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A novel deep learning conditional 
generative adversarial network 
for producing angiography images 
from retinal fundus photographs
Alireza Tavakkoli1,4*, Sharif Amit Kamran1,4, Khondker Fariha Hossain2,4 & 
Stewart Lee Zuckerbrod3

Fluorescein angiography (FA) is a procedure used to image the vascular structure of the retina and 
requires the insertion of an exogenous dye with potential adverse side effects. Currently, there is 
only one alternative non-invasive system based on Optical coherence tomography (OCT) technology, 
called OCT angiography (OCTA), capable of visualizing retina vasculature. However, due to its cost 
and limited view, OCTA technology is not widely used. Retinal fundus photography is a safe imaging 
technique used for capturing the overall structure of the retina. In order to visualize retinal vasculature 
without the need for FA and in a cost-effective, non-invasive, and accurate manner, we propose a 
deep learning conditional generative adversarial network (GAN) capable of producing FA images 
from fundus photographs. The proposed GAN produces anatomically accurate angiograms, with 
similar fidelity to FA images, and significantly outperforms two other state-of-the-art generative 
algorithms ( p < .001 and p < .0001 ). Furthermore, evaluations by experts shows that our proposed 
model produces such high quality FA images that are indistinguishable from real angiograms. Our 
model as the first application of artificial intelligence and deep learning to medical image translation, 
by employing a theoretical framework capable of establishing a shared feature-space between two 
domains (i.e. funduscopy and fluorescein angiography) provides an unrivaled way for the translation 
of images from one domain to the other.

For a long time fluorescein angiography (FA) combined with Retinal Funduscopy have been used for diagnosing 
retinal vascular and pigment epithelial-choroidal  diseases1. The process requires the injection of a fluorescent 
dye which, depending on the age and cardiovascular structure of the eye, appears in the optic vascular system 
within 8–12 s and can stay up to 10 min2. Although generally considered safe, there have been reports of mild to 
severe complications due to allergic reactions to the  dye3–5. Side effects can range from nausea and heart attack, 
to anaphylactic shock and  death6–10. In addition, leakage of fluorescein at the injection site can occur.

Given the complications and the risks associated with this procedure, non-invasive, affordable, and computa-
tionally effective alternatives to FA are quite necessary. The only current alternative to fluorescein angigraphy (FA) 
for visualizing retinal vasculature is carried out by additional hardware and software modifications to Optical 
Coherence Tomography (OCT)11,12, called OCT Angiography (OCTA)13,14. Despite the ability to generate visual 
blood flow maps without the adverse side effects of FA, OCTA systems are not widespread in assessment of retinal 
vascular diseases, due to their cost, the need for multiple acquisitions in the same anatomical  location15, and 
limited field of view (FOV). In addition, the recent CoVID-19 pandemic has had a significant negative impact 
on ophthalmologists’ ability to conduct in-clinic  exams16, demonstrated the limitations of the current state of 
tele-ophthalmology17, and highlighted the need for developing effective, low-cost, and reliable alternatives for 
both in-home and in-clinic measurements.

The introduction of convolutional neural networks and a gradient-based optimization regime for training 
these networks by LeCun et al.18 has resulted in a subsequent deep learning  revolution19 in the field of Arti-
ficial Intelligence (AI). Not only has deep learning significantly improved the performance of visual object 
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 classification20, object  detection21,  semantic22 and instance  segmentation23, and de-noising  algorithms24, but it 
also has introduced novel computational frameworks such as super-resolution25, image  generation26, and style-
transfer27,28. Despite its late arrival to the field of ophthalmology compared to other medical  domains29,30, deep 
learning has already started to play a transformative role in ophthalmology ranging from noise  removal31, to 
disease  classification32–34, to disease marker  segmentation33,35,36. These advances resulted in the first automatic 
AI-enabled Diabetic Retinopathy (DR) system, called IDx-DR37, to be approved by the FDA in  201838. Although 
these AI-inspired ophthalmic systems have produced reasonable  results39–41, they only utilize basic and rudimen-
tary deep learning architectures, susceptible to data  bias42 and the need for massive amount of training  samples43.

In order to address the inefficiency in utilizing generic deep learning models in ophthalmology, our team 
has developed effective  architectures44–46 for retinal disease diagnosis. Our proposed architectures are capable 
of mapping ophthalmic images (e.g. fundus, OCT, angiograms, etc.) onto a high dimensional feature space (i.e. 
a latent manifold), rich with clustered information pertaining to the ocular anatomical structures. These latent 
representations of anatomical structures will have the potential to advance the current state of deep learning 
in ophthalmology. Specifically, the ability to map ocular structures from different imaging modalities such as 
funduscopy, FA, and OCT into a shared latent manifold will unlock novel approaches to fusing the information 
acquired from these modalities to enable far more useful information for disease diagnosis and prognosis. This 
is the premise of the proposed work in establishing a relationship between FA and fundus images in their shared 
latent manifold for the purpose of generating anatomically accurate FA images from fundus photographs. To our 
knowledge, and unlike the image generation method proposed by Lee et al.47, the work proposed in this paper 
is the first deep learning application in ophthalmic imaging to generate images from truly different modalities.

Lee et al. have leveraged the relationship between the OCT and OCTA data to generate OCTA-like images 
solely from OCT  images47. This technique is was the first AI model to explore ophthalmic applications of deep 
learning beyond classification and segmentation. However, this architecture has several limitations that prevent 
it from performing as an effective domain transfer system (i.e. generating images from inherently different data 
modalities). First, the input domain (OCT) and the output domain (OCTA) are significantly correlated and do 
not constitute a truly different anatomical structure modalities. Second, the deep learning module used in this 
approach is a simple  autoencoder48 adapted from an encoder/decoder architecture for  segmentation49. As such, 
this network is not capable of exploiting the significantly different probability distributions governing the input 
and output modalities for the purpose of generating real OCTA images from OCT input data. Finally, although 
OCT technology is more widely used and less expensive than OCTA, OCT imaging is still expensive and requires 
clinic visits, preventing truly ubiquitous use as an in-home alternative.

Given the ability to use our previous deep learning  architectures44–46 to produce feature rich latent mani-
folds from input ocular structural images, we sought to explore the ability to map paired fundus photographs 
and FA images onto a shared latent manifold in which the retina vasculature from both domains share similar 
feature representations. This approach has its roots in the recently introduced Generative Adversarial Networks 
(GANs)27,50–52 in the field of deep learning. Although GANs have been recently utilized in the field of oph-
thalmology from predicting post-therapeutic OCT  images53, to removing shadows from OCT  images54, these 
studies primarily focus on a single domain modality. The proposed study is the first of its kind to demonstrate 
the viability of cross-modality transformation in the field of ophthalmic imaging. Comparisons of our model 
with state-of-the-art image generation and style transfer systems showed that our model outperforms these 
networks, both qualitatively and quantitatively. In addition, expert ophthalmologists were asked to distinguish 
from a random set of balanced real FA images and those angiograms generated by our model in two trials. Results 
show that the angiograms generated by the proposed network are quite indistinguishable from real FA images.

It is worth discussing that the proposed study is designed as a proof-of-concept framework to demonstrate 
the technical and computational viability of performing image domain transformation to provide adjunctive 
information in the absence of FA modalities. As such, this framework is a part of an evolutionary study to 
establishing shared manifolds between different imaging modes that can be utilized to improve the diagnostic 
capabilities in the absence of a comprehensive battery of tests.

Results
We designed a conditional generative adversarial network (GAN) comprising of two generator modules and 
four discriminator modules (Fig. 1A) to take fundus photographs and produce anatomically accurate FA images 
inferred from the fundus images. The generator block consists of two generator modules, the fine and coarse 
generators, which are designed in a U-shaped encoder-decoder manner. The coarse generator is comprised of 
a reflection+padding block, three convolution (Conv)+batch normalization (BN)+leaky rectified linear units 
(ReLU), and four novel residual  blocks44,45 (ResBlk), followed by two transpose convolution (Deconv), one 
reflection+padding, one Conv, and an output activation layers (Fig. 1B-left), and is responsible for generating 
coarse and global structures of the FA image such as the structures of the macula, optic disc, color, contrast, and 
brightness. The fine generator is comprised of one reflection+padding, one Conv+BN+ReLU, and one Conv 
layer, followed by three ResBlk, one Deconv, one Conv, and one output activation layer (Fig. 1B-right), and 
produces local information including retinal venules, arterioles, hemorrhages, exudates, and microaneurysms. 
The last ResBlk of the coarse generator is added to the first Conv layer of the fine generator to integrate the global 
features from the coarse generator with the local information in the fine generator. The discriminator blocks of 
the proposed network are encoders tied to a final layer of fully connected binary classification, and takes a pair 
of real and generated FA images and decide which one is real. The fine discriminators take the pair of real and 
generated images at full resolution, while the coarse discriminators take images at half resolution (Fig. 1A). Each 
discriminator is comprised of an initial Conv layer and Conv+BN+ReLU layers, followed by one last Conv layer 
and finally the output activation layer (Fig. 1B-bottom). In our implementation the fine generator has 170,305 
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trainable parameters, the coarse Generator has 6,695,041, and each discriminator has 234,785 trainable param-
eters for a total of around 7.8 million parameters.

The models were trained over 100 epochs, with each epoch comprising of 212 iterations, in a minimax setup 
in which the generators attempt to produce realistic FA images and discriminators attempt to correctly identify 
whether a given FA image is real or produced by the generators. The loss values for the coarse and fine genera-
tors as well as the combined loss values of the discriminator block are shown in Fig. 1C. The black dotted curve 
is the discriminator loss, while the solid blue and dashed red curves are the fine and course generator losses, 
respectively. At the beginning of the training, the generators produce sampled random images from a latent 
representation of FA images, and thus the discriminators can easily identify real from generated FA images. 
This can be observed as the smaller (better) discriminator loss values compared to generator loss values for 
early epochs in Fig. 1C. As training progresses, the generators learn to produce more realistic FA images which 
become increasingly difficult for discriminators to identify as not real, as observed from the downward trend in 
generator loss and upward trend in discriminator loss curves in early epochs in Fig. 1C. The goal of the network 
is to reach an equilibrium where the loss values for the generators and discriminators stabilize (late epochs in 
Fig. 1C). The ideal loss curves for a generative adversarial network (GAN) is shown in Fig. 1D, in which the 
network reaches the Nash equilibrium.

For training, we use the fundus and angiography data-set provided by Hajeb et al.55. The data-set includes 30 
pairs of diabetic retinopathy and 29 pairs of normal FA and fundus images from 59 patients. Fundus photographs 
are in color format, whereas angiograms are in gray-scale format. Our proposed network is capable of perform-
ing with high degrees of accuracy even on this small dataset. To improve the accuracy of training we perform 
a randomized data augmentation process by which N random crops of size 512× 512 from each images are 
extracted. These random images are then processed through geometric and photometric manipulations and then 
used for training the model. So, the total number of training sample is O(17× N × f ) , where f is the number of 
photometric and geometric manipulations. This process can potentially generate an infinite number of training 
samples for our deep learning algorithm, addressing data limitation issues in deep learning. For example, with 
N = 500 crops from 17 images and with 10 geometric and photometric manipulations, the training set will 
consist of 85,000 pairs of fundus photographs and FA images. In our method we used image rotation, horizon-
tal flip, and vertical flip as geometric transformations. Photometric transformations used in the proposed data 
augmentations include gamma correction, contrast stretching, contrast compression, and color manipulations.

Figure 1.  Generative Adversarial Network (GAN) models used for producing anatomically accurate FA images 
from fundus photographs (A). Details of the generator blocks and discriminator blocks of the proposed network 
(B). Generator and discriminator block loss values as a function of training iterations (C). Ideal loss curves (D).
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The results of the training is shown in Fig. 2 over the course of 100 epochs. In this figure, the first and the third 
rows are the original fundus images, their paired FA image, and the generated results after training at epochs 1, 25, 
50, 75, and 100, respectively. The second and fourth rows show the magnification of the red rectangular regions 
for a better visual representation of the vascular structure generated by our method as the training progresses. 
Our proposed method learns the global information like optic-disc, fovea position, and large vascular structures 
first. Next, it tries to learn the minuscule vascular structures, e.g., arteries and veins in a progressive manner.

Fundus-Angio alignment effects. Training on unaligned images hampers the synthesizing of realistic 
FA images. Although the global information such as the overall intensity, contrast, and the location of geometric 
features such as the optic-disc are retained, local information like vascular structures are distorted or absent 
from the generated image (Fig.  3). Without proper alignment of the paired fundus and FA images used for 
training, the deep learning GAN architectures fail to generate accurate vascular structures. In order to address 
this problem, there is a need for aligning the FA images with their fundus counterparts prior to training. The 
algorithm 1 shows the process by which a misaligned FA image could be aligned with its fundus counterpart. The 
process takes as input a pair of fundus and FA images and using a fast SIFT feature extractor, called  SURF56, finds 
corresponding features between the two images. Singular valued decomposition technique will be then utilized 
on the matched features between the fundus and FA images to uncover the transformation ( � ) between the two 
images. This transformation will be then utilized to align the FA image with the fundus photograph.

Figure 2.  Our proposed method generates more realistic FA images after each epoch as training progresses.

Figure 3.  Results of training on unaligned pairs of fundus and angio images. Original fundus images (A,G) are 
not aligned with the FA images (C,I), and as a result the generated images (E,K) are deteriorated. (B,D,F,H,J, 
and L are the magnified views of red boxed regions in A,C,E,G, I, and K, respectively.
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FA image generation. The first experiment was designed to establish the performance of our proposed 
method in generating anatomically accurate FA images from fundus photographs, and compare our results 
with the leading conditional generative adversarial networks proposed by Wang et al.50 and Isola et al.27 Fig. 4 
shows the results of this comparison. In this experiment we supplied the trained networks with a fundus image 
(Fig. 4A) while the paired FA image of the same patient (Fig. 4B) was held-out as ground truth. Figure 4C–E 
show the generated FA images by our proposed algorithm, the Wang et al.  method50, and the Isola et al.  method27, 
respectively. The yellow rectangular regions of Fig. 4A–E are magnified and shown in Fig. 4F–J for comparison 
purposes. Our FA generated images (Fig. 4H) have very good quality and are anatomically accurate compared to 
the held-out FA images (Fig. 4G) as details and even small vascular structures, pointed by yellow triangles, are 
preserved and generated compared to the other two methods, pointed by red triangles (Fig. 4I,J).

For quantitative evaluation we use two established measures, i.e., the Fréchet inception distance (FID)57 and 
structural similarity measures (SSIM)58. FID is a metric that measures the distance between feature vectors cal-
culated for real and generated images. Since FID represents a distance metric, lower FID measures mean higher 
accuracy in generating images. FID allows for comparing how accurately the generated FA images represent 
anatomical features compared to the ground truth. Comparisons of FID measures between our proposed method 
and those presented by Wang et al.50 and Isola et al.27 show that our method produces significantly more accurate 
FA images, p = .0005 and p = 4.5× 10−6 , respectively (Fig. 5A).

Table 1 shows the average FID values of our proposed method compared to those of Wang et al.50 and Isola 
et al.27. The lower the FID the better the generated image. As it can be seen our method produces consistently 
lower FID measures when producing FA images from the original fundus image and from its transformed coun-
terparts when motion blur, sharpening, noise, linear shift, and radial shifts are applied.

The SSIM is a well-known quality metric used to measure the similarity between two images. It is considered 
to be correlated with the quality perception of the human visual system (HVS) and is designed by modeling 

Figure 4.  Paired fundus photographs (A) and ground truth FA images (B). FA images generated by our 
proposed method (C) and those generated by traditional GANs proposed by Wang et al. (D)50 and Isola et al. 
(E)27. Subfigures (F–J) show magnification of the yellow boxed areas from (A–E). Microvascular structures are 
not quite visible in the fundus photographs (A,F), but are visible in the original FA images (B,G) pointed to by 
the yellow triangles. Our deep learning GAN is capable of producing these microvascular structures pointed 
to by the yellow triangle, as well as macro vasular structures (C,H). The GAN proposed by Wang et al.50 misses 
these microvascular structures (D,I) while GAN proposed by Isola et al.27 is not able to produce any reliable 
vascular structure (E,J)—see red triangles.
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any image distortion as a combination of three factors that are loss of correlation, luminance distortion, and 
contrast  distortion59. Comparisons of SSIM measures between our proposed method and those presented by 
Wang et al.50 ( p < .0003 ) and Isola et al.27 ( p < 3× 10−7 ) show that our method produces significantly more 
accurate FA images compared to both.

Table 2 shows the average SSIM values of our proposed method compared to those of Wang et al.50 and Isola 
et al.27. The higher the SSIM the better the generated image. As it can be seen our method produces consistently 
higher SSIM measures when producing FA images from the original fundus image and from its transformed 
counterparts when motion blur, sharpening, noise, linear shift, and radial shifts are applied.

Results on changes to fundus image acquisition. An important benefit of the proposed method is the robustness 
in accuracy of generated FA images from fudus photographs subject to varying imaging issues such as high sig-
nal to noise ratio (SNR), motion blur, and color sharpness. Figure 6 shows the generated FA images from noisy 
fundus photographs (Fig. 6A) compared to the FA image of same subject (Fig. 6B). Using a high SNR fundus 
photograph as input, Fig. 6C–E show FA images produced by our proposed algorithm, the Wang et al.  method50, 
and the Isola et al.  method27, respectively. The yellow rectangular regions of Fig. 6A–E are magnified and shown 
in Fig. 6F–J for better viewing. As shown by the yellow triangle in Fig. 6H, small vasculature are preserved and 
generated by our method, but they are lost in the generated FA images by Wang el al.50 and Isola et al.27—red 
triangles in Fig. 6I,J. Comparisons on the FA image generated by our proposed method from normal and from 
high SNR images show no statistically significant difference in FID measures (Fig. 5B).

Figure 7 shows the generated FA images from motion blurred fundus photographs (Fig. 7A) compared to 
the FA image of same subject (Fig. 7B). Using a motion blurred fundus photograph as input, Fig. 7C–E show FA 
images produced by our proposed algorithm, the Wang et al.  method50, and the Isola et al.  method27, respectively. 

Figure 5.  Comparison of the proposed deep learning FA generation model with the other GANs and under 
different conditions. (A) The FIDs for images generated by the proposed method compared with that of Wang 
et al.50 and Isola et al.27—lower FID measures represent more accuracy. (B) FID measure of the images generated 
by the proposed on input fundus photographs taken under varying conditions—high signal to noise ratio 
(SNR), motion blur, and color sharpnening. (C) FID measure of the images generated by the proposed on input 
fundus photographs with slight anatomical alterations—translational vascular shift and rotational vascular shift.

Table 1.  Comparisons between Fréchet inception distance (FID) Achieved by Our Method Compared with 
Wang et al. and Isola et al.

Generated Motion blurred Sharpened Noise Linear shift Radial shift

Ours 43 45 51 49 47 53

Wang et al.50 57 ( ↑ 14) 61 ( ↑ 16) 64 ( ↑ 13) 63 ( ↑ 14) 62 ( ↑ 15) 64 ( ↑ 11)

Isola et al.27 68 ( ↑ 25) 64 ( ↑ 21) 67 ( ↑ 16) 62 ( ↑ 13) 61 ( ↑ 14) 63 ( ↑ 10)

Table 2.  Comparisons between structural similarity measure (SSIM) achieved by our method compared with 
Wang et al.50 and Isola et al.27.

Generated Motion blurred Sharpened Noise Linear shift Radial shift

Ours 0.67 0.63 0.61 0.64 0.67 0.64

Wang et al.50 0.58 ( ↓ 0.09) 0.58 ( ↓ 0.05) 0.50 ( ↓ 0.12) 0.56 ( ↓ 0.08) 0.53 ( ↓ 0.13) 0.49 ( ↓ 0.15)

Isola et al.27 0.50 ( ↓ 0.17) 0.45 ( ↓ 0.17) 0.47 ( ↓ 0.14) 0.46 ( ↓ 0.18) 0.50 ( ↓ 0.17) 0.50 ( ↓ 0.17)
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The yellow rectangular regions of Fig. 7A–E are magnified and shown in Fig. 7F–J for better viewing. As shown 
by the yellow triangle in Fig. 7H, small vasculature are preserved and generated by our method, but they are lost 
in the generated FA images by Wang el al.50 and Isola et al.27—red triangles in Fig. 7I,J. Comparisons on the FA 
image generated by our proposed method from normal and from motion blurred images show no statistically 
significant difference in FID measures (Fig. 5B).

Figure 8 shows the generated FA images from fundus photographs subject to color and contrast sharpness 
(Fig. 8A) compared to the FA image of same subject (Fig. 8B). Using a sharpened fundus photograph as input, 

Figure 6.  Paired fundus photographs (A) acquired under high signal to noise ration (SNR) and ground truth 
FA images (B). FA images generated by our proposed method (C) and those generated by traditional GANs 
proposed by Wang et al. (D)50 and Isola et al. (E)27. Subfigures (F–J) show magnification of the yellow boxed 
areas from (A–E). Microvascular structures are not quite visible in the fundus photographs (A,F), but are 
visible in the original FA images (B,G) pointed to by the yellow triangles. Our deep learning GAN is capable of 
producing these microvascular structures pointed to by the yellow triangle, as well as macro vasular structures 
(C,H). The GAN proposed by Wang et al.50 misses these microvascular structures (D,I) while GAN proposed by 
Isola et al.27 is not able to produce any reliable vascular structure (E,J)—see red triangles.

Figure 7.  Paired fundus photographs (A) acquired under motion blur and ground truth FA images (B). FA 
images generated by our proposed method (C) and those generated by traditional GANs proposed by Wang 
et al. (D)50 and Isola et al. (E)27. Subfigures (F–J) show magnification of the yellow boxed areas from (A–E). 
Microvascular structures are not quite visible in the fundus photographs (A,F), but are visible in the original 
FA images (B,G) pointed to by the yellow triangles. Our deep learning GAN is capable of producing these 
microvascular structures pointed to by the yellow triangle, as well as macro vasular structures (C,H). The GAN 
proposed by Wang et al.50 misses these microvascular structures (D,I) while GAN proposed by Isola et al.27 is 
not able to produce any reliable vascular structure (E,J)—red triangles.
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Fig. 8C–E show FA images produced by our proposed algorithm, the Wang et al.  method50, and the Isola et al. 
 method27, respectively. The yellow rectangular regions of Fig. 8A–E are magnified and shown in Fig. 8F–J for 
better viewing. As shown by the yellow triangle in Fig. 8H, small vasculature are preserved and generated by our 
method, but they are lost in the generated FA images by Wang el al.50 and Isola et al.27—red triangles in Fig. 8I,J. 
Comparisons on the FA image generated by our proposed method from normal and from sharpened images 
show no statistically significant difference in FID measures (Fig. 5B).

Results on anatomical structure changes. Although robustness to fuduscopy imaging variations should 
not impact the results of the FA image generation, certain anatomical changes to the vascular structure should 
be identified and utilized in the image generation process. Our proposed approach has the capability of generat-
ing anatomically correct FA images from fundus photographs that contain two kinds of anatomical changes, i.e. 
slight linear (translational) shift in the vascular pattern and radial shifts changing the curvature of blood vessels. 
Figure 9 shows the generated FA images from fundus photographs subject to anatomical changes to the structure 
of retina blood vessels (Fig. 9A,K) compared to the FA image of same subject (Fig. 9B,L). Figure 9C–E show FA 
images produced by our proposed algorithm, the Wang et al.  method50, and the Isola et al.  method27, respec-
tively, on a fundus photograph containing slight blood vessel shift. The yellow rectangular regions of Fig. 9A–E 
are magnified and shown in Fig. 9F–J for better viewing. As shown by the yellow triangle and circle in Fig. 9H, 
small vasculature are preserved and generated and the slight vascular shifts are reconstructed with high fidelity 
by our method, but they are lost in the generated FA images by Wang el al.50 and Isola et al.27—red triangles in 
Fig. 9I,J. Comparisons on the FA image generated by our proposed method from normal and from the linear 
vasculature shifts show no statistically significant difference in FID measures (Fig. 5C).

Figure 9M–O show FA images produced by our proposed algorithm, the Wang et al.  method50, and the Isola 
et al.  method27, respectively, on a fundus photograph containing radial blood vessel shifts. The yellow rectangular 
regions of Fig. 9K–O are magnified and shown in Fig. 9P–T for better viewing. As shown by the yellow circle in 
Fig. 9R, the distortions in the blood vessel patterns are reconstructed with high fidelity by our method, but they 
are lost in the generated FA images by Wang el al.50 and Isola et al.27—red triangles in Fig. 9S,T. Comparisons 
on the FA image generated by our proposed method from normal and from the linear vasculature shifts show a 
statistically significant difference ( p = .010 ) in FID measures (Fig. 5C).

Qualitative evaluations. In the next experiment we evaluated the quality of the generated angiograms by 
asking experts to identify whether a given angiograms is real, from a collection of 40 balanced (50%, 50%) and 
randomly mixed angiograms. For this experiment, the experts were not told how many of the images are real 
and how many are not real. The non-disclosed ratio of non-real and real images was a significant design choice 
for this experiment, as it will allow us to evaluate three metrics: (1) incorrectly identified generated images 
represent how real the generated images look, (2) correctly labeled real images representing how accurate the 
experts recognized angiogram salient features, and (3) the confusion metric representing how effective the over-
all performance of our proposed method was in confusing the expert in the overall experiment. The results are 
shown in Fig. 10. Given a real FA image, two out of three experts significantly identified fewer real images than 

Figure 8.  Paired color sharpened fundus photographs (A) and ground truth FA images (B). FA images 
generated by our proposed method (C) and those generated by traditional GANs proposed by Wang et al. (D)50 
and Isola et al. (E)27. Subfigures (F–J) show magnification of the yellow boxed areas from (A–E). Microvascular 
structures are not quite visible in the fundus photographs (A,F), but are visible in the original FA images 
(B,G) pointed to by the yellow triangles. Our deep learning GAN is capable of producing these microvascular 
structures pointed to by the yellow triangle, as well as macro vascular structures (C,H). The GAN proposed 
by Wang et al.50 misses these microvascular structures (D,I) while GAN proposed by Isola et al.27 is not able to 
produce any reliable vascular structure (E,J)—see red triangles.
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the ground truth (Fig. 10A). Given generated angiongrams, all three experts missed significantly more generated 
angiograms (Fig. 10B). This experiment shows that the generated FA images by our proposed method are virtu-
ally indistinguishable from real FA images.

Discussion
Our study demonstrates that a deep learning generative adversarial network (GAN) can be trained to map ana-
tomical features from different image modalities, i.e. fundus photographs and FA images, onto a shared feature 
manifold for the purpose of generating one image modality from the other. Once the deep learning network is 
trained on a training dataset of paired fundus and FA images, it is capable of generating anatomically accurate 
retinal vasculature in the form of FA images. Our deep learning model was capable of generating accurate and 
reliable FA images from fundus photographs, even under significant noise, motion blur, and color and contrast 
manipulations. The most significant aspect of the proposed deep learning architecture is the that it is the first 
application of deep learning in ophthalmology capable of translating between two different modalities of data. We 
also utilized a comprehensive data augmentation method to increase the accuracy of our deep learning system 
without the need for a very large training dataset.

Taking advantage of our study, detailed retinal vascular structures can be created without the need for fluo-
rescein angiogrpahy to avoid its potential side effects. Furthermore, generating vascular images from fundus 
photography via deep learning generative networks enables a non-invasive, cost effective, easy to use, and low-
cost alternative for FA. Bypassing FA protocols by utilizing our proposed deep learning approach has the potential 
to enable remote monitoring of patients. In addition, generating FA images from fundus photographs does not 
impose the need for multiple measurements required by OCTA to reconstruct vascular maps over large areas 
of the retina.

A potential explanation by which the proposed deep learning approach is capable of inferring the retinal 
vascular structure from fundus images is that a paired set of FA and fundus images of the same eye share the 
same statistical distributions governing the anatomical structure of the eye from which the images are acquired. 
Although not visible from fundus images, the light reflects differently from the blood vessels and their neighbor-
ing region on the retina. These minute differences, locally and globally, are utilized by our deep learning algorithm 

Figure 9.  Paired color fundus photograph when vascular structure has small shifts (A) or under large vascular 
movements (K) and ground truth FA images (B,L). FA images generated by our proposed method (C) and those 
generated by traditional GANs proposed by Wang et al. (D,N)50 and Isola et al. (E,O)27. Subfigures (F–J and 
P–T) show magnification of the yellow boxed areas from (A–E and K–O). Our deep learning GAN is capable of 
accurately producing the changes in vascular structures pointed to by the yellow triangle and circles (H,R). The 
GAN proposed by Wang et al.50 misses some of these structural changes (I,S) while the network proposed by 
Isola et al.27 is not able to produce any reliable vascular structure (J,T)—see red triangles and circles.
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to establish shared local and global feature representations from paired FA and fundus images. The trained model 
is then capable of using these learned shared features to infer the structural statistics of an FA directly from the 
structural statistics of a given fundus photograph and produce an anatomically accurate FA image counterpart. In 
fact, this shared feature representation learning is recently used in computer vision to transfer image modalities 
and styles, e.g. transforming real photographs to art styles of Monet or Van Gogh  paintings60–63.

The proposed deep learning generative network in our study produces FA images from fundus photographs. 
This finding has significant clinical applications. Fundus imaging is an easy, low-cost, and non-invasive procedure 
and is one of the most commonly performed eye procedures, resulting in a very large number of fudnus imag-
ing databases. Moreover, fundus imaging can be done at home from a number of recently introduced portable 
 funduscopes64–67. Our study demonstrates the potential for using fundus images acquired from these portable 
fundus imaging systems to produce reliable and anatomically accurate retina vascular structures. The inferred 
structural measurements of retinal vasculature may allow clinicians to determine the natural history of retinal 
vascular changes and clinical outcomes of retinal diseases as previously reported from direct analysis of fundus 
 images68,69, but with the accuracy of FA image  analysis70,71 or even OCTA 72.

In our work we used a multi-scale conditional deep learning network comprised of two components, a genera-
tor block and a discriminator block. The generator block is responsible for sampling a probability distribution 
function to generate an image. The discriminator block is responsible for deciding whether a given image is a 
real FA image or a generated one. For training, the entire system undergoes a minimax optimization  process73, 
in which the generator tries to produce realistic FA images in such a way that the discriminator cannot cor-
rectly label as not real, while the discriminator tries to predict from a pair of real or generated images which one 
is real, as accurately as possible. To our knowledge, this architecture is the first of its kind to be designed and 
utilized for ophthalmic applications to generate one modality of images from another. The multi-scale design 
of the proposed network enables it to perform more accurately with fewer training samples and overcome the 
data limitations from which the majority of traditional deep learning architecture  suffer28. Our study and data 
shows the superior results of our network compared to recent generative networks. Future work would includ-
ing designing a side network within this generative network capable of mapping anatomical structures and bio 
markers representative of specific pathologies to establish a latent manifold of pathology feature representations. 
This latent manifold would be instrumental in predicting future progression of retina vascular disorders much 
earlier in the disease stage.

More broadly, we demonstrated that deep learning architectures are capable of translating between different 
ophthalmic image modalities. A similar approach to our architecture could be utilized to establish relationships 
between ocular anatomical structure measurements, e.g. OCT, MRI, funduscopy, and visual function such as 
field perimetry, acuity, and color and contrast sensitivities. For example, several physiological assessments such 
as OCT and funduscopy, and functional measurements such as visual fields assessments of the same eye are 
usually performed at each clinic visit. A similarly designed network to the proposed architecture can be utilized 
to map OCT and fundus photographs along with visual fields onto a manifold of shared feature representations. 
These shared representations can then be utilized to convert visual field progressions to OCT images establishing 

Figure 10.  Expert evaluation of real versus generated FA images, given real FA images (A) and FA images 
generated by our proposed approach (B). Experts had difficulty distinguishing between real and generated FA 
images. For real images, two out of three experts had significantly lower correct classification compared to the 
ground truth ( p < .1 ). Given generated images, all experts had significantly lower correct classification scores 
compared to the ground truth ( p < .1 , p < .001 , and p < .0001).
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retinal fiber layer changes in glaucoma patients without the need to perform OCT measurements. In addition, 
converting available OCT measurements to a more objective representation of the visual field deficits could 
help evaluate disease progression in a more objective manner without the need to use subjective field perimetry.

It is worth noting that the clinical use of generative adversarial networks without sufficient ablation studies 
on the neural network and its performance in generating images is dangerous. This is due to the GAN potential 
in producing fake features. General GAN approaches simply sample a random distribution to generate fake 
images, and therefore are susceptible to producing fake feature. This is particularly the case for GAN architectures 
designed for an unpaired dataset, as well as in traditional cycleGAN architectures. To avoid this issue we proposed 
the use of our conditional GAN framework in a paired setup with a hierarchical architecture (Fig. 1A). This is 
clinically significant, as the proposed method, if applied to unpaired images, will produce unnatural generated 
FA images. Therefore, the natural FA images are assured to include accurate anatomical features that are trained 
from paired FA and fundus datasets (Fig. 11).

The limitations of the current study are in the use of a single dataset of paired fundus and FA images, the 
size of the dataset, and due to data limitations, our inability to perform longitudinal studies of benefits of the 
proposed method in evaluating disease progression. While this dataset was sufficient for establishing the per-
formance of the proposed deep learning model, further studies are needed on additional paired fundus and FA 
images to validate the results. In this study we proposed the use of data augmentation and conditional GANs 
in a multi-scale architecture to overcome the size limitations of the dataset. We anticipate using larger training 
samples acquired from large datasets will further improve the already establish superior results of our method. 
Another limitation in the study relates to the lack of information about the phase of the FAG images. The FAG 
phase information is missing from the current dataset on which the proposed method has been evaluated. In 
future studies we plan to include this information in our analyses. Finally, future longitudinal studies could prove 
the benefits of utilizing the proposed deep learning method in generating FA images from fundus photographs 
for regularly monitoring retinal vascular disease progression in ways not possible before while avoiding costs 
and side effects associated with FA.

In conclusion, we demonstrated that a deep learning based generative adversarial network (GAN) is capable 
of producing FA images from single fundus photographs alone, that are virtually indistinguishable from real FA 
images. This approach can be used on any existing fundus photograph dataset or could be integrated into fun-
duscopy system to produce FA images along with the fundus photographs. Although our proposed framework 
provides an unrivaled way for the translation of images from one domain to the other, this study is designed as 
a proof-of-concept framework to demonstrate the technical and computational viability of performing image 
domain transformation to provide adjunctive information in the absence of FA modalities. Future studies are 
needed to validate how diagnostic capabilities may be improved by utilizing our framework in the absence of 
a FA test results.

Figure 11.  Results of the proposed GAN architecture on unpaired original Fundus images (A,C). Compared to 
the corresponding FA images as ground truth (B,D), the proposed architecture will produce un-natural images 
(C,E) on on-paired data.
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Methods
This study utilizes publicly available and de-identified paired fluorescein angiogram and fundus photographs 
from the Isfahan University of Medical Sciences Persian Eye Clinic (Feiz Hospital)55. The study has been approved 
by the University of Nevada, Reno Institutional Review Board for the use of retrospective de-identified data and 
all methods were performed in accordance with the relevant guidelines and regulations. This study only uses 
anonymized and de-unidentified data. However, informed consent was obtained from all subjects, who were 
over the age of 18, as a part of the original study. Retinal images ( 576× 720 pixels) were collected and include 
30 normal stage and 40 abnormal stages.

Deep learning conditional generative adversarial network. This study proposes a new condi-
tional generative adversarial network (GAN) comprising of a novel residual  block44,45 for producing realistic 
FA from retinal fundus images. We use two generators ( Gfine and Gcoarse ) in the proposed network, as illustrated 
in Fig. 1A. The generator Gfine synthesizes fine angiograms from fundus images by learning local information, 
including retinal venules, arterioles, hemorrhages, exudates, and microaneurysms. On the other hand, the gen-
erator Gcoarse tries to extract and preserve global information, such as the structures of the macula, optic disc, 
color, contrast and brightness, while producing coarse angiograms. The generator Gfine takes input images of size 
512× 512 and produces output images with the same resolution. Similarly, the generator Gcoarse network takes 
an image with half the size ( 256× 256 ) and outputs an image of the same size as the input. In addition, the Gcoarse 
outputs a feature vector of the size 256× 256× 64 that is eventually added with one of the intermediate layers 
of Gfine . These hybrid generators are quite powerful for sharing local and global information between multiple 
architectures as seen  in50,52,74. Both generators use convolution layers for downsampling and transposed convo-
lution layers for upsampling. It should be noted that Gcoarse is downsampled twice ( ×2 ) before being upsampled 
twice again with transposed convolution. In both the generators, the proposed residual blocks are used after 
the last downsampling operation and before the first upsampling operations as illustrated in Fig. 1B. On the 
other hand, in Gfine , downsampling takes place once with necessary convolution layer, followed by adding the 
feature vector, repetition of residual blocks and then upsampling to get fine angiography image. All convolution 
and transposed convolution operation are followed by Batch-Normalization75 and Leaky-ReLU activations. To 
train these generators, we start with Gcoarse by batch-training it on random samples once and then we train the 
Gfine once with a new set of random samples. During this time, the discriminator’s weights are frozen. Lastly, we 
jointly fine-tune all the discriminator and generators together to train the GAN.

Multi-scale PatchGAN as discriminator. For synthesizing fluorescein angiography images, GAN dis-
criminators need to adapt to coarse and fine generated images for distinguishing between real and generated 
images. To alleviate this problem, we either need a deeper architecture or, a kernel with wider receptive field. 
Both these solutions result in over fitting and increase the number of parameters. Additionally, a large amount 
of processing power will be required for computing all the parameters. To address this issue, we exploit the 
idea of using two Markovian discriminators, first introduced in a technique called  PatchGAN76. This technique 
takes input from different scales as previously seen  in50,52. We use four discriminators that have a similar net-
work structure but operate at different image scales. Particularly, we downsample the real and generated angio-
grams by a factor of 2 using the Lanczos  sampling77 to create an image pyramid of three scales (original and 2×
downsampled and 4×downsampled). We group the four discriminators into two, Dfine = [D1fine ,D2fine] and 
Dcoarse = [D1coarse ,D2coarse] as seen in Fig. 1A. The discriminators are then trained to distinguish between real 
and generated angiography images at the three distinct resolutions respectively.

The outputs of the PatchGAN for Dfine are 64× 64 and 32× 32 and for Dcoarse are 32× 32 and 16× 16 . With 
the given discriminators, the loss function can be formulated as given in Eq. 1. It is a multi-task problem of 
maximizing the loss of the discriminators while minimizing the loss of the generators.

Despite discriminators having similar network structure, the one that learns features at a lower resolution 
has wider receptive fields. It tries to extract and retain more global features such as macula, optic disc, color and 
brightness to better distinguish real images. In contrast, the discriminator that learns feature at original resolu-
tion dictates the generator to produce fine features such as retinal veins, arteries, and exudates. By doing this we 
combine feature information of global and local scale while training the generators independently with their 
paired multi-scale discriminators.

Weighted objective function and adversarial loss. We use  LSGAN78 to train our conditional GAN. 
The objective function for our conditional GAN is given in Eq. 2.

where the discriminators are first trained on the real fundus, x and real angiography image, y and then trained on 
the the real fundus, x and generated angiography image, G(x). We start with training the discriminators Dfine and 
Dcoarse for couple of iterations on random batches of images. Next, we train the Gcoarse while keeping the weights 
of the discriminators frozen. We then train the the Gfine on a batch of random samples in a similar fashion. We 
use Mean-Squared-Error (MSE) for calculating the individual loss of the generators as shown in Eq. 3.

(1)min
Gfine ,Gcoarse

max
Dfine ,Dcoarse

LcGAN (Gfine ,Gcoarse ,Dfine ,Dcoarse)

(2)LcGAN (G,D) = Ex,y

[

(D(x, y)− 1)2
]

+ Ex

[

(D(x,G(x)+ 1))2
]

(3)LL2(G) = Ex,y�G(x)− y�2
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where LL2 is the reconstruction loss for a real angiogram, y, given a generated angiogram, G(x). We use this loss 
for both Gfine and Gcoarse so that the model can generate high quality angiograms at different scales. From Eqs. 2 
and 3 we can formulate our final objective function as given in Eq. 4.

Here, � dictates either to prioritize the discriminators or the generators. For our architecture, more weight is 
given to the reconstruction loss of the generators and thus we pick a large � value.

Computational resources. The computational resources used for this study included an Alienware Aurora 
R9 Gaming Desktop, with Intel Core i7-9700 central processing unite (CPU), 16GB Memory, and an NVIDIA 
GeForce RTX 2080 SUPER graphics processing unit (GPU). The code was written in python with Keras wrapper 
for TensorFlow.

Data availability
The dataset analyzed for this study is comprised of de-identified fundus and FA images publicly available from 
the Isfahan University of Medical  Sciences79.
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