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Spatial heterogeneities 
of human‑mediated dispersal 
vectors accelerate the range 
expansion of invaders 
with source–destination‑mediated 
dispersal
Daisuke Takahashi  & Young‑Seuk Park *

Rapid range expansions of invasive species are a major threat to ecosystems. Understanding how 
invasive species increase their habitat ranges and how environmental factors, including intensity of 
human activities, influence dispersal processes is an important issue in invasion biology, especially for 
invasive species management. We have investigated how spatially heterogeneous factors influence 
range expansion of an invasive species by focusing on long‑distance dispersal, which is frequently 
assisted by human activities. We have developed models varying two underlying processes of a 
dispersal event. These events are described by source and destination functions that determine 
spatial variations in dispersal frequency and the probability of being a dispersal destination. Using 
these models, we investigated how spatially heterogeneous long‑distance dispersal influences range 
expansion. We found that: (1) spatial variations in the destination function slow down late population 
dynamics, (2) spatial variations in the source function increase the stochasticity of early population 
dynamics, and (3) the speed of early population dynamics changes when both the source and the 
destination functions are spatially heterogeneous and positively correlated. These results suggest an 
importance of spatial heterogeneity factors in controlling long‑distance dispersal when predicting the 
future spread of invasive species.

Habitat invasion by alien species introduced by human activity is currently a major global issue in ecosystem 
management. While only a small fraction of alien species appear to be  invasive1, they can exert catastrophic 
effects on ecosystems and human  society1–4. Invasive species mostly share ability to establish colonies far away 
from a parent  colony5. Therefore, their dispersals are a longstanding subject of empirical and theoretical  studies6.

Dispersal is an important factor in determining a species’ spatial distribution. The dispersal is often charac-
terized by a dispersal kernel, which is a probability distribution of dispersal success by distance. Dispersal with 
exponentially bounded tail of the dispersal kernel implies finite range expansion  velocities7; this type of dispersal 
is called as short-distance dispersal. Otherwise, e.g., with a power-law dispersal kernel corresponding to Lévy 
flight (which is often applied to describe animal  dispersal8 and human  traveling9,10), the range expansion veloc-
ity is longer finite in  general7, and emergent spatial distribution of the species scatters over entire  area11. This 
type of dispersal is called long-distance dispersal, and has been applied to model intermittent jumps from the 
existing range to remote areas.

Dispersal of organisms consists of several different processes, e.g., processes mediated by species’ inherent 
dispersal ability and human transfer, and those processes may have different shapes of their dispersal kernels. 
Among invasive species often human activities mediate their dispersal that allow rapid range  expansions12. 
Moreover, meta-analyses suggest humans as the major vector spreading invasive species 5,13. Distances of human 
traveling often show power-law  distribution9,10; therefore, this human-mediated dispersal can give an ability of 
long-distance dispersal to invader species, which may otherwise spread slowly by their limited inherent dispersal 
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abilities. Therefore, invasive species’ range expansion is better modeled as a stratified dispersal that considers 
more than one processes is involved in the spread of the invasive  species12.

Alongside human-mediated long-distance dispersal, empirical studies have shown positive correlations 
between local human activities and the frequency of observation of invasive  species14–16. Numerous studies have 
concluded that invasive species are more likely to be established in areas of high human activity. Gravity models 
(a common approach to describe spatial expansion of invader species) often determine dispersal destination by 
levels of human activity, e.g., the number of incoming boats at a given  port17–21.

Simultaneously (particularly in cases of accidental transfers), we can expect human-mediated dispersal 
sources in areas of high human activity. Therefore, urban areas with higher frequencies of dispersal vectors may 
be associated with increased dispersal of invasive species, both incoming and outgoing. Such twofold effects of 
vector density have been integrated into models that explicitly consider the flow of  dispersers17,19–21, while other 
models consider only one side of these effects. By comparing models with and without both effects in the same 
framework, we can identify qualitative differences between these two types of modeling strategies.

Management of invasive species requires a targeted approach for maximum effect. A number of studies using 
spatially explicit models have demonstrated that where the effort is initially targeted can have a profound effect 
on  outcome5,22–25. Controls based on population biology have generally supported prioritization of the edges of 
a population as primary targets of initial control  efforts5,23,24,26. On the other hand, studies focused on metapopu-
lations often support prioritization of core populations that supply most of the new  propagules23,26,27. Further, 
the optimal spatial arrangement of the control effort is considered to be highly context-dependent5. Therefore, 
we need to understand the mechanisms underlying these different expectations for improved control success.

In this study, we investigated spatially heterogeneous long-distance dispersal rates using a scatter colony 
 model28–31 to derive a factor for determining how heterogeneous environments influence the early population 
dynamics of invasive species. We considered a finite-sized continuous area that is parametrized by two spatial 
functions, (1) intensities to attract dispersers of the invasive species (destination function) and (2) intensities to 
produce dispersers of the invasive species (source function). Those two spatial functions describe how spatial 
heterogeneity influences long-distance dispersal of the invasive species. In this study, we defined and investi-
gated three types of models (1) destination-mediated-dispersal models (spatially heterogeneous destination 
function and uniform source function), (2) source-mediated-dispersal models (spatially uniform destination 
function and heterogeneous source function), and (3) full models of which destination and source functions 
are spatially heterogeneous. By comparing analytical investigations with spatially explicit stochastic models, 
we demonstrated how to predict early population dynamics for initial control success with considering spatial 
heterogeneity of dispersal.

Results
Heterogeneous destination function decelerates population growth. When the destination func-
tion was spatially heterogeneous but the source function was homogeneous (i.e., destination-mediated-dispersal 
model), colonies aggregated (Fig. 1a) and the population initially expanded rapidly but decelerated in the later 
part of the time course (Fig. 1b). The lengths of the establishment phase of the destination-mediated-dispersal 
models were invariant of the spatial factor Fh (Fig. 2b, black triangles). On the other hand, larger spatial factors 
tended to delay population growth within the expansion phase (Fig. 2c, black triangles). Covering the last 5% of 
area (the naturalization phase) took a longer period of time when the spatial factor was large (Fig. 2d, triangles); 
sometimes the naturalization phase was longer than the expansion phase. Therefore, with spatially heterogene-
ous attractiveness alone, spatial arrangements of the dispersal vector h(x, y) do not affect the establishment of a 
population, but a large spatial factor value tends to delay population growth in the following period.

Heterogeneous source function increase stochasticity of early dynamics. When the source 
function was spatially heterogeneous but the destination function was homogeneous (source-mediated-disper-
sal models), colonies scattered on the space (Fig. 1c) and the length of the early growth period varied greatly 
relative to those other types of models (Figs. 1d and 2b, red squares). The lengths of the establishment periods of 
the source-mediated-dispersal models responded positively to the spatial factor (Fig. 2b, red squares). Periods 
of subsequent phases (expansion and naturalization) of the source-mediated-dispersal models did not respond 
to the spatial factor (Fig. 2c,d, red squares). Therefore, spatially heterogeneous source function can induce large 
fluctuations in the establishment of a population, but has little effect on the later phases of establishment and 
expansion.

Spatial heterogeneities accelerate early population growth in models that assume both 
source and destination functions vary spatially. In the full models, colonies aggregated in areas with 
high dispersal frequency because both attractiveness and dispersal frequency are proportional to the same func-
tion h(x, y) (Fig. 1e). Unlike the two previous models, the lengths of the establishment phases decreased with an 
increase in the spatial factor (Figs. 1f and 2b, blue circles). In the full models, the periods of the establishment 
phases varied among realizations and were smaller than those of the source-mediated-dispersal models (Fig. 2b, 
blue circles). In the full model the establishment and expansion phases responded similarly to the destination-
mediated-dispersal models. Larger values of the spatial factor resulted in longer expansion and naturalization 
phases (Fig. 2c,d, blue circles). Thus, a major characteristic of the full models is a rapid population growth in a 
heterogeneous landscape just after the invasion.

The estimated asymptotic growth rates from the destination-mediated-dispersal and source-mediated-dis-
persal models did not respond to spatial distribution of the dispersal vectors (Fig. 3, gray triangles and red 
squares). These estimated values did not differ from the growth rate at Fh = 1 (i.e., the asymptotic growth rate 
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of the spatially homogeneous model). On the other hand, in the full models, large values of the spatial factors 
resulted in large values of estimated asymptotic growth rates (i.e., faster population growth after the initial 
introduction) (Fig. 3, blue circles). These estimated values correspond well with the theoretical expectations 
from Eq. (4) (Fig. 3, solid lines).

Discussion
In this study, we considered two mechanisms of spatial heterogeneity involved in long-distance dispersal: spatially 
heterogeneous source functions and spatially heterogeneous destination functions. We analyzed these mecha-
nisms to clarify how heterogeneous distributions of dispersal vectors influence regional population dynamics. 
Our results show that a combination of these mechanisms, not either of them in isolation, addresses spatial effects 
on the asymptotic growth rate in the initial success of establishing a population.

Spatial heterogeneity and destination‑mediated dispersal. When spatial heterogeneity in vector 
density controls the destinations of long-distance dispersers (i.e., a destination function) in isolation, our mod-
eling suggests that once the population covers a large proportion of available area, there is a delay in population 
expansion. In a spatially heterogeneous destination, the population aggregates in areas of higher value, resulting 
in missed dispersal opportunities by re-establishing in areas already occupied by existing sub-populations. This 
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Figure 1.  Spatial settings influence realized spatial distributions of colonies and their population dynamics: (a, 
b) destination-mediated-dispersal model, (c, d) source-mediated-dispersal model, and (e, f) source–destination-
mediated-dispersal model. (a, c, e) Colored regions show colonies that cover 10% of the entire area (ages of 
these populations are 28, 35, and 18, respectively). Colors of these regions indicate colonies with low (blue) 
to high (red) dispersal frequencies. White to gray shades indicate the magnitude of the background intensity 
distribution (darker for larger intensities). (b, d, f) Thin gray curves indicate 100 independent time courses for 
proportions of areas occupied by colonies. Thick curves show the average time in which a population reaches 
a certain proportion. All realizations, including realizations for panels (a, c, and e), use the same background 
intensity distribution ( F

1
3
h = 1.40).
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scenario is applicable to introductions of a species to remote areas arrive from outside the focal area (e.g. from 
forestry plantations to urban areas).

Spatial heterogeneity and source‑mediated dispersal. When spatial heterogeneity of vector density 
controls the number of dispersers (i.e., a source function) only, the total number of dispersers produced from a 
population depends on the spatial arrangement of sub-populations. This was caused by a selection of population 
area in the analyses of the models. If sub-populations cover most of the area, the total number of dispersers will 
be very close to its expected value. Alternatively, if a population consists of a few small colonies, the total number 
of dispersers produced varies depending on the actual spatial distribution of the sub-populations. Therefore, 
spatial heterogeneity in the source function introduces uncertainty in the early phase of population dynamics, 
which diminishes as the population establishes and expands.

Figure 2.  Effects of spatial heterogeneity of dispersal vectors on population dynamics as a function of model 
type. (a) Schematic describing three phases used; (i) establishment (0–5%, panel b), (ii) expansion (5–95%, 
panel c), and (iii) naturalization (95–100%, panel d). (b–d) Response periods of phases based on the spatial 
factor. Points and corresponding vertical lines represent medians and 25%–75% quantiles of 100 realizations, 
respectively. Black triangles, red squares, and blue circles correspond to destination-mediated-dispersal, source-
mediated-dispersal, and source–destination-mediated-dispersal models, respectively. Black open circles and 
lines on the left point (spatial factor Fh = 1 ) correspond to a null model without any spatial heterogeneities.
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Figure 3.  Asymptotic growth rates of full models increase with increases in the spatial factor, while other 
rates are invariant of the factor. Gray triangles, red squares, and blue circles indicate asymptotic growth rates 
estimated from realizations with source-mediated-dispersal, destination-mediated-dispersal, and source–
destination-mediated-dispersal models, respectively. The open circle at a unit spatial factor represents a model 
without any spatial heterogeneities. Solid lines indicate theoretical growth rates with (blue) and without (gray) 
influence of spatial factors.
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Spatial heterogeneity of both source and destination functions. The most notable outcome from 
our three model settings is that spatial heterogeneity influences initial population growth only when the source 
and the destination functions are both heterogeneous and are spatially correlated (Supplemental Information 
SI 3). Source and destination correlation results in a higher initial rate of propagule production. On the other 
hand, after the population covers most of an area, its expansion slows because dispersers are rarely introduced 
to remaining open areas because of their very low values of the destination function. In this situation, instead of 
establishing in these open areas, most dispersers are transferred to already populated areas. Among three types 
of models investigated in this study, only the full models relate spatial heterogeneity with an asymptotic growth 
rate, which is a key determinant of both extinction probability and invasiveness. The spatial factor we derived 
here can be considered to be a measure of correlations between the source and the destination functions (with-
out subtracting mean values). Therefore, the full model type is distinct from the others for its ability to determine 
the effects of long-distance dispersals in the population dynamics of an invading species, especially on the spe-
cies’ responses to control strategies.

Source and destination mediated dispersal and control of core populations. The spatial factor 
can be reduced by decreasing the dispersal frequency or attractiveness of an area with a high density of disper-
sal vectors. Therefore, if both source and destination functions influence dispersal success, our model suggests 
potential eradication success through simultaneous strategies that effectively weaken dispersals between core 
areas, where colonies tend to produce more propagules than other areas. Similar control strategies focusing on 
core populations have been suggested by metapopulation  models23,26,27. These strategies have been applied in 
cases of invasive aquatic invertebrates and fish larvae transferred accidentally by ballast  water32,33. On the acci-
dental transfer of aquatic species by ballast water or attaching to boats, the number of boats in a port approxi-
mates both the inflow (destination function) and outflow (source function) of invader species’ propagules. In 
addition, using the common assumption of stationarity in the number of boats in each  port17,19,21,34, the attrac-
tiveness and the dispersal frequency of each port also becomes stationary. This introduces time-invariant corre-
lations between the attractiveness and the dispersal frequency of a sub-population. Our results suggest that this 
correlation between attractiveness and dispersal frequency introduced by a stationary density of boats points to 
the importance of core populations. Similar discussions may also be applicable to accidental transfers of terres-
trial small organisms attaching to vehicles and machinery, which is an important pathway for spreading insect 
 invaders35–37.

Edge expansion and population growth. We emphasize that our models do not contradict the com-
mon rule of thumb that recommends prioritizing control at the edges of a  population5,23,24,26. The asymptotic 
growth rates in our models are essentially the same formulation as a spatially homogeneous model, with a larger 
influence of contributions from short-distance dispersal than those of long-distance dispersal. Thus, we expect 
a larger influence from the proportional change of the short-distance dispersal speed (i.e., expansion speed at 
edges) than from the frequency of long-distance  dispersal31. Note that influences from short- and long-distance 
dispersals on the asymptotic growth rate in our models are multiplicative rather than additive. Therefore, the 
measures of the additive effects of parameters can indicate a stronger influence from long-distance than short-
distance  dispersal38,39, especially when short-distance dispersal is weak.

Conclusion
Our modeling emphasizes the importance of the basic assumptions regarding how propagules of invader species 
interact with vectors mediating long-distance dispersal. Different types of interactions can lead to qualitatively 
different conclusions when considering population dynamics produced by spatially heterogeneous distributions 
of vectors. These models and results bridge the gap between discrepancies between strategies, helping to drive 
decisions to focus on edge versus core populations (a result of using two different stems of modeling frameworks). 
From the present result, we conclude that clamped spatial distribution of a human population can accelerate 
invasive species’ range expansion after establishment, if the human-population density influences both starting 
and ending locations of the invader species’ dispersal (e.g., accidental transfer by vehicles). This outcome will 
facilitate a better mechanistic understanding of how different types of vectors influence invasive species’ spread, 
and support the development of robust models to predict their future expansions.

Methods and models
Target species and basic assumptions. We developed and analyzed spatially explicit models that 
describe range expansion of an invader species’ population that consists of many sub-populations. Invasive spe-
cies often expand their range by stratified dispersal using human-mediated long-distance dispersal in addition to 
local expansion of sub-populations20. Extending a model rigorously analyzed by Takahashi et al.31, which explic-
itly involves (1) short-distance dispersal that expands the area of current sub-populations, and (2) long-distance 
dispersal that establishes new sub-populations beyond existing sub-populations (Fig. 4), we consider spatially 
inhomogeneous factors that influence on the long-distance dispersal (e.g., vectors’ distribution). The parameters 
and functions used in these models are listed in Table 1.

We estimated the population size of the invader species as the area covered by any of these sub-populations 
in the study area. This simple measure of the population size was based on our assumption that the inside of a 
sub-population is homogeneous and these sub-populations vary only in their positions, sizes, and shapes. This 
assumption may oversimplify spatial architectures of the sub-populations, because even clonal colonies of per-
ennial plants often have concentric structures that can influence reproductive  output40; but this simplification is 
applicable when the reproductive rate of the species is high enough to reach a constant carrying capacity quickly.
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Short‑ and long‑distance dispersals. We considered stratified dispersals of the invader species. Note 
that we explicitly considered invader species’ dispersal but their vectors’ movement (e.g., human traffics) was 
included only implicitly. The short-distance dispersal expands the species’ range only by a constant  velocity7. 
Therefore, we modeled the short-distance dispersal as radial expansion of these sub-populations with a constant 
speed g. Meanwhile, long-distance dispersal introduces new sub-populations into the population out of its par-
ent sub-population. Empirical observations showed that long-distance dispersal mediated by human activities 
introduces a new sub-population to an area at a long distance from its source population, e.g., vehicles can move 
plant seeds for more than hundreds of  kilometers41. Long-distance dispersal diminishes the influence of the 
source location on the destination of a dispersal event, so as a simplifying approximation we assumed that the 
destination of the long-distance dispersal is independent of the source location of a sub-population.

The assumption of source location independence of the dispersal destination allows us to describe a process 
of long-distance dispersal by two functions on S : (1) a function ϕ(x, y) describing spatial variation in disperser 
production rates, and (2) a function ψ(x, y) describing the probability that a coordinate (x, y) is selected as a 
destination of the disperser. Following the notation of Jongejans et al.18, we call ϕ(x, y) and ψ(x, y) the source 
and destination functions, respectively. Note that we define the spatial average of the source function to be one 
(i.e., 

∫

S ϕ(x, y) dxdy
/

|S| = 1 ). We define R as the regional average of the disperser production rate per unit area 
(a spatially homogeneous component of the disperser production rate). Using this formulation, we calculate an 
expected disperser production rate of a given area by integrating Rϕ(x, y) over the area. The spatial integration 
of the destination function over the study area is one because we assume the population of the invader species 
will reach full carrying capacity.

We have defined a population of the invader species as a spatial union of all sub-populations in the study area 
because we assume sub-populations are homogeneous. Within the study area, ρt(x, y) is 1 if the coordinates (x, y) 
are within at least one of the sub-populations of the invader species at time t  (and otherwise 0). The integration of 
Rϕ(x, y) is the expected disperser production rate for a given ρt(x, y) , and the integration R

∫

S ρt(x, y)ϕ(x, y) dxdy 
is the expected total production of dispersers from a population in the t-th time step. Thus, assuming that the total 
number of dispersers that start long-distance dispersal at time t  (denoted by nd,t ) follow a Poisson distribution, 
we can write a probability that the population produces k dispersers in the t-th time, Eq. (1).

Short–distance dispersal

Long–distance dispersal

The number
of propagules

Locations
of new colonies

φ(x,y) ψ(x,y)
Influence from

human activities

Figure 4.  A schematic of short- and long-distance dispersal modes. Human activities may influence the long-
distance dispersal by: (1) changing the number of propagules starting the long-distance dispersal ( R · ϕ(x, y) ), 
and (2) introducing biases in their spatial locations ( ψ(x, y) ). By compositing these short- and long-distance 
dispersals, we predict population establishment at the next time step.

Table 1.  Symbols and their default values.

Symbol Description Unit Default value

x , y Standardized spatial coordinate L –

ρt (x, y) Area covered by a population at year t 1 –

S, |S| Study area ( |S| is the size of the study area) – –

g
Maximum length of the short-distance dispersal (a length unit L is selected to keep this param-
eter to be 1) L · year−1 1

R Average long-distance dispersal frequency per year per unit area L−2 · year−1 0.01

h(x, y) Spatial distribution of the human-mediated dispersal vectors (standardized to be 1 in total) 1 –

ϕ(x, y) Frequency of starting the long-distance dispersal from a population at (x, y) (source function) 1 –

ψ(x, y) Likelihood of a sub-population establishment at (x, y) (destination function) L−2 –

F Overall magnitude of effects human activities on growth rate (spatial factor) 1 –
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The destination of the disperser is determined by the destination function ψ(x, y) , which determines prob-
abilities of ending a dispersal event at (x, y) , which results in a new sub-population being established at that 
location. In total, the spatial distribution of new sub-populations introduced by long-distance dispersal follows 
a Poisson point process of which intensities are given as ψ(x, y)R

∫

S ρt(x, y)ϕ(x, y) dxdy.

Three model types. We compared three different types of models by varying interactions between the 
species’ long-distance dispersal and human activities. These included: (1) a source-mediated-dispersal model 
assuming that the source function ϕ(x, y) varies spatially by human activity while the destination function 
ψ(x, y) is uniform, (2) a destination-mediated-dispersal model assuming that the destination function varies 
spatially while the source function is uniform, and (3) a full model assuming that both source and destination 
functions vary spatially.

Let h(x, y) be a function representing intensity of human activities at coordinates (x, y) . Without loss of 
generality, we can assume that the function h(x, y) satisfies 

∫

S h(x, y) dxdy = 1 , the total intensity over the study 
area is scaled to one. In the source-mediated-dispersal model, the source function is proportional to the human-
activity intensity, i.e., ϕ(x, y) = |S| · h(x, y) , and the destination function ψ(x, y) is uniformly equal to 1

/

|S| . On 
the contrary, the source function of the destination-mediated-dispersal model is uniform and the destination 
function is ψ(x, y) = h(x, y) . The full model is a combination of the source- and destination-mediated-dispersal 
models in which both source and destination functions vary with area. In this study, we assume that a single factor 
determines both the source and destination functions, i.e., ϕ(x, y) = |S| · h(x, y) and ψ(x, y) = h(x, y) (Table 2).

Asymptotic growth rate of a population. Spatial dimension introduces complexity, though rigorous 
mathematical analysis is still viable for a small population with few small sub-populations. This situation may 
arise with an accidentally transferred population. Here, we consider infinitesimally small populations to be rare 
for invasive species and derive an asymptotic value of the growth rate to the size of the area inhabited by the 
population.

Each sub-population includes age, so we incorporated age-structured population  dynamics29,31 into the model, 
described by the differential equation,

where n(a, t) represents the frequency of sub-populations with age a at time t. Note that Eq. (2) assumes 
no extinction of sub-populations. The equation has two boundary conditions: (1) n(a, 0) represents an age 
distribution of the initial population, and (2) n(0, t) represents the number of new sub-populations (i.e., age 0 
sub-populations) introduced by the long-distance dispersal at time t.

To determine the number of new sub-populations, we need to determine how many long-distance dispersers 
will emerge from a given population by including spatial heterogeneities. Recall that a sub-population expands 
outward by a constant speed g. Therefore, if we ignore overlaps among sub-populations each sub-population 
keeps a circular shape of radius proportional to age. In addition, if a sub-population is young, i.e., its size is 
small, we can regard the value of the source function ϕ(x, y) inside the sub-population as uniform. Let (xi , yi) 
and ai be the position of the center and age of the i-th sub-population, respectively. With the above approxima-
tions, we can simply derive the expected number of long-distance dispersers that start dispersal from the i-th 
sub-population as πR · (gai)2ϕ(xi , yi).

On the other hand, existing sub-populations also originate from long-distance dispersal. Therefore, a posi-
tion of the sub-population also follows the destination function ψ(x, y) . Building on the expected number of 
new sub-populations we described at the last paragraph, we calculate an average over the study area to calcu-
late a mean-field approximation of the number of long-distance dispersers from an age a sub-population as 
πR

∫

S ψ(x, y)(ga)2ϕ(x, y) dxdy.
We assume that a population consists of a few small sub-populations in this formulation and a disperser will 

always establish outside existing sub-populations. Therefore, the total number of a new sub-population (i.e., 
n(0, t) ) is a summation of new sub-populations produced by each of the existing sub-populations,

(1)Pr[nd,t = k] =
�
ke−�

k!
,� = R

∫

S
ρt(x, y)ϕ(x, y) dxdy.

(2)
∂n(a, t)

∂t
+

∂n(a, t)

∂a
= 0,

Table 2.  Definitions of model types.

Model type Source function ϕ(x, y) Destination function ψ(x, y)

Source-mediated dispersal model |S| · h(x, y) 1
/

|S| (uniform)

Destination-mediated dispersal model 1 (uniform) h(x, y)

Full model |S| · h(x, y) h(x, y)
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With Eq. (3), the asymptotic growth rate of the Eq. (2) can be calculated as  follows29,31,

The asymptotic growth rate indicates that the integration 
∫

S ψ(x, y)ϕ(x, y) dxdy describes the influence of 
the source and the destination functions in the early phases of population growth. Therefore, hereafter we call 
∫

S ψ(x, y)ϕ(x, y) dxdy a spatial factor Fh of the long-distance dispersal. Note that the spatial factor reduces to 1 
for both source- and destination-mediated dispersal models. For the full models of which source and destina-
tion functions are ϕ(x, y) = |S|h(x, y) and ψ(x, y) = h(x, y) , respectively, we can reduce the spatial factor Fh to 
∫

S

(√
|S|h(x, y)

)2
dxdy , equivalent to Simpsons’ diversity index.

Numerical analysis. We evaluated the effects of the dispersal vector on distribution with an individual-
based approach that describes colonies in a population as groups of individuals within a circular shape of various 
sizes (Fig. 1a,c,e for typical model outputs, see supplemental information SI 1 for detailed settings). To evalu-
ate the effect of spatial heterogeneity on population dynamics, for each model type we generated 100 of h(x, y) 
randomly (see shaded area of Fig. 1a,c,e, and SI 2 for the algorithm used) and ran 100 independent realizations 
for each h(x, y) . For each realization, we split the time course into three phases: establishment, expansion, and 
naturalization. The phases were based on the proportion of area inhabited by the population (Fig. 2a; less than 
5%, 5% to 95%, and 95% to complete occupation of the total area, respectively), and measured the length of each 
phase. We linearly interpolated the time course based on area covered for each phase.

Using the same set of realized time courses, we estimated the asymptotic growth rate as the peak of a distri-
bution of the logarithmic value of the instantaneous growth rate, defined as a difference of logarithmic values 
of covered area that are adjacent in a time course. We excluded periods that a population covers less than 1% or 
more than 50% of the total area to avoid strong demographic stochasticity of initial dynamics and a deceleration 
phase of S-shaped growth, respectively. We gathered these logarithmic values of instantaneous growth rates from 
100 realizations with the same h(x, y) and dispersal type, then estimated the density distribution using Gauss-
ian kernel estimation. Finally, we determined the maximum point of the estimated density distribution as the 
estimated asymptotic growth rate.
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