1[i]} and {ǫ̂2[i]} are well uncorrelated with each other. 
The estimated scaling exponents of {ǫ̂1[i]} and {ǫ̂2[i]} reproduced the theoretical values (Fig. 3f).

Real‑world anisotropic scaling
We demonstrate the existence of anisotropic scaling by analysing real-world time-series, such as human postural 
fluctuations during standing (Figs. 4 and 5) and seismic ground acceleration during the great 2011 Tohoku-oki 
earthquake (Fig. 6).

Python source code for computing OFSCA and obtaining results of examples presented in the paper are 
public available for download in24.

Centre‑of‑pressure fluctuations of postural sway.  We apply the proposed method to the human 
centre-of-pressure (CoP) trajectories in a standing posture25. The CoP is the projection of the centroid of the 
vertical force distribution on the ground plane. The CoP characteristics have been studied extensively to evaluate 
balance dysfunction for patients with neurological and motor disorders and to understand the postural control 
mechanism26,27.

To extract the oriented scaling components from the CoP characteristics, we analysed CoP trajectories meas-
ured in two standing posture conditions: quiet standing with eyes open (Fig. 4a) and a voluntary sway movement 
from the steady position to right-backward position with eyes open (Fig. 5a); the recording duration was 30 s with 
a sampling frequency of 100 Hz (for more details of the measurement, see28,29). Recordings of CoP trajectories 
were obtained from a project approved by the Institutional Review Board of the National University of Physical 
Education and Sport of Ukraine. The procedures complied with the Declaration of Helsinki regarding human 
experimentation. Written informed consent was obtained from all the participants prior to the test.

Figure 4.   Orientation decomposition of centre-of-pressure (CoP) trajectory of a subject performing quiet 
standing with eyes-open condition. (a) Anteroposterior (AP) CoP vs. Mediolateral (ML) CoP. (b) Angle 
dependence of log10 F(θ)(s̃) vs. log10 s̃ , where s̃ = s/1.93 in the second-order DDMA. (c) Angle dependence of 
the local slopes of log10 F(θ)(s̃) vs. log10 s̃ . (d) Angle dependence of the slope in the range of 1.2 < log10 s̃ < 2.5 . 
(e) Reconstructed components (ǫ̂1, ǫ̂2) . (f) Fluctuation functions of the reconstructed components of ǫ̂1 with 
θ1 = 96◦ and ǫ̂2 with θ2 = 34◦ in second-order DDMA.
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The angle dependence of F(θ)(s̃) was evaluated over the range of 0 ≤ θ < π in increments of π/64 rad 
(Figs. 4b,c, 5b,c). We set the scaling range 1.2 < log10 s̃ < 2.5 (from 0.16 to 3.2 s) and estimated the slopes of 
linear regressions (Fig. 4d) to find two representative orientations.

In the quiet standing condition, the minimum and maximum slopes were observed at θ̂min = 6◦ and 
θ̂max = 124◦ , respectively (Fig. 4d). Thus, the estimated orientations were θ̂1 = 96◦ and θmax = 34◦ . As shown 
in Fig. 4d, the estimated minimum and maximum slopes (1.92 and 2.07, respectively) were almost equal. Never-
theless, the scaling behaviours of the decomposed components 

{
ǫ̂1[i]

}
 and 

{
ǫ̂2[i]

}
 (Fig. 4e) showed a nontrivial 

difference. As shown in Fig. 4f, a crossover point around log10 s̃ = 2.2 was observed only in the component ǫ̂2 
with an orientation of 34◦ . The observed scaling exponent α ≈ 2.0 indicates an fBm-like behaviour with long-
range-correlated increments, which suggests a rather anomalously expanding and unstable CoP trajectory. In 
contrast, the smaller scaling exponent ( < 1.0 ) observed at the larger scales in the ǫ̂2 orientation suggests a 
bounded and stable CoP trajectory. Therefore, the ǫ̂2 orientation would correspond to the most stable direction 
of the posture control. This result is reasonable from an anatomical point of view, as a standing human body 
has more stability against left-right oscillations than against forward-backward oscillations while attempting to 
stand still. The ǫ̂1 orientation almost coincided with the face-front (anteroposterior) direction, whereas the ǫ̂2 
orientation was considerably deviated from the shoulder-width (mediolateral) direction. This deviation origi-
nates from the motor asymmetry of the lower limbs. The mean CoP position of the subject was shifted slightly 
to the right from the coordinate centre of the platform, i.e. the subject body weight was distributed more on 
his dominant right leg than on his left one. Hence, we conclude that the subject controlled the postural balance 
mainly with his right foot30.

In the condition of voluntary sway movement, the subject was asked to perform swaying movements in 
the backward-right direction (Fig. 5a). In this condition, the minimum and maximum slopes were observed 
at θ̂min = 37◦ and θ̂max = 132◦ , respectively (Fig. 5d). Thus, the estimated orientations were θ̂1 = 127◦ and 
θmax = 42◦ . The orientation with θ̂1 almost coincided with the body sway direction, and the orientation with 
θ̂2 was almost perpendicular to it. The scaling exponent of ǫ̂1 along the body sway direction was 2.5 (Fig. 5f), 
indicating a smoothly spreading fluctuation. In contrast, the scaling exponent of ǫ̂2 at larger scales ( > 1 s) was 
1.5 (Fig. 5f), indicating a Brownian-motion-like fluctuation.

The decomposed components ǫ̂1 and ǫ̂2 (Figs. 4e and 5e) appeared to be moving along each axis in an inde-
pendent manner. Moreover, the cross-correlations between ǫ̂1 and ǫ̂2 were almost zero in both conditions. The 
Pearson cross-correlation coefficients were −0.07 and −0.12 , respectively, in the quiet standing and leaning 
motion conditions. Hence, our approach could detect and reconstruct the reasonable main orientations in the 
posture control dynamics. However, the kinetic and mathematical mechanism generating the observed fluctua-
tions is still unclear.

Figure 5.   Orientation decomposition of the CoP trajectory of a subject performing a voluntary sway movement 
from the steady position to right-backward position with eyes open. (a) AP CoP vs. ML CoP. (b) Angle 
dependence of log10 F(θ)(s̃) vs. log10 s̃ , where s̃ = s/1.93 in the second-order DDMA. (c) Angle dependence of 
the local slopes of log10 F(θ)(s̃) vs. log10 s̃ . (d) Angle dependence of the slope in the range of 1.2 < log10 s̃ < 2.5 . 
(e) Reconstructed components (ǫ̂1, ǫ̂2) . (f) Fluctuation functions of the reconstructed components of ǫ̂1 with 
θ1 = 127◦ and ǫ̂2 with θ2 = 42◦ in second-order DDMA.
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Great 2011 Tohoku‑oki earthquake.  The second application is the analysis of the largest earthquake on 
record in Japan and the fourth largest earthquake in the world from 1900 to 2020. The Tohoku-oki earthquake 
occurred at 14:46 JST (05:46 UTC) on 11 March 2011 in Japan. It was a magnitude 9.0 undersea mega-thrust 
earthquake off the coast of Japan31. It induced a giant tsunami with waves over tens of meters high, which caused 
serious nuclear power plant accidents. The time evolution of the main earthquake lasted for approximately 150 s 
and was associated with a fault rupture 440 km long in a north–south direction and 180 km wide along the plate 
interface. The source of the earthquake was not a single large earthquake but several interdependent earthquakes 
linked to each other.

We analyse the recordings32 of a seismic sensor located at Shin-Machi, Wakuya-cho, Toda-gun Miyagi Pre-
fecture (Latitude: 38.5401◦ N, Longitude: 141.1272◦ E) to characterise the complicated earthquake process. From 
this location, the epicentre was located approximately 111 km east and the earthquake sources were distributed 
over the azimuth angle range of approximately 102◦ to 140◦ , where the azimuth angle φ is defined as the angle 
from the north direction counted clockwise, (i.e. φ ≈ π/2− θ ). The analysed 2D time series is the acceleration 
on the ground surface with the north–south (NS) and east–west (EW) axes at the sampling frequency of 100 
Hz. The ground acceleration has been considered the most important factor in determining the stress induced 
to structures during earthquakes. The top two panels in Fig. 6 show 3-min time series. This time series could be 
separated into four representative phases: P-, first S-, second S-, and aftershock waves (Fig. 6a,b). The previous 
studies31 using inversion analysis have identified three main sources generating the representative waveforms. The 
first and second S-waves were generated, respectively, by the first and second main sources in the east–southeast 
direction from the measurement point. In addition, even in the aftershock phase, the earthquake wave induced 

Figure 6.   Orientation decomposition of the earthquake ground acceleration. Details were described in the 
text. (a,b) Ground acceleration with the north–south (a) and east–west (b) axes. (c) Angle dependence of 
log10 F

(θ)(s̃) vs. log10 s̃ , where s̃ = s/2.74 in fourth-order DDMA. (d) Angle dependence of the local slopes of 
log10 F

(θ)(s̃) vs. log10 s̃ . (e) Angle dependence of the slope in the range of 1.3 < log10 s̃ < 2.2 . (f) Fluctuation 
functions of the reconstructed components of ǫ̂1 and ǫ̂2 in fourth-order DDMA.
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by the third main source in the south–southeast direction was overlapped. However, the corresponding S-wave 
was not dominant because of the distance decay effect.

In each phase, the angle dependence of F(θ)(s̃) was estimated over the range of 0 ≤ θ < π in increments of 
π/64 rad using fourth-order DDMA. F(θ)(s̃) and the local slopes are shown in Fig. 6c,d, together with the esti-
mated representative orientations (red and blue dashed lines). We set the scaling range 1.3 < log10 s̃ < 2.2 (from 
0.20 to 1.6 s) and estimate the slopes in this range using linear regressions (Fig. 6e) to find two representative 
orientations.

A remarkable transition was observed in the orientations and the correlation properties before and after 
the arrival of the first S-wave. In the P-wave phase, the estimated orientations of ǫ̂1 and ǫ̂2 were θ̂1 ≈ 85◦ and 
θ̂2 ≈ 170◦ , respectively (the first column in Fig. 6 c,d). The corresponding slopes in the range of 1.3 < log10 s < 2.2 
were close to 0.5 and less than 1.0 (Fig. 6e). The fluctuation functions showed an evident difference between ǫ̂1 and 
ǫ̂2 (Fig. 6f). A change in the orientations was observed immediately after the arrival of the first S-wave (the second 
column in Fig. 6c,d). In the first and second S-waves, the orientations of ǫ̂1 and ǫ̂2 were θ̂1 ≈ 135◦ and θ̂2 ≈ 45◦ , 
respectively. In the aftershock wave, the orientations were rotated approximately 20◦ in the counter clockwise 
(the fourth column in Fig. 6c,d). In addition, gradual increases of the slopes in the range of 1.3 < log10 s̃ < 2.2 
were observed through the earthquake process (Fig. 6f). The slopes approached 1.5 through and after the second 
S-wave phase.

All the plots of the fluctuation functions (Fig. 6f) showed a (non-increasing) plateau in the range of 
log10 s̃ > 2.1 , indicating oscillating behaviour. To illustrate such behaviour, we also analysed the numerical 
time-series of a purely sinusoidal wave (Fig. 7a) and a second-order auto-regressive (AR(2)) model (Fig. 7b) using 
DMA. Here, the periods in the sinusoidal wave and the AR(2) model are set to 102.1 points. In Fig. 7d, the plot of 
log10 F

(θ)(s̃) vs. log10 s̃ shows a power-law increase in scales shorter than the oscillating period ( log10 s̃ < 2.1 ) and 
a plateau in scales longer than the oscillating period. Notably, the power-law (scaling) exponents of the purely 
sinusoidal wave (Fig. 7d) cannot be linked with the power-law correlation properties and the exponent depends 
on the order of the DMA. In contrast, the AR(2) model (Fig. 7b) shows a short-term power-law correlation 
characterised by α = 2.5 (dashed lines in Fig. 7e) because of the power-law of the power spectrum as S(f ) ∼ f −4 
for the high-frequency range. However, as shown in Fig. 7d, zeroth-order DMA cannot detect a scaling exponent 
larger than 26. That is, zeroth-order DMA (commonly called DMA so far) cannot distinguish between a purely 
sinusoidal wave (Fig. 7a) and an AR(2) model. Therefore, the consistency of the scaling behaviour needs to be 
tested using higher-order DMAs to detect meaningful scaling behaviour. In our earthquake analysis (Fig. 7c,f), 
the scaling behaviour in the range of log10 s̃ > 1.3 in higher-order DMAs showed consistent results.

The observed transition before and after the arrival of the first S-wave would reflect the mechanism difference. 
The P-wave is a compressional wave with no shear components and it travels faster than other seismic waves. In 
contrast, the S-wave is a shear wave and propagates faster than the P-wave. Although a detailed interpretation 
of our observation is not possible at present, our approach would provide a new method for earthquake analysis 
and advance the existing earthquake research activities, such as Refs.33–35.

Figure 7.   DMA results for oscillating time-series. (a) Sinusoidal wave. (b) Second-order auto-regressive 
(AR(2)) model. (c) Earthquake ground acceleration of the aftershock (Fig. 6). The slopes ( ≈ 1.2 ) in the range 
smaller than the plateau regime characterise the correlation properties of the noisy fluctuations.
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Discussion
We have proposed a sum of mixed fluctuations with different orientations and fractal scaling features as a model 
for anisotropic 2D trajectories. A decomposition method called OFSCA was developed to decompose a 2D trajec-
tory into the original oriented components. Through the analysis of a sample anisotropic 2D fGn model, we have 
demonstrated that the OFSCA estimates the model parameters (the orientation angle of each component and its 
scaling parameter) successfully. Moreover, the analysis of real-world anisotropic 2D trajectories, such as human 
CoP and the great 2011 Tohoku-oki earthquake, has demonstrated the existence of their oriented fractal scaling 
components and provided detailed characterisation of their properties. These findings are merely exploratory, 
and further studies of the oriented scaling components will provide new insights on the complex fluctuations.

Our observations on earthquake data analysis based on OFSCA are consistent with the findings of Ref.31, 
where the motion characteristics of the tectonic movement during the Tohoku earthquake were studied using 
inverted teleseismic P- wave data. The authors showed the relationship between slip distribution (tectonic move-
ments) and strong ground motion while considering a long slip duration, large stress drop, and extensional 
(normal faulting) aftershocks. We consider that there could be a relationship between the Hurst exponent and 
strong ground motion, since as discussed in the Ref.36 the power law in the earthquake statistics and non-linear 
nature of the earthquake propagation comes from the fractal nature of rough crack surfaces of crust and tectonic 
plate dynamics. We assume that OFSCA approach might provide basic information about the rupture process for 
real-time monitoring (real-time seismology). Further application of OFSCA to seismic data and the interpreta-
tion of the fluctuation characteristics of tectonic movements are required to understand the earthquakes more 
deeply and to predict their occurrence and propagation in the future.

Further extension of OFSCA is feasible for postural sway analysis, which has been used for the medical 
diagnosis and prognosis of patients with neurological and motor disorders. When a subject has a motor/sensory 
disorder (such as hemiplegia or incomplete spinal cord injury), which has an asymmetrical effect on the standing 
stability37, the evaluation of the directional dependency of the CoP trajectory could provide useful information 
on the stabilising ability and dysfunction.

The proposed OFSCA can be used to characterise other real-world 2D trajectories. For instance, in Ref.38, an 
automated continuous monitoring system for tracking the behaviour of pigs was used to monitor their move-
ments with a depth camera. Then, using 2D trajectories of pig movement, the directional behaviour and charac-
teristics of the locomotion dynamics could be quantified with OFSCA and mapped onto the animal health issues 
to detect warning signs. This approach can be used to characterise the trajectories of other animals, such as fish, 
cows, and unicellular organisms. It can also be applied in several other behavioural, ecological, and veterinarian 
studies, and to amend the existing techniques of 2D and 3D trajectory analyses39,40.

Another promising application is the analysis of the 2D trajectories of individuals encountered in group 
games, such as soccer, in both humans41 and robots42. The group dynamics and interconnections of the player’s 
movement dynamics may provide interesting insights for sports studies, and the orientation of the fluctuation 
characteristics can be a valuable feature of single, group, and event-specific trajectories43. Furthermore, the 
OFSCA approach can be extended to higher-dimensional data analysis, e.g. studying complex evolutionary 
dynamics44, or understanding the structure and patterns in high-dimensional RNA sequencing datasets45.
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