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Predicting Aedes aegypti 
infestation using landscape 
and thermal features
Camila Lorenz1*, Marcia C. Castro2, Patricia M. P. Trindade3, Maurício L. Nogueira4, 
Mariana de Oliveira Lage5, José A. Quintanilha5, Maisa C. Parra4, Margareth R. Dibo6, 
Eliane A. Fávaro4, Marluci M. Guirado7 & Francisco Chiaravalloti‑Neto1

Identifying Aedes aegypti breeding hotspots in urban areas is crucial for the design of effective vector 
control strategies. Remote sensing techniques offer valuable tools for mapping habitat suitability. In 
this study, we evaluated the association between urban landscape, thermal features, and mosquito 
infestations. Entomological surveys were conducted between 2016 and 2019 in Vila Toninho, a 
neighborhood of São José do Rio Preto, São Paulo, Brazil, in which the numbers of adult female Ae. 
aegypti were recorded monthly and grouped by season for three years. We used data from 2016 to 
2018 to build the model and data from summer of 2019 to validate it. WorldView‑3 satellite images 
were used to extract land cover classes, and land surface temperature data were obtained using 
the Landsat‑8 Thermal Infrared Sensor (TIRS). A multilevel negative binomial model was fitted to 
the data, which showed that the winter season has the greatest influence on decreases in mosquito 
abundance. Green areas and pavements were negatively associated, and a higher cover of asbestos 
roofs and exposed soil was positively associated with the presence of adult females. These features 
are related to socio‑economic factors but also provide favorable breeding conditions for mosquitos. 
The application of remote sensing technologies has significant potential for optimizing vector control 
strategies, future mosquito suppression, and outbreak prediction.

Mosquitoes are responsible for the transmission of several infectious diseases, such as malaria, dengue, yellow 
fever, Zika virus, and filariasis and have become an increasing problem as a result of climate change, environ-
mental changes, urban growth patterns, and insecticide  resistance1. For example, the number of dengue cases 
reported to the World Health Organization (WHO) increased from < 0.5 million in 2000 to over 4 million in 
 20192—the largest increase ever recorded. This included over 3.1 million cases in the Americas alone, of which 
more than 25,000 cases were classified as severe. For this reason, there have been significant attempts to improve 
surveillance methods for the quick detection and diagnosis of potential outbreaks of mosquito-borne  diseases3. 
Notwithstanding mosquito monitoring policies have been developed  worldwide4–8, monitoring in urban areas 
faces many challenges. In particular, for Aedes aegypti, the primary vector of dengue, chikungunya, and Zika 
 virus9, control is laborious and inefficient given that the larvae prefer small, artificial habitats that are ubiqui-
tous in urban areas. Surveillance efforts are also threatened by the wide variety of potential habitats as well as 
their ephemeral  nature10. Therefore, despite some regional-scale  efforts7, a crucial issue is being able to predict 
mosquito abundance without extensive and expensive fieldwork. Even though interventions exist, mosquito 
infestation and spread of arbovirus continue. The reasons for this include inadequate program implementation, 
ineffective coverage, and lack of human, financial, and infrastructural  capacity1.

Climatic and landscape variables can be useful for predicting the local abundance and potential for expan-
sion of arthropod vectors, including  mosquitoes11–14. Given that field surveys are both costly and inefficient, 
remote sensing technologies are being increasingly used to estimate habitat suitability for a diversity of mosquito 
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genera, including Anopheles12,15 and Aedes5,14,16,17. Specific land use and cover types can favor the proliferation of 
mosquitoes. For example, mosquito abundance and the occurrence of particular species is strongly influenced by 
vegetation cover and turbidity within standing bodies of  water18–21. Lorenz et al.22 recently showed that infesta-
tions of Ae. aegypti adult mosquitoes were positively associated with the presence of asbestos roofing and roof 
slabs in an urban region of Brazil. In our study, we analyzed the same area studied by Lorenz et al.22 and used 
similar methodology, but we used a bigger dataset (all seasons for 3 years) and included climatic information 
(thermal images and precipitation). Furthermore, temperature and rainfall are climate parameters of particular 
interest because they impact both the distribution of suitable vector habitats and the potential for local vector 
 proliferation16. Study of the relationships between temperature, the temporal patterns of dengue fever, and Ae. 
aegypti populations is common, while the relationship between spatial patterns, temperature, and Ae. aegypti 
remains poorly understood. Studies of urban micro-climate show that temperature can vary significantly over 
relatively short  distances23, which are likely to impact mosquito  populations17 and their capacity as vectors of 
 disease24–26.

Thermal satellite images can be used as input data for modelling mosquito infestation. For example, the 
Landsat-8 Thermal Infrared Sensor (TIRS) provides images at a relatively fine temporal (every two weeks) and 
spatial (30 m) scales. These datasets offer opportunities to improve the accuracy and precision of mosquito 
infestation prediction models. Most of the existing studies that have focused on the Aedes genus of mosquitos 
have employed satellite-derived surface temperature  data17,27,28, which may differ from air temperature by sev-
eral  degrees27, especially during the day. The correlation between ground and air temperatures is, nevertheless, 
generally strong, and positive spatial correlations between surface temperature and disease vectors have been 
 reported29. Therefore, surface temperature offers a measure that can be used to characterize the spatial relation-
ships between Ae. aegypti infestation and temperature. Here, we sought to demonstrate the application of remote 
sensing technology for the prediction of mosquito infestation in the Vila Toninho neighborhood of São José do 
Rio Preto, São Paulo, Brazil (Fig. 1).

Results
Landscape and thermal features. Supervised classification of landcover types based on WorldView-3 
images after ground-truthing revealed that the most prevalent categories in the urban Vila Toninho neighbor-
hood are pavement, ceramic tile, and roof slab (Fig. 2). These categories are also the most common within the 
30 m buffers, those used to calculate mosquito infestation. This classification procedure had an overall estima-

Figure 1.  Municipality of São José do Rio Preto, state of São Paulo, Brazil. Vila Toninho neighborhood (study 
area) is highlighted in red. Map data: Google, Maxar Technologies.
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tion of 90.6% accuracy and a Kappa index (see “Methods” section) of 0.89. Classification errors occurred either 
as a result of overestimation (false positive) or underestimation (false negative). The class-specific producer’s 
accuracies ranged between 43% (water) and 96% (pavement) and the user’s accuracies between 57% (shadow 
areas) and 92% (ceramic tile). Water and shadowed areas yielded high percentages for both types of misclas-
sification and were subsequently grouped under the single category ‘water + shadow areas’ during the statistical 
analysis.

Six different temperature zones (in increments of 2 °C, between 23 and 35 °C) were identified throughout 
the study area. These zones always adhered to the same spatial pattern, independently of season. Specifically, 
areas with high vegetation cover were cooler (25 ± 2 °C) than areas with moderate or low vegetation cover (both 
31 ± 2 °C).

Aedes aegypti infestation and multilevel modelling. During a 3-year monitoring period, we cap-
tured 788 Ae. aegypti adult females. The temporal variation in the observed infestation level is represented in 
Fig. 3, which indicates different levels of abundance during different seasons. Summer, fall, winter and spring 
presented a mean of 4.66, 3.59, 1.40, and 3.69 mosquitoes captured per trap, respectively. Notably, the lowest 
abundances occurred during the winter season (p < 0.001).

Exploratory analysis (Fig. 4) showed that latitude and longitude had no linear association with the number of 
mosquitoes  (R2 =  − 0.0636 and − 0.0611, respectively). Collinearity analyses were performed, but no considerable 
relationships were observed. Average rainfall and average seasonal temperature were categorical variables that 
distinguished each season. The surface temperatures recorded near the mosquito traps were positively associ-
ated with the number of mosquitoes caught, which also varied between seasons. However, overall, the variable 
‘season’ provided a suitable level of predictive power in the model so that surface temperature was subsequently 
discounted.

To explain the number of trapped Ae. aegypti, we used a multilevel binomial negative model in which the 
subject of the random variable was trap identification and incorporated information from repeated measures. The 
final model was produced by adjusting the inclusion and exclusion of explanatory variables from the complete 
model to achieve a satisfactory level of prediction. For example, latitude and longitude were excluded as they had 
no significant influence as exploratory variables. The cover types, ‘roof slab’ and ‘water and shadow areas’ were 
also excluded based on their lower statistical correlation with mosquito abundance. As the summer, autumn, 
and spring seasons did not show any difference in the model regarding mosquito abundance, we subsequently 
chose to represent season as a binary variable (i.e., ‘winter’ and ‘not winter’). Based on this, the following nega-
tive binomial model was derived:

where NUM_AEDES is number of adult Ae. aegypti females; Green is green areas; Asbestos R is asbestos roof; 
Ceramic T is ceramic tile; Ex. soil is exposed soil; PAV is pavement; WINTER identifies the season as winter (or 

NUM_AEDES ∼ Green+ Asbestos R+ Ceramic T+ Ex. soil+ PAV+WINTER+ ( 1|TRAP_ID)

Figure 2.  Vila Toninho neighborhood. Left: WorldView 3 image showing seven different landcover categories. 
Right: Landsat 8 TIRS showing surface temperature.
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Figure 3.  Distribution of Ae. aegypti adult female mosquitoes by season in Vila Toninho from 2016 to 2018.

Figure 4.  Scatterplots of each independent variable tested with the number of mosquitoes considering each 
season. Landcover categories (in %): WAT + SHA water and shadow, EXP.SOIL exposed soil, CERAMIC T 
ceramic tile, ASBESTOS R asbestos roof, GREEN green areas (trees and grass), AIR TEMP average season 
temperature (ºC), WINTER binary variable indicating if is winter season or not, SURF TEMP surface 
temperature (TIRS Landsat 8, ºC), RAIN average season rainfall (mm).
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otherwise); and TRAP_ID is the identifying number of each mosquito trap. Table 1 shows the coefficients for 
each of the variables selected to compose the model.

The cover types ‘asbestos roof ’ and ‘exposed soil’ had a positive association with the number of female 
mosquitoes, while ‘green area’, ‘paving’, and ‘winter’ were negatively associated with mosquito abundance. To 
evaluate the model fit, we first checked the model against the null model using Analysis of Variance (ANOVA). 
This showed that the negative binomial model performed significantly better than the null model (p < 0.0001), 
with an Akaike Information Criterion (AIC) of 1,047.42 compared to 1208.24, respectively (see Supplementary 
Material 1). We also simulated the QQ-plot residuals of our model according to  Hartig30 (Fig. 5), which indicated 
that the model was suitable (see “Methods” section). Considering statistical significance, the KS test indicates 
that the points are not far from the reference line (non-significant p-value). Similarly, the Outlier test did not 
reveal any significant presence of outliers in the data. It tests if the residues (expected/observed) have normal 
distribution and if there is any discrepant point.

We calculated the root mean square error (RMSE) and the mean absolute error (MAE). The smaller the RMSE 
and MAE values, the better the model’s performance. As a comparison criterion, we considered the relative 
RMSE (Rel_RMSE) and relative MAE (Rel_MAE) as the error divided by the average of the observed response. 
This measure is similar to the variation coefficient. We obtained Rel_RMSE = 0.093 and Rel_MAE = 0.03, which 
indicates that the error is about 9% of the average considering RMSE and 3% of the average considering MAE. 
Generally, it is desirable to have a coefficient of variation less than 15% to prove the model’s  effectiveness31. To 
validate our model, we used another dataset (summer of 2019) and also obtained the relative RMSE (0.1367) and 
relative MAE (0.0724). Although the values are higher, they still consider the model adequate.

Figure 6 shows observed mosquito abundance against predicted abundance using our model (correlation 
coefficient R = 0.74). This shows that the model successfully captures the general pattern of the observations and 
helps to explain the seasonal variations in mosquito abundance observed in Vila Toninho.

Discussion
Our findings indicate the potential for using remote sensing data in predictive models of Ae. aegypti infesta-
tion and other possible applications, such as dengue fever outbreak  prediction16,32. Land-surface temperature 
data should be applied carefully as it is strongly correlated with season, precipitation, and air temperature. We 

Table 1.  Estimates of model parameters, standard error, and p-values. The variables in bold showed a negative 
association with the number of mosquitoes, while those in italics showed a positive association.

Variable Estimate Std. error Pr( >|z|) Exp_Estimate

(Intercept) 4.7143817 0.9535441 0.0000008 111.5398228

Green areas  − 0.0388395 0.0123143 0.0016104 0.9619051

Asbestos roof 0.0270723 0.0159589 0.0018139 1.0732909

Ceramic tile  − 0.0445740 0.0219653 0.0524288 0.9564048

Exposed soil 0.0513356 0.0149664 0.0006035 1.0499598

Pavement  − 0.0457916 0.0131612 0.0005027 0.9552410

Winter  − 1.0052431 0.1455796 0.0000000 0.3659557

Figure 5.  QQ-plot of the selected multilevel negative binomial model. n.s non-significant. The KS test indicates 
that the points are not far from the reference line (non-significant p-value). Similarly, the Outlier test did not 
reveal any significant presence of outliers in the data. It tests if the residues (expected/observed) have normal 
distribution and if there is any discrepant point.
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observed that green (vegetated) areas always experience lower land-surface temperatures irrespective of season. 
Indeed, vegetation plays an essential role in controlling temperature fluctuations in urban settings, and urban 
expansion without the inclusion of vegetation is associated with significant temperature increases due to heat 
island  effects28. Vegetation also affects the distribution of Ae. aegypti depending on other urban features, and 
independently of the surrounding geographical  region5. For example, Hayden et al.33 used oviposition traps to 
evaluate the importance of microclimate and human factors in Ae. aegypti distributions in an arid environment of 
southwest United States and northwest Mexico. They found that mosquito eggs presence was positively associated 
with highly vegetated areas. Contrastingly in our study, levels of infestation were not associated with tree-covered 
areas. Although Vila Toninho is located in a tropical  region34 with optimal conditions for the mosquito life cycle, 
the typically thick vegetation that grows there is not necessarily favorable for mosquitoes that prefer to breed 
within and around urban  structures5. Similarly, natural water bodies, such as the rivers around Vila Toninho, 
do not serve as breeding sites for urban mosquito species that prefer artificial water containers for oviposition. 
Several studies have used land-surface temperature to model the preferred habitat conditions of other mosquito 
vectors, such as Culex21 and Anopheles15. However, this is a difficult task for Ae. aegypti because its breeding sites 
are small and preferentially distributed throughout the urban environment.

Our study is one of the first to apply infestation data specifically for adult females. Indeed, the adult population 
of Ae. aegypti is rarely sampled, due partly to the erroneous but commonly held belief that such sampling is time-
consuming, difficult, or  expensive35. For this reason, the vast majority of studies have focused on immature forms 
of the mosquito, but this may not be the best strategy for estimating disease risk since females possess additional 
epidemiological  importance35,36. Getis et al.37 studied the spatial distribution of adult mosquito populations and 
found that they remain close to breeding sites, most at distances of approximately 10 m, up to 30 m, which can 
incorporate neighboring houses. Likewise,  McDonald38 noted that adult Ae. aegypti spread to less than 20 m, 
and the majority of those recaptured after release were collected in the same house. Similarly, in Puerto Rico, 
Edman et al.39 collected most of their recaptured Ae. aegypti from the houses in which they were released. Whilst 
these studies indicate that in urbanized areas, such Vila Toninho, most adult Ae. aegypti do not fly far from the 
breeding sites in which they developed (typically inside households), the relationship between larval indices and 
adult densities is weakened by variable survival rates of immature forms and productivity by container  type40.

The winter season was judged as the most influential factor in the decrease of mosquito infestations. São José 
do Rio Preto has a typically dry and cold winter (~ 19 °C) compared to other times of the  year41. All other seasons 
have a similar average temperature (~ 24 °C) and levels of precipitation. Honório et al.42 found a positive linear 
relationship between Ae. aegypti infestation and air temperature within the range of 18 °C to 24 °C. These authors 
did not identify any variation in the abundance of mosquitoes above this temperature threshold. Furthermore, 

Figure 6.  Number of Ae. aegypti adult females observed and predicted per trap using the negative binomial 
model pooled by season (correlation coefficient R = 0.74).
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Eisen et al.43 showed a positive linear relationship between water temperature and the developmental rate of 
immature Ae. aegypti between 15 and 30 °C. Temperatures between 20 and 31 °C can increase the metabolic 
rate of mosquitos, shorten the period of larval development, and optimize foraging and egg-laying behavior 
leading to higher mosquito abundance when suitable larval habitats are  available26,28,29,44. Despite reductions in 
the levels of infestation during winter, sufficient numbers of mosquitoes remain present to maintain the residual 
population until favorable weather conditions occur the following spring.

Despite that seasonal weather fluctuations can largely justify intra-annual fluctuations in the infestation levels 
of Ae. aegypti, several studies performed at the local scale and, consequently, under similar weather conditions, 
have revealed differences in mosquito abundance among contiguous urban  areas45–47. This presumably reveals 
the effect of anthropogenic alterations in the urban environments that this mosquito prefers to inhabit, such 
as asbestos roofs and exposed soil, as was found in the current study. It is well accepted that, with the excep-
tion of the sylvatic ancestral form, Ae. aegypti mosquitoes are extremely anthropophilic, meaning that human 
settlements offer favorable conditions for the completion of their life cycle, especially in domestic  settings48. In 
this sense, it is expected that environmental variables related to areas with buildings are good proxies for the 
abundance and distribution of Ae. aegypti, as demonstrated in previous remote sensing-based  studies14,49,50. 
Our results have several similarities with Lorenz et al.22, as both studies showed that asbestos roof category was 
positively correlated with mosquito infestation, even using different types of statistical modelling and different 
periods of the year. Here we have included thermal features and could observe how the seasonality effect drasti-
cally affects the Ae. aegypti infestation.

Our multilevel modelling revealed that green areas and pavement cover are negatively associated with the 
presence of adult females, while areas with a higher percentage cover of asbestos roofs and exposed soil are 
positively associated with adult females. These variables reflect socio-economic conditions and also indicate 
differences in thermal capacity (particularly green areas) and the likelihood of surface water-ponding to create 
favorable breeding sites. Thus, green space expansion should be prioritized in urban planning, which may help 
reduce Ae. aegypti infestations if combined with maintained attempts to eliminate mosquito breeding sites and 
increase public comprehension of arbovirus transmission. Asbestos roofs are an inexpensive form of construc-
tion popular in poorer areas in  Brazil51. The positive association between economically poor areas and mosquito 
infestation supports the findings of previous  research22,52–54. In addition to affecting mosquito infestation levels, 
socioeconomic factors can be an important issue in the susceptibility of human inhabitants to arboviruses 
infection. For example, Hagenlocher et al.55 formulated an index of socioeconomic vulnerability to dengue that 
included both indicators of susceptibility, as well as a lack of resilience. The presence of paved areas prevents the 
accumulation of water as temporary breeding sites, unlike exposed soil. This finding is encouraging for the use 
of remote sensing to identify areas most at risk of high mosquito abundance at a local scale in urban settings. 
Successful prediction of the spatial distribution of suitable breeding habitats for Ae. aegypti would allow vector 
control efforts to target adult females more precisely (which have the greatest epidemiological importance), 
thereby reducing operational  costs56.

The strengths of this study include the three-year monitoring period, the specific focus on adult female 
mosquitoes, and the use of high-resolution satellite images that allow the precise categorization of land cover. 
There are, however, some limitations. First, thermal satellite images do not have a sufficiently fine resolution to 
detect house-to-house-level variability. Data from the Landsat-8 TIRS have a spatial resolution of 100 m and a 
resampling resolution of 30 m. Second, we assumed that 30 m was the average flight radius of an adult female 
Ae. aegypti, but this may be an underestimate, depending on environmental conditions.

It is tempting to speculate that if remote-sensing approaches are effective at the city scale, characterized by het-
erogeneous landscape features, they might be even more effective in more homogeneous landscapes. In addition, 
it would be advantageous to develop further models using other freely available satellite images, including global 
datasets provided by organizations such as the United States National Aeronautics and Space Administration 
(NASA; https ://lpcse xplor er.cr.usgs.gov/). Although the resolution of these datasets is not as high as Landsat-8, 
they might further support our observed patterns. In the future, health and surveillance workers should also 
consult free Google Earth images, for example, and locate high-risk areas based on the occurrence of certain 
land-cover types, including asbestos roofs and exposed areas of soil. It is worth mentioning that each region has 
a specific behavior concerning landcover type and mosquitoes, therefore they need specific plans for surveillance 
and control. For example, asbestos roofs may not be a good indicator of low socioeconomic levels in all countries, 
but in Brazilian areas they probably are. Improving our understanding of the linkages between landscape features 
and climatic variables, the incidence and spatial dissemination of mosquito vectors and arboviruses, and the 
capacity to use remotely-sensed information to recognize conditions signaling higher levels of risk would be of 
great value for optimizing vector control strategies, mosquito suppression activities, and outbreak prediction.

Conclusions
We used remotely sensed temperature data and land-cover classification to identify features associated with adult 
female Ae. aegypti mosquitos in an urban neighborhood of São José do Rio Preto, São Paulo, Brazil. Reductions 
in mosquito infestations were most strongly associated with the winter season. In addition, green (vegetated) 
areas and pavements were negatively associated with the presence of adult females, while areas with a higher 
percentage cover of asbestos roofs and exposed soil were positively associated with female adults. These variables 
reflect local-scale socio-economic conditions but exhibit different thermal and water-ponding characteristics 
that offer more or less favorable breeding sites.

Our results have important implications for Ae. aegypti mosquito control in Brazil. Specifically, we have pro-
vided evidence that physical landscape characteristics influence the distribution of adult female mosquitoes. The 
local habitat aspects that control the mosquito life cycle often differ at spatial scales significantly finer than the 

https://lpcsexplorer.cr.usgs.gov/
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land cover and census tract boundaries that inform most socio-environmental variables. As such, future studies 
should take into account observations of microhabitat characteristics that may affect the suitability of potential 
habitats for Ae. aegypti, sustained longitudinal entomological surveys including adult mosquito traps, and the 
incorporation of sociodemographic explanatory variables. Further work is now needed to analyze the identified 
associations over larger areas and in different socio-economic contexts.

Methods
Study site. This study was conducted in a neighborhood of the municipality of São José do Rio Preto in the 
state of São Paulo,  Brazil22,57. Aedes aegypti mosquitos were reintroduced into the municipality in  198558 and 
the first autochthonous case of dengue fever was confirmed in 1990. The study neighborhood, Vila Toninho 
(Fig. 1), is mainly urban and is located in the southeastern part of São José do Rio Preto with approximately 5,600 
inhabitants (density = 4800 per  km2)34 and 1,940 residences. Located on the outskirts of São José do Rio Preto, 
Vila Toninho has poorer socio-economic indicators than the city averages. The average income of the heads of 
households is 1.9 Brazilian minimum salaries (MS), and 15.3% of households have five or more residents. Com-
parative values for the entire municipality are 5.7 MS, and 11.5%,  respectively34. The study area has undulating 
terrain and is characterized by dry winters with moderate temperatures and wet summers with moderately high 
 temperatures59.

Field survey. The procedures followed in our study were based on Lorenz et al.22. Adult mosquitoes were 
captured using 30 BG Mosquitito traps (Biogents BGS) installed in 2016 between December and February (the 
peak period of Aedes infestation) and monitoring continued until 2019. We used data from 2016 to 2018 to build 
the model and data from summer of 2019 to validate it. Traps were positioned near plant pots and out of direct 
exposure to sun and rain at preselected residences with shaded areas. New traps were installed twice a week, 
once per month, and at the same households, allowing us to gather data from up to 60 households each week. 
Traps were installed on Mondays and Thursdays and collected on the respective Tuesdays and Fridays (i.e. each 
trap was left in place for 24 h). The Cartesian coordinates of these houses and individual traps (Datum WGS-84, 
SIRGAS 2000) were obtained using a Global Positioning System (GPS). Mosquitos collected from the traps were 
identified at the Laboratory of Vectors, Medical School of São José do Rio Preto (FAMERP), based on taxonomic 
 keys60,61. We focused on adult female mosquitoes given their epidemiological importance.

Environmental data. Average precipitation and air temperature data for each season were obtained in 
ASCII-raster format and ‘LAT/LONG’ geodetic coordinate information (Datum WGS-84) from the WorldClim 
Global Climate Data database (https ://www.world clim.org/). These datasets contained observational data for 
2016–2018, which were interpolated to a resolution of 30 arc-seconds (approximately 1 km). The precipitation 
and temperature data were used in the determination of the winter, summer, spring, and autumn seasons.

Land surface temperature was calculated using thermal remote sensing images from the Landsat-8 TIRS 
sensor, which are freely available from NASA’s website (https ://lpcse xplor er.cr.usgs.gov/), offering a resolution 
of 100 m (resampled every 30 m) for Vila Toninho. Thermal band 10 was used to calculate land surface tem-
peratures in the selected images. We used 18 satellite images obtained between 2016 and 2018 (Supplementary 
Material 2) representing all seasons of the three-year study period. Certain atmospheric conditions, such as haze 
and high humidity, resulted in pixel saturation and noise in the thermal imagery. Thus, images with saturated 
pixels or cloud cover were excluded. The Geographical Information System software, Qgis 2.14, was employed 
to estimate surface temperatures following Ndossi and  Avdan62. Apparent temperatures were transformed from 
the digital signal of the satellite into radiance (w/m2·sr·μm). The digital number of each pixel was converted 
into monochromatic spectral radiance. Surface temperature was calculated using Planck’s inverted  function63 
from images of brightness temperature (band 10) and surface emissivity. The emissivity images were calculated 
based on the values of the vegetation index by normalized difference (NDVI) according to Valor and  Caselles64, 
and Zhang et al.65. Information about air temperature and relative  humidity66 on the specific capture days was 
also obtained to make corrections according to the weather conditions. Thus, it was possible to obtain surface 
temperature images representative of each season for Vila Toninho at a spatial resolution of 30 m.

With the images acquired and classified according to surface temperature for each season of the year, 30 m 
buffer zones were applied around each mosquito trap for which the average surface temperature was calculated 
(as a weighted average according to the corresponding area within the buffer). This gave a unique surface tem-
perature value corresponding to each trap during each season. We were then able to correlate the number of Ae. 
aegypti females caught in each trap with the corresponding temperature.

Landscape feature data. The procedures followed in our study were based on those of Lorenz et al.22. 
Cloud-free images of the study area were obtained from the WorldView-3 satellite (0.31 m in panchromatic 
mode and 1.24 m in the multispectral mode, resampled accordingly) acquired in March 2017. These datasets 
are composed of one panchromatic band (450–800 nm) and four multispectral bands comprising blue (450–
510 nm), green (510–580 nm), red (630–690 nm), and near-infrared (770–895 nm). The supervised classifica-
tion of images was performed using ArcGIS 10.5 by applying the Maximum Likelihood algorithm. These classi-
fiers assigned each pixel to the following eight predetermined land-cover classes: (1) pavement; (2) tile roof; (3) 
asbestos roof; (4) roof slab; (5) green area; (6) exposed soil; (7) water; and (8) shadow areas. Classes 7 (water) 
and 8 (shadow areas) were subsequently combined into one class. We manually selected training samples (50 
polygons per class) and test samples (50 polygons per class) corresponding to these eight categories. The clas-
sification accuracy was quantitatively assessed using the test samples, a confusion matrix, and the Kappa coef-
ficient. The overall user and producer accuracies were also defined to evaluate the classification  accuracy67. The 

https://www.worldclim.org/
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overall accuracy is the ratio between all validation pixels correctly classified (the total correct pixels of each poly-
gon) and validation pixels (the total number of pixels in the error matrix), whereas the user’s accuracy includes 
commission errors and the producer’s accuracy includes omission errors related to the individual  classes67. The 
Kappa coefficient is a statistical measure of agreement that considered all of the categories. Values close to zero 
indicate that the observed agreement is the same as would be expected by chance and values approaching one 
indicate perfect  agreement68.

Around each of the 60 traps, 30 m buffer zones were constructed, representing the assumed mean distance 
travelled by an Ae. aegypti female  mosquito36,69. A study by Getis et al.37 showed that Ae. aegypti adults gathered 
strongly within houses close to breeding sites but were weakly clustered at a distance of 30 m beyond the house-
hold. We calculated the percentage of each land cover category in each buffer zone and compared these data to 
the number of Ae. aegypti adult females found in each trap.

Data analysis. For multilevel modelling, the response variable was the number of female Ae. aegypti (indi-
cating the level of infestation). The final predictive model was selected based on a comparison of Akaike Infor-
mation Criterion (AIC) values for alternative distributions, including negative binomial, Poisson, and zero-
inflated Poisson. To explain the number of Ae. aegypti mosquitoes, we used a mixed negative binomial model 
in which the subject of the random effect was the identification of the trap, and which incorporated repeated 
measures information (four seasons × three years). A negative binomial model was selected based on the per-
formance of the model and the nature of the variables, which did not meet the assumption of equal mean and 
variance in the Poisson model.

The final model was derived by excluding those variables with the lowest significance until a model with all 
significant variables and acceptable goodness of fit was obtained. The goodness of fit was verified in three ways. 
First, the model was compared to the null model, i.e., a model with no independent variable, to verify that the 
addition of covariates was relevant for explaining the response variable. This comparison was made via ANOVA. 
Second, the model fit was verified visually by graphically comparing the observed data and the model predictions. 
Third, in our model we used data from 2016 to 2018, and we validated it using a new data set collected in the 
summer of 2019 with 60 observations (mosquito traps). We calculated the RMSE and MAE, both are regularly 
employed in model evaluation  accuracy70. Finally, we used Hartig’s residual  analysis30, in which a suitable model 
is expected to have residues located around the reference line of a simulated QQ-plot. KS test and Outlier test 
were also performed to check if the points are far from the reference line and if there are outliers in the sample, 
respectively. All analyses were performed using R version 3.6.1.

Ethics. This study was approved by the Internal Review Board from the Medical School of São José do Rio 
Preto (FAMERP) (protocol #02078812.8.0000.5415). Homeowners who had traps installed on their properties 
signed an informed consent form.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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