
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:22160  | https://doi.org/10.1038/s41598-020-78777-2

www.nature.com/scientificreports

Evolutionary design of optimal 
surface topographies 
for biomaterials
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Natural evolution tackles optimization by producing many genetic variants and exposing these 
variants to selective pressure, resulting in the survival of the fittest. We use high throughput 
screening of large libraries of materials with differing surface topographies to probe the interactions 
of implantable device coatings with cells and tissues. However, the vast size of possible parameter 
design space precludes a brute force approach to screening all topographical possibilities. Here, 
we took inspiration from Nature to optimize materials surface topographies using evolutionary 
algorithms. We show that successive cycles of material design, production, fitness assessment, 
selection, and mutation results in optimization of biomaterials designs. Starting from a small selection 
of topographically designed surfaces that upregulate expression of an osteogenic marker, we used 
genetic crossover and random mutagenesis to generate new generations of topographies.

The use of implantable medical devices to treat an increasing variety of human pathologies is growing rapidly1. 
These devices can support organ function, (e.g. pacemakers2), partially replace the organ (e.g. hip implants3), or 
help recover tissue function (e.g. coronary stents4). The choice of materials used in the implant is crucial, as its 
properties determine tissue responses such as inflammation and fibrosis5. Poor materials choices can result in 
implant failure like late stent thrombosis6 or tumour formation induced by breast implants7. The physical and 
chemical properties of a biomaterial define its multidimensional design space8,9. Materials may have hundreds of 
properties so design spaces that are generated by combinatorial variation of these properties can be truly enor-
mous (~ 10100, an essentially infinite number of materials). Very small regions of these vast design spaces can be 
explored experimentally using high throughput screening of hundreds to thousands of different chemistries10, 
topographies11, and hydrogels12, in an array format, screened for a desired biological response. Use of design 
of experiments (DoA) methods enables these data to represent larger regions of design space than brute force 
screening alone, and machine learning (ML) methods can interpolate between experimentally measured data 
points. This has led to the identification of biomaterials that could not be anticipated. For example, we identi-
fied a surface topography that supports osteogenesis13. Hook et al. discovered specific polymer chemistries with 
low pathogen attachment properties in three sequential screenings, where materials for subsequent steps were 
formulated from the best examples from the previous steps10. However, considering the size of the design space, 
there is a negligible chance that the biomaterial properties we and others found are globally optimal. Quanti-
tative data obtained from screens can be used to explore design space and find correlations between material 
design and biological activity using ML and other statistical methods14,15. For example, using this approach we 
were able to predict topography designs promoting stem cell proliferation16 and Kholodovych et al. were able 
to predict clinically relevant responses for diverse polymer designs17. However, the predictive power of ML 
models is limited to the domain of applicability defined by the properties of materials used to train the model, 
limiting its scope to discover conceptually different materials that lie well outside the domain. To address this 
severe limitation in the discovery of improved, novel biomaterial we adopted an evolutionary materials design 
approach using genetic algorithms (GA)18,19.
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GA, inspired by biological evolution, are efficient methods of exploring extremely large parameter spaces. 
They require materials to be represented by a ‘genome’ (a mathematical representation of the physicochemical 
or processing parameters of a material)20. By analogy with biological evolution, GAs start with a population of 
biomaterials (existing lead compounds or random materials) with a range of material properties represented 
by their ‘genes’. GAs apply evolutionary pressure in the form of a fitness function (e.g. desired cell response) to 
generate successive populations of materials by applying genetic crossover, point mutation, or elitism operators 
to the fittest members of prior populations of materials. Individuals or solutions that best fit a specific environ-
ment have a better chance of survival and reproduction. The whole process is repeated until the best solution is 
found, no fitter solution is found, or a specified number of evolutionary cycles is reached (usually constrained 
by time or financial resource limitations). As with biological evolution, this evolution pressure generates locally 
optimal, but nonetheless novel and useful solutions.

Genetic algorithms have previously been used to optimize materials (see the recent review by Le et al.21). 
For instance, Collins et al. used GAs to optimize functional groups of metal–organic frameworks to increase 
CO2 uptake22. Grand Canonical Monte Carlo calculations were used to calculate the fitness properties (CO2 
uptake, surface area, and parasitic energy), based on the molecular structure of the compounds. 1.65 trillion 
structures were analyzed in silico and led to the identification and experimental testing of 141 new compounds 
with increased CO2 uptake. In biomaterials research, GAs were employed to optimize the composition of tita-
nium alloys for dental applications23, and to optimize alginate scaffolds for tissue replacement24. In both cases, 
calculated elastic properties were used as fitness functions.

While ML models of structure–property relationships can be used as surrogate fitness functions, providing 
the fastest and most convenient fitness assessment for evolutionary optimization25, experimentally measured 
fitness properties essential to create the data on which the ML models can be trained. For example, Bawazer et al. 
measured droplet parameters to optimize droplet formation for microfluidics devices26.

The goal of this paper is to create a new generation of topographies using genetic algorithms, based on 
topographies selected from earlier TopoChip screens that we performed in our lab. This new generation of 
topographies can then be used to produce a new TopoChip with potentially enhanced biological properties. To 
assess whether GAs can be used to optimize the bioactive properties of materials, we used an existing data set 
measuring the relationship between the expression of the alkaline phosphatase (ALP, a biomarker of osteogenic 
differentiation) in mesenchymal stem cell (MSCs) and surface topography. We performed a screen to identify 
which topographies enhance osteogenesis in titanium implants13. The initial population consisted of 2176 ran-
domly generated surface topographies11. In the future, we will use GAs to optimize surface topographies using 
multiple cycles of manufacture, biological screening, and mutation to generated increasingly fitter examples of 
surface topographies. Here we describe the initial step, the evolutionary design of a second generation TopoChip.

Experimental design and methodology
Encoding and selecting parents in evolutionary cycles.  To generate the initial pool of topographies 
(described later), and produce genetic mutations of topographies, we converted the information about topogra-
phy design from a set of design parameters reported in our original TopoChip article11 into a ‘topography genes’. 
Since no literature exists on the optimal representation of topographies as genes, we developed two different 
approaches and compared them in subsequent experiments. We have explored 2 fundamental approached to 
represent imaging data, raster, based on pixels and vector, based on vectors.

The raster is pixel based and represents each topographical feature (the base unit of design) as a binary image 
with a size of 200 × 200 pixels (see Fig. 1A). This can be presented as a 2D matrix, populated with 0 s and 1 s, 
where 1 corresponds to the pillars of material and 0 corresponds to no pillars. The gene is created by flattening 
this two-dimensional matrix into one dimension by arranging stacks of rows with 0 and 1 into a single row 
(Fig. 1A). Thus, we converted all topographies on the original TopoChip into genes, one gene representing one 
surface design.

The second approach is vector or as we called it, primitive-based and uses the design parameters which cre-
ated the first TopoChip. This gene is defined by domains, similar to protein domains encoded by parts of a gene. 
In this case, each domain encodes a surface geometry, and we chose the three types of primitives (triangle (T), 
circle (C) or line (L)11). The gene was constructed from the relative XY position of lines or triangle corners, and 
the center XY position and radius (R) for circles (Fig. 1A).

To initiate the evolutionary experiment, we selected 81 parent topographies (top 5% based on their induction 
of ALP expression) from a pool of 2176 TopoChip topographies13 (Fig. 1B). This list and ranking were based 
on a previous study in which we exposed bone marrow mesenchymal stem cells to titanium-coated TopoChips 
and measured the intensity of ALP. These topography ‘parents’ were used to generate millions of diverse progeny 
topographies using genetic mutation methods. The strategy used to select how the mutation operators are applied 
to the parents is important as it determines the genetic diversity of progeny. We assessed which of seven selection 
algorithms (Roulette, Random, Tournament, NSGA227, Best, Worst, SPEA228) gave the highest genetic diversity 
in the offspring. Some algorithms (for instance NSGA2) use a similarity score based on Pearson correlation of 
the genes and ALP expression, others are completely random (Random). Figure 1C shows an example of similar 
and dissimilar surfaces based on Pearson correlation. This in turn defines the computational procedure to align 
pairs of parents for subsequent mutation.

Breeding and mutation were performed over multiple cycles. In each cycle, groups of 10 parents were selected 
from an initial pool of 81 parent surfaces. These were combined to generate 10 × 10 parent pairs, plus the 10 
best original parents (elitism operator), a total of 110 topographies to be assessed for fitness.
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Experiment Design.  After parent selection, genetic diversity is created by crossover and point mutations. 
Parent selection, crossover and mutation are schematically presented in Fig. 2A,B. Crossover involves exchang-
ing a substantial block of genes between two selected parents. We implemented eight crossover algorithms, with 
increasing genetic diversity, for both pixel- and primitive-based parent genes.

Figure 2C displays an overview of the effect of different crossover operations on the design of topographies. 
Visual inspection showed that the effect of crossover is clearly different between pixel- and pattern-based repre-
sentations. Primitive-based representations creates patterns that were similar to the parents, while pixel-based 
crossover introduced new elements into the topographies compared to the original TopoChip.

After crossover, random mutagenesis operations were applied, introducing a stochastic element to designs. 
We randomly changed the shapes of the elements, their size (mutation, polygon), partially deleted elements 
(deletion) or introduced new elements (insertion of circles, triangles, and rectangles). For pixel-based repre-
sentation, we allowed the insertion of a polygon with a random shape and introduced roughness to the pattern 
(Fig. 2D). Our GA mutation procedure allowed a surface to undergo zero, one, two or three different types of 
mutations subsequently.

Mutation rate is also a very important parameter. High mutation rates explore larger regions of phenotypic 
space. This can move topographical designs away from regions where good ALP expression induction occurs, 
but can also discover distant, novel regions of design space that may also have good ALP induction properties. 
Because we do not know the optimal mutation rate to drive evolution, we tested < 20% and < 50% mutation rate. 
Numbers were chosen based on visual inspection of the effect of mutation rate on the appearance of the progeny 
(data not shown). The overall flow of genetic perturbations on topographies is schematically shown in Fig. 3A.

Each set of 10 parents produced 110 progeny (extra 10 by applying elitism) (see Fig. 3B). We used a filter 
based on similarity measurement in which a pixel-based Pearson correlation coefficient was calculated for each 
new design against already selected new designs. In the final selection, half of the new surfaces were dissimilar 
(Pearson correlation index below 0.5) and another half similar (Pearson correlation index below 0.9) to each 
other. In this way, we produced about one million offspring topographical designs from which 4177 selected for 
a second generation TopoChip (Fig. 3B) to form genetically modified TopoChip (GTopoChip1). In total we have 
performed 4 separate generation rounds.

Types of topographical surfaces.  GTopoChip1 has five surfaces types; (1) the 81 original parents, in this 
way we introduced the elitism operator that allows to keep best surface designs from the previous generations (2) 

Figure 1.   Encoding and selecting parents for cross breeding. (A). Conversion of surface topography to a gene. 
Pixel-based approach: the topographical feature can be presented as a 2D matrix, populated with 0s and 1s, 
where 1 corresponds to the pillars of material and 0 corresponds to no pillars. The gene is created by flattening 
this two-dimensional matrix into one dimension by arranging stacks of rows with 0 and 1 into one row. 
Primitive-based approach: the gene is defined by primitives of three types [triangle (T), circle(C) or line (L)], the 
XY positions of lines and triangles corners or XY position of the circle centre and its radius. (B) Selection of top 
5% surface topographies based on ALP Mean Integrated Intensity. (C) Schematic representation of surfaces that 
will be similar or dissimilar based on Pearson correlation.
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4177 newly generated surfaces that were perturbed through either pixel-based or (3) primitive-based gene rep-
resentation as described above, (4) five flat control surfaces, and (5) 31 control surfaces with a simple design in 
triplicate (Fig. 3C). The latter was included to investigate the efficacy of simpler topographies in which surfaces 
were based on simple gradients or incremental differences in distance between features. This is a commonly-
adopted ‘spike-in’ strategy used by many groups working on variants of surface topography. To create simple 
design surfaces, we took 3 types of patterns, a line, square, and a hit topography from the original TopoChip 
screen that induced ALP expression and bone bonding in  vivo. With the lines and rectangles, we created a 
range of sizes between 4–16 µm in 1 µm steps. 4 µm was the smallest feature that could be produced, and 20 µm 
was a reasonable maximum feature size. The ALP hit surface was generated in 7 size variants (Fig. 3D).

Results and discussion
Exploration of pattern design on GTopoChip1.  Figure 3E shows the sequence from parent selection to 
inclusion in the final design for the 4177 new topographies on the GTopoChip1. The size of the node illustrates 
the relative number of times the specific node was chosen. The degree of mutation and similarity were pre-
selected and are therefore of similar size, Pixel-based and primitive-based algorithms shared the same selection 
algorithms, while the crossover algorithms were different for each. As Fig. 3B shows, most surfaces had only one 
mutation; a few topographies received 3 consecutive mutations. Figure 3F shows an example of surfaces gener-
ated using a crossover and all 3 types of mutations sequentially.

The ALP expression and topographical similarity (based on Pearson correlation) were plotted for the 81 
parents as described in Fig. 4A. The figure shows the number of children per parent as a bubble chart. Interest-
ingly, topographies that created the most offspring generated diverse ALP induction and had low topographical 
similarity. This likely reflects the fact that similarity measurements and ALP expression were used in the selec-
tion step. Parent selection resulted from 7 randomly selected algorithms. We observed that they are not equally 
represented on GTopoChip1. In fact, “Random” and “Worst” selection algorithms were the most frequently used 
among the primitive based and pixel-based gene representations of the surfaces, respectively (Fig. 4B). Despite 
the fact that all algorithms were selected by uniformly distributed random sampling (i.e. equal probability of 

Figure 2.   Selecting, recombining and mutating the genetic information of the parents. (A). Schematic 
representation of surface selection flow at the beginning of each cycle. (B). Schematic representation of 
crossover and mutation algorithms. (C) Example of different crossover algorithms. Colours (yellow and blue) 
represent parts from different parents. Surfaces with red outline were selected further to demonstrate mutation 
algorithms. (D) Example of different mutation algorithms. Green regions correspond to newly-inserted 
elements of the design; white outlines corresponds to deleted parts.
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each algorithm being selected), filtering steps that excluded surfaces with similarity above a specified threshold 
most likely skewed this distribution, and algorithms that contributed to the generation of unique surfaces were 
chosen more frequently. Possibly, Worst and Random selection algorithms created more dissimilar surfaces, 
explaining their more frequent selection.

We also quantified the total number of unique pairs of parents (Fig. 4C). 1284 unique pairs were found from a 
theoretical maximum of 81 × 81 = 6561 that could be formed, (note that the GTopoChip1 can only accommodate 
4356 topographies). Some parents contribute more to genetic diversity than others and random mutagenesis 
contributes significantly to genetic diversity. This is illustrated in Fig. 4D, where we plotted all 6561 parents and 
marked which parent combinations and their number are present on the chip. As can be seen, some parents have 
bred with a large number of other parents, whereas some barely reproduced. Clearly, some parent combinations 
were used multiple times and produced multiple offspring because mutations of these combinations increased 
topographical diversity and fitness. For example, Fig. 5 shows all the progeny of the best ALP inducing surfaces 
from the previous screening. Some progeny are only slightly different from the parent surfaces, while others 
barely resemble the parents (highlighted by a yellow outline on the figure).

We analyzed similarities and dissimilarities between progeny and parent topographies. All designs were 
converted to images and then to pixel-based genes. We then used principal components analysis (PCA) to 
calculate similarity, and visualized GTopoChip1 using the first two principal components (PCs) (Fig. 6A). It is 
clear that the parents do not cover design space evenly; the flat surface occupies one corner in the PCA plot and 
the control topographies are probing design space only in the first PC. Interestingly, the majority of pixel-based 

Figure 3.   The flow of genetic perturbations. (A) Schematic representation of the genetic perturbation flow. 
(B) Schematic representation of surface numbers in every step of genetic perturbation. (C) Examples of control 
surfaces. (D) Different sizes of the ALP hit surface. (E) The flow of genetic perturbations with the second 
generation of the GTopoChip1. Every bubble corresponds to a single function or parameter that belongs to 
step specified on X-axis. The size of the bubble represents the number of surfaces that were generated with that 
particular function or parameter. (F) Example of surface generation: after parental crossover one child has 3 
consecutive mutation steps. Yellow and blue colours correspond to the parents, green colour represents inserted 
elements of the design, and white outline represents removed elements of the design.
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topographies are shifted towards the left, away from the bulk of parents, whereas primitive based surfaces are 
closer to the parents. This means that when primitive based parents are crossed, their offspring have higher 
topographical similarity to them than when pixel-based parents are crossed. It is important to realize that it is 
possible to crossover half a pixel-based circle, but not half a primitive-based circle.

We next visualized the first 7 PCs, which are called eigenimages (eigenvectors) (Fig. 6B). The approach is 
broadly used in face recognition and is called eigenface generation29. Design of every surface can be reconstructed 
by combining these eigenimages multiplied by their weights, which are unique for every topography. This visu-
alization shows the most typical components of the surface design, specifically, where pixels (topography/non-
topography) varied most between topographical features. The white color represents the highest variance and 
black—the lowest. Based on the first image (PC1), the component with the highest variance, it is clear that most 
variance between surfaces lies exactly in the centre of the topographical feature, confirming that coordinates of 
the primitives were sampled from the Normal distribution. PC2, second most important component maps to 
four repeated parts at the corners of the image, likely representing the original 10 µm features upscaled by the 
2 × 2 format, and allowing permutation with 20 µm size features.

Other PCs represent patterns that occupy other parts of the image corners, and some patterns can also be 
traced back to the parent topographies. Interestingly, PC3 and PC4 represent similar patterns that are rota-
tionally related. From a biological point of view, they represent exactly the same design because the cells will 
interpret these structures as identical. Such repeated designs were formed because our similarity comparison 
approach, based on the correlation index, did not take into account rotated versions of surface designs. While the 
rotation-agnostic similarity comparison test will decrease the redundancy of the designs, it will slow down the 
computational simulation. Another computationally expensive source of the redundancy is XY-offset of design 
elements. Implementation of fast surface design comparison test that accounts for rotation and XY-offset is a 
topic for further research.

Comparison of GTopoChip1 and original TopoChip.  The 81 parent topographies used to seed the 
evolutionary process that generated GTopoChip1 were a subset of the 2176 unique topographies on the origi-
nal TopoChip. We queried whether the GTopoChip1 is substantially different from the original TopoChip. To 
assess this, we summed all pixel values from the topographies of corresponding groups and generated a matrix. 
Figure 7A shows the matrix plotted using colours to represent the number of surfaces that have a pattern at the 
corresponding x y coordinate in the 2D image. For the original TopoChip, the surface was very smooth and con-
sisted of 4 maxima because the original TopoChip consists of unique patterns of either 100 × 100, 200 × 200 or 

Figure 4.   Exploration of Genetically modified TopoChip. (A) Bubble chart in which the bubble size represents 
the number of progeny for every parent. Y-axis represents similarity measured with Pearson correlation. The 
x-axis represents ALP intensity in the initial screen. (B) The frequency of the selection algorithm for both Pixel-
based and primitive based gene representations. (C). Quantification of factual, possible and theoretical parents’ 
pairs. (D) Quantification of pairs formed by the parent surfaces in GTopoChip1.
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280 × 280 pixels. We multiplied every 100 × 100 pattern 4 times to create a pattern with size 200 × 200. 280 × 280 
patterns were excluded from our analysis as cropping them to the size of 200 × 200 would alter initial design 
significantly as not only shape of the pillars is important but also spacing between them.

We used the t-SNE visualization algorithm, which applies nonlinear transformations to map multidimensional 
relations in a 2D plot, to compare these multidimensional data. t-SNE visualization was performed on the first 
5000 PCs computed on images of the topographical features (pixel-based representation). Figure 7B clearly shows 
that some topographies from the original chip create a distinct cluster. Interestingly, small features occupy the 
left lower corner of the plot, and there is a large cluster at the top right corner of the plot (data not shown). The 
blank surface is in the lower left corner of the plot. Based on our previous research13 these topographies gener-
ally do not induce high levels of ALP. Interestingly, the t-SNE plot created similar clusters regardless of whether 
pixel or feature based genes were used (data not shown). Both topographies created by pixel and pattern design 
spanned homogeneously across the plot. However, some topographies created very dense areas, enriched with 
pixel-based topographies and sparse with primitive-based representations, and not represented by parents.

Future work will involve in vitro biological validation of the fabricated surfaces and the use of evolutionary 
methods to optimize topographies for more useful or realistic biological end points such as cell attachment, pro-
liferation, and differentiation fate. Additionally, finding a surface inducing higher ALP expression, will validate 

Figure 5.   Progeny of the ALP hit surface from the initial screening. Parent surface is enhanced with a yellow 
outline.
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the utility of the evolutionary approach, further elucidate the relationship between materials topographical 
properties and ALP expression, and allow further refinement of the algorithm.

Conclusion
The vastness of biomaterial design space precludes exploration by even the most optimistic brute force screen-
ing approaches. Although high throughput experimental methods clearly search for optimal materials more 
efficiently than conventional one-at-a-time experiments, they cannot explore more than a minute fraction of 
possibilities. However, evolutionary methods using iterative cycles of fitness assessment, mutation and selec-
tion are vastly more efficient in exploring these large parameter spaces as we have illustrated using the surface 
topography example. Genetic algorithms are driven by a fitness function describing the relationship between 
materials properties (representing a genotype) and function (representing the phenotype). As an initial proof of 
concept, we studied ALP expression as a function of topography using experimental data. Our surface fabrication 
approach is efficient, as it takes the same effort to fabricate ten or thousands of surface topographies. We created 
a relatively large topographical library that allowed exploration of the topography/ALP expression relationship 
and generated the GTopoChip1 design.

We have identified that image-based representation of topographies generated drastically different topogra-
phies during evolution relative to the starting topographies. And it suggests to be more diverse approach. How-
ever we need to see this results based on the biological experiments. As the method cycled through, it generated 
new topographical features covering more design space compared to the parent surfaces and first-generation 
topographies. Clearly, imaged-based gene representations designs are not useful for evolving other biomaterial 
properties such as surface chemistry, or physicochemical properties such as softness, resilience etc. In these cases, 
more traditional chemical ‘genes’ can be used e.g. chemical graphs, text representations such as SMILES. As it 
will undoubtedly be useful to optimize topography and chemistry simultaneously, merging topographical and 
chemical genes into a “universal” gene representation is a topic that merits further investigated.

Material and methods
Algorithms.  The algorithm for genetic perturbation of topographies was implemented in Python 2.7. We 
used the DEAP version 0.9a package for genetic algorithm calculations. Data and file manipulations were per-
formed with packages Numpy, Json, pandas, scipy, and math. Figures were plotted with matplotlib and mayavi 
packages. Image manipulation was performed with the PIL, Codecs, cv2 and skimage packages. Surfaces identi-
fied as parents were selected by ALP expression greater than a threshold value. This threshold value was calcu-

Figure 6.   Principal Component Analysis of GTopoChip1. (A) Scatterplot that represents every surface in first 2 
Principal Components, split by groups. (B) Image reconstruction of first 7 Principal components. White colour 
corresponds to highest variance.
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lated as the 95 percentile of the ALP mean integrated intensities from all the surfaces. Topographical features 
(unique elements of the topography design) in the original chip had three sizes 10, 20 and 28 μm. To permute 
designs with different sizes we excluded surfaces with size 28 μm and upscaled 10 μm by merging four its copies 
in 2 × 2 format. Topographical feature design was obtained from the original design file that contains informa-
tion about the type of the primitive, its size and location. For primitive-based parents, we used this data with no 
change, for the pixel-based approach we converted it to the 2D image with a size of 200 × 200 pixels, where pixels 
that correspond to pillars were set to one and no pillars to zero. For conversion into pixel-based genes, surface 
images were flattened to the one-dimensional matrix. The similarity between different surfaces was computed 
by Pearson correlation which was performed directly on flattened matrices of surface images. Total similarity 
per surface was computed by summing up absolute values of all its similarity indexes to other surfaces. Selection 
of algorithms for every step was done in random fashion. Generation of the topographies was done in multiple 
cycles as described in the main text. When all surfaces were generated they were shuffled in a random fashion. 
To meet with requirements of fabrication procedure all pillars with a diameter less than 4 µm were excluded 
from the final design.

Received: 4 October 2020; Accepted: 30 November 2020
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