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The localization 
of non‑backtracking centrality 
in networks and its physical 
consequences
Romualdo Pastor‑Satorras1* & Claudio Castellano2

The spectrum of the non‑backtracking matrix plays a crucial role in determining various structural 
and dynamical properties of networked systems, ranging from the threshold in bond percolation and 
non‑recurrent epidemic processes, to community structure, to node importance. Here we calculate 
the largest eigenvalue of the non‑backtracking matrix and the associated non‑backtracking centrality 
for uncorrelated random networks, finding expressions in excellent agreement with numerical results. 
We show however that the same formulas do not work well for many real‑world networks. We identify 
the mechanism responsible for this violation in the localization of the non‑backtracking centrality on 
network subgraphs whose formation is highly unlikely in uncorrelated networks, but rather common 
in real‑world structures. Exploiting this knowledge we present an heuristic generalized formula for the 
largest eigenvalue, which is remarkably accurate for all networks of a large empirical dataset. We show 
that this newly uncovered localization phenomenon allows to understand the failure of the message‑
passing prediction for the percolation threshold in many real‑world structures.

The non-backtracking (NB) operator is a binary matricial representation of the topology of a network, whose 
elements represent the presence of non-backtracking paths between pairs of different nodes, traversing a third 
intermediate  one1,2. By means of a message-passing  approach3, the NB matrix finds a natural use in the repre-
sentation of dynamical processes on networks, such as  percolation4,5 and non-recurrent  epidemics6, where a 
spreading process cannot affect twice a given node, and therefore backtracking propagation paths are  inhibited7,8. 
Within this approach, the bond percolation threshold and the epidemic threshold in the SIR  model6 are found 
to be inversely proportional to the largest eigenvalue (LEV) of the NB matrix, µM . The spectrum of the non-
backtracking matrix is relevant also for other problems in network science, such as community  structure9 and 
node  importance2,10–12.

The principal eigenvector (PEV) associated to the LEV of the NB matrix has been recently used to build a 
new measure of node importance or  centrality13. A classical measure of node centrality is given by eigenvector 
centrality, based on the idea that a node is central if it is connected to other central nodes. In this perspective, 
eigenvector centrality of node i is defined as the ith component of the principal eigenvector of the adjacency 
 matrix14. Eigenvector centrality has the drawback of being strongly affected by the presence of large hubs, which 
exhibit an exceedingly large component of the adjacency matrix PEV because of a peculiar self-reinforcing boot-
strap effect. The hub is highly central since it has a large number of mildly central neighbors; the neighbors are 
in their turn central just because of their vicinity with the highly central  hub2,15. In terms of the adjacency matrix 
this self-reinforcement is revealed by the localization of the PEV on a star graph composed by the largest hub 
and its immediate neighbors. To correct for this feature, in Ref.2 it was proposed to build a centrality measure 
using the NB matrix, in such a way as to avoid backtracking paths that could artificially inflate a hub’s centrality. 
In this way, an alternative non-backtracking centrality (NBC) of nodes was defined, in which the effect of hubs 
is strongly suppressed.

Consider an unweighted undirected complex network with N nodes and E edges. The non-backtracking (NB) 
matrix B is a representation of the network topology in terms of a 2E × 2E non-symmetric matrix in which rows 
and columns represent virtual directed edges j → i pointing from node j to node i, taking the value

(1)Bj→i,m→ℓ = δjℓ(1− δim),
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where δij represents the Kronecker symbol. Each NB matrix element represents a possible walk in the network 
composed by a pair of directed edges, one pointing from node m to node ℓ , and the other from node j to node 
i. The element is nonzero when the edges share the central node ( j = ℓ ), and when the walk does not return to 
the first node ( m  = i).

The principal eigenvector vj→i of the NB matrix, associated to the largest eigenvalue (LEV) µM , is given by 
the relation

Since B is a non-negative matrix, the Perron–Frobenius  theorem16 guarantees that µM and all components vj→i 
are positive, provided that the matrix is irreducible.

The element vj→i expresses the centrality of node j, disregarding the possible contribution of node i. The 
non-backtracking centrality xi of node i is defined  as2

where Aij is the network adjacency matrix. If the PEV of the NB matrix is normalized as 
∑

j→i vj→i =
∑

j,i Ajivj→i = 1 , which is valid if B is irreducible, then the natural normalization 
∑

i xi = 1 
emerges.

Results
Theory for uncorrelated random networks. The NBC can be practically calculated by using the Ihara–
Bass determinant  formula2,17, which shows that the NBC values xi correspond to the first N elements of the PEV 
of the 2N × 2N matrix

where A is the adjacency matrix, I is the identity matrix, and D is a diagonal matrix of elements Dij = δijki . Using 
the Ihara–Bass  formalism18 (see Method “Theory for uncorrelated networks” section) one can express, in full 
generality, the leading eigenvalue µM in terms of the NBC as

Following Ref.2 (see Method “Theory for uncorrelated networks” section), it is possible to argue that, for uncorre-
lated random networks, i.e., networks with a given degree sequence but completely random in all other  respects13, 
the dependence of the components of the NB matrix PEV is

Introducing this relation into the definition of the NBC, Eq. (3), and applying the normalization 
∑

i xi = 1 , we 
obtain

that, inserted into Eq. (5), leads to

These expressions constitute an improvement over previous  results2,9,18, namely

(〈kn〉 is the nth moment of the degree distribution), which can be recovered from Eqs. (7) and (8) by replacing 
the network adjacency matrix with its annealed approximated value Āij = kikj/(�k�N)19,20.

Test on synthetic networks. We now check the predictions developed above with the LEV µM and the 
NBC xi determined numerically by applying the power iteration  method21 to the Ihara–Bass matrix M for ran-
dom uncorrelated networks with a power-law degree distribution P(k) ∼ k−γ , generated using the uncorrelated 
configuration model (UCM)22. In Fig. 1 we present, as a function of the network size N, a comparison between 
the NB LEV, µM , evaluated numerically and our theoretical prediction Eq. (8). The match between theory and 
simulation is excellent. However, also Eq. (9) gives very accurate results, differing in average by less than 0.5% 
from the theoretical result Eq. (8). A much more noticeable improvement is observed instead for the NB central-
ity xi , for which annealed network approximation does not provide accurate predictions (see Fig. 2, bottom row). 

(2)µMvj→i =
∑

m→l

Bj→i,m→lvm→l .

(3)xi =
∑

j

Aijvj→i ,

(4)M =
(

A I−D

I 0

)

,

(5)µM =
∑

i kixi
∑

i xi
− 1.

(6)vj→i ∼ kj − 1.

(7)xuni =
∑

j Aij(kj − 1)
∑

j kj(kj − 1)
,

(8)µun
M =

∑

ij(ki − 1)Aij(kj − 1)
∑

j kj(kj − 1)
.

(9)xani = ki

�k�N , and µan
M =

〈

k2
〉

�k� − 1,
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In Fig. 2 (top row) we show the dependence of the NBC xi on the structure of the adjacency matrix, as given 
by Eq. (7), namely xi ∼

∑

j Aij(kj − 1) . The analytical expression is extremely accurate for values of γ < 3 . For 
γ > 3 , although some scattering can be observed with respect to the expected value, the prediction is still good, 
much more accurate than the annealed network approximation. More evidence about the superior accuracy 
of our approach is found considering the inverse participation ratio Y4(N) as a function of network size (see 
Method “Localization of the non-backtracking centrality”).

Non‑backtracking principal eigenvalue of characteristic subgraphs. The non-backtracking cen-
trality was introduced with the goal of overcoming the flaws of eigenvector centrality, due to the localization 
of the adjacency matrix principal eigenvector on star graphs surrounding hubs of large degree, that artificially 
inflate their own eigenvector  centrality2. For the NBC the addition of a large hub to an otherwise homogeneous 
network has a limited impact. Indeed, the addition of a dangling hub of degree K, connected to K − 1 leaves of 
degree 1 and to a generic network by a single edge, does not alter at all the value of µM

2,9 (see Method “Larg-
est non-backtracking eigenvalue of characteristic subgraphs” section). In the case of a hub integrated into the 
network, connected to K other random nodes in the graph, Ref.2 argued, from the perspective of the annealed 
network approximation, that its effect is irrelevant in the thermodynamic limit. A more elaborate analysis (see 
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Figure 1.  µM for uncorrelated networks. Scaling of the LEV of the NB matrix, µM , as a function of network 
size N in power law UCM networks with different degree exponent γ . Dashed lines correspond to the theoretical 
prediction Eq. (8). Simulations results correspond to the average over 25 different network realizations. Error 
bars are smaller than symbols size.
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Figure 2.  NBC for uncorrelated networks. Scatter plot of the numerical NBC xi in power-law UCM networks 
of size N = 106 with different degree exponent γ , as a function of the theoretical predictions xuni  in Eq. (7) (top 
row) and xani  in Eq. (9) (bottom row). The dashed lines represent the curve y = x . Degree exponents considered 
are γ = 2.10 (a) and (e); γ = 2.75 (b) and (f); γ = 3.50 (c) and (g); γ = 4.50 (d) and (h).
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Method “Largest non-backtracking eigenvalue of characteristic subgraphs” section) shows that this is true unless 
K ≫ (N/�k�)1/2 . Only in this case an integrated hub has an effect and leads to a PEV significantly larger than the 
PEV of the original network and scaling as [�k�K(K − 1)/N]1/3.

However, it is possible that other types of subgraphs play for the NB centrality the same role that star graphs 
play for eigenvector centrality: They can have, alone, large values of µM , so that, if present within an otherwise 
random network, they determine µM of the whole structure, with the overall NBC localized on them. We now 
show that these subgraphs actually exist and can have dramatic effects.

As noticed in Ref.2, the simplest example is a clique of size Kc , which is associated to µclique
M = Kc − 2 . If Kc is 

large enough, µclique
M  can dominate over µun

M  . But also a homogeneous (Poisson) subgraph of average degree 〈k〉 , 
for which µM = �k�2,9, can become the substrate of a localized NB PEV if 〈k〉 is sufficiently large.

Apart from these simple examples, a less trivial one is the case of overlapping hubs, i.e., a set of n hubs of 
degree K, connected to the same K leaves of degree n, see Supplementary Fig. SF1. The intrinsic LEV associated 
to such a structure is (see Method “Largest non-backtracking eigenvalue of characteristic subgraphs section”)

This last case is particularly important, since µoh
M  can become very large due to a few overlapping hubs of very 

large degree K, or due to a large number of hubs with moderate overlap K.

Localization in real‑world networks. In Fig. 3a,b we compare the theoretical predictions derived for 
uncorrelated and annealed networks with the values of µM computed numerically for a set of 109 real-world 
networks of diverse origin (see Supplementary Table ST1 for details). In opposite ways, both predictions, µan

M 
and µun

M  , fail to provide an accurate approximation of empirical results for many networks. In the most notice-
able cases, the networks Zhishi and DBpedia, the uncorrelated prediction Eq. (8) largely underestimates the 
value of µM , while the annealed network prediction Eq. (9) largely overestimates it.

To shed light on the origin of these discrepancies, in Supplementary Fig. SF2 we compare the empirical 
NBC, xi , with the theoretical prediction xuni  for four real-world networks in which the predictions largely fail. 
We observe that, in all networks, a few nodes assume an exceedingly large value of xi , i.e., the NBC is localized 
on a very small subset of nodes, which includes the largest hubs.

It is clear that, in order to obtain an accurate prediction of µM in real-world networks, it is necessary to take 
into account the possible localization of the NB centrality on subgraphs which, despite being relatively small, 
may determine µM for the whole structure. In previous paragraphs, we have seen that two special subgraphs, a 
large clique/relatively dense homogeneous graph, or a set of overlapping hubs, may become the set where NBC 
gets localized if the associated µM is larger than the one for the rest of the network. It is then natural to postu-
late (in analogy with what happens for the adjacency  matrix23) that the overall µM is well approximated by the 
maximum among Eq. (8) and the µ(s)

M  values associated to each possible network subgraph s (We note here that, 
while in the case of the adjacency matrix this result is exact due to the Rayleigh’s  inequality24, for the NB matrix 

(10)µoh
M =

√

(n− 1)(K − 1).
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Figure 3.  Test of theoretical approaches for real-world networks. LEV of the NB matrix, µM , as a function of 
the theoretical predictions µun

M  [Eq. (8a)] µan
M [Eq. (9b)], and µglobal

M  [Eq. (11c)], for the set of 109 real-world 
networks described in Supplementary Table ST1.
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we simply proceed by analogy. As we will see later on, however, the conjecture turns out to be quite accurate). 
An exhaustive search among all subgraphs is computationally impractical. However, if we limit ourselves to 
the types of subgraphs discussed above, it is numerically easy to find reasonable estimates of their maximum 
LEVs. The hubs, either dangling or integrated, provide a negligible contribution, as we can check numerically. 
The K-core decomposition (see Method “K-core decomposition”) provides, as the core with maximum index, 
an approximation of the densest subgraph in the network. The value µcore

M  associated to such max K-core, which 
can be either a clique or a relatively dense homogeneous graph, is a good estimate of the maximum LEV among 
these types of subgraphs. Concerning µoh

M  , the pair of n and K values maximizing Eq. (10) can be well approxi-
mated by a heuristic greedy algorithm described in Method “Algorithm to determine optimal n and K values 
for overlapping hubs”.

Following this line of reasoning, we can then write an approximate expression for the NB LEV in generic 
networks as

where µcore
M  is computed as the largest eigenvalue of the NB matrix defined by the subgraph spanned by the 

maximum K-core. The comparison of Eq. (11) with empirical results in real-world networks, displayed in Fig. 3c, 
reveals a striking accuracy in all cases and substantiates the predictive power of Eq. (11) for the LEV of the 
non-backtracking matrix on generic real-world networks. The spontaneous formation of large cliques or sets of 
overlapping hubs is exceedingly improbable in uncorrelated networks. A K-core structure exists only for γ < 3
25 but in that case µcore

M ≃ µun
M  . As a consequence, for all uncorrelated networks Eq. (11) gives back Eq. (8).

Application to percolation. Spectral properties of the non-backtracking matrix are at the heart of the 
message-passing theory for bond  percolation7: For locally tree-like networks, the percolation threshold is given 
by the inverse of the NB matrix LEV,

A comparison of this prediction with results obtained numerically for our set of real-world networks is pre-
sented (A similar test was already performed in Ref.18.) in Fig. 4, where the percolation threshold pc is obtained 
as the position of the main susceptibility peak (see Method “Numerical simulations of bond percolation”). In 
the majority of cases pc and 1/µM differ by less than 50%, but for the remaining networks the discrepancy is 
larger, in some cases by more than one order of magnitude. These failures of prediction (12) can be understood 
by applying the knowledge acquired in the previous Sections. Most (and the largest) of the violations occur when 

(11)µ
global
M = max
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Figure 4.  Test of message-passing prediction for bond percolation threshold in real-world networks. The 
bond percolation threshold pc determined numerically from the main peak of the susceptibility is divided by 
the message-passing prediction [Eq. (12)] and plotted for the 109 real-world networks considered. Below the 
horizontal dashed red line the prediction is accurate within 50% . Vertical dashed lines represent the size scale of 
the networks: from left to right N = 102 , 103 , 104 , 105 , and 106 . Symbols show which of the terms in Eq. (11) is 
maximal. Symbols are surrounded by a black (red) circle in case a secondary peak appears in the susceptibility 
on the left (right) of the main peak.
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the NBC is localized on small subgraphs, either overlapping hubs or the max K-core, which determine the overall 
value of µM . In these cases the system actually undergoes what can be seen as a double percolation  transition26, 
reflected, in Fig. 5, by the presence of two distinct peaks of the susceptibility χ2(p) (see also Ref.27 for the effect 
of mesoscopic structures on percolation). In the networks considered in this figure, the message-passing value 
p = 1/µM signals the buildup of the connected subgraph of relatively small size where NBC is localized, originat-
ing the first susceptibility peak. The second and largest peak occurs for much larger values of p and signals the 
formation of a percolating cluster encompassing a larger fraction of the nodes. Two (or even multiple) peaks are 
present also in other networks. The message-passing theory accurately predicts only the leftmost of these peaks 
(see Fig. 5), while it does not give any information about the position of other peaks and the associated transition.

Some other networks exhibit quite large discrepancies between pc and 1/µM but in the absence of a second-
ary peak. Our theory does not provide an explanation for these cases. However, it must be remarked that this 
phenomenology occurs for small networks, for which the very concept of localization on a subgraph is not well 
defined. Moreover, in these cases the peak of the susceptibility is wide and it may hide the presence of another 
peak (see Supplementary Fig. SF3).

Finally, an ample discrepancy between pc and 1/µM is observed also for a few networks (Road network 
TX, Road 512 network CA, Road network PA and US Power grid) having very large values of 
the average shortest path length 〈ℓ〉 and thus not possessing the small-world property. This is not surprising, as 
the almost planar nature of these topologies makes our framework inapplicable to them.

In summary, realizing that localization of the NB centrality can determine the value of µM for the whole 
structure allows us to understand the presence of a double percolation transition in several real-world networks. 
In these cases message-passing theory captures only the first of the transitions, corresponding to the emergence 
of a localized subgraph, while the occurrence of the second transition is completely missed by the  theory28,29.

Discussion
Our results show that the non-backtracking centrality, which was introduced to avoid the pathological self-
reinforcement mechanism that plagues standard eigenvector centrality, is affected by the same problem. The 
NBC may also get localized on specific network subgraphs, with the same bootstrap mechanism at work: Some 
nodes are highly central because they are in “contact” with other central nodes and the latter are central because 
they are in contact with the former. The only difference is that for the adjacency matrix the relevant subgraphs 
are stars and self-reinforcement takes place among the hub and its direct  neighbors23. For the NB matrix the 
relevant subgraphs are groups of nodes sharing many neighbors and self-reinforcement occurs at distance 2. 
The possibility of localization also for the NB matrix was overlooked so far, because it is exceedingly unlikely in 
random uncorrelated networks. However, as we show here, in real-world topologies these structures are rather 
common. Indeed, cliques and sets of overlapping hubs are, respectively, complete unipartite and bipartite sub-
graphs, which naturally arise in many networks, for structural or functional reasons.

The results presented here have a number of implications. Which of the three contributions determines 
µ
global
M  in Eq. (11) allows to rapidly estimate also the relevant non-backtracking centralities in the network. If 

µun
M  dominates, then the NBC are given by Eq. (7). If instead µoh

M  is largest, then non-backtracking centrali-
ties are given by Eq. (41) in the subset of overlapping hubs and are essentially zero elsewhere. Similarly, when 
µcore
M  dominates in Eq. (11), NBC is approximately constant in the max K-core and much smaller elsewhere. 

Additionally, our results allow to shed light on the LEV of the adjacency matrix, �M . In Ref.23, it was argued 
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Figure 5.  Susceptibility plots for networks exhibiting a secondary peak on the left. Numerical bond percolation 
susceptibility for the networks (a): GR-QC, 1993-2003; (b): Reactome; (c): PGP; (d): Flickr; (e): Web 
Stanford; (f): DBLP, collaborations; (g): Web Notre Dame; (h): Zhishi; (i): US Patents; 
and (j): DBpedia. The global maximum of the susceptibility χ2(p) , indicating the percolation threshold, is 
marked by a gray vertical bar. Black vertical lines indicate the position of the secondary peak. Red vertical lines 
signal the value of the prediction 1/µM . Notice that for three of the networks (Web Stanford, Zhishi 
and DBpedia) the NBC is localized on overlapping hubs, while for the others localization occurs on the max 
K-core.
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that �M is determined by two subgraphs that have associated a large LEV, and that correspond to the node of 
maximum degree kmax (hub), taken as an isolated star graph, and the maximum K-core. Thus, in the spirit of 
Rayleigh’s  inequality24, it was proposed the approximation �M ≃ max{√kmax,�

core
M } , where 

√
kmax  is the LEV 

of star graph of degree kmax and �core
M  is the LEV of the maximum K-core, approximated by its average degree 

〈k〉core23. The subgraph composed by n overlapping hubs of degree K turns out to possess also a large LEV of the 
adjacency matrix, given by �oh

M =
√
nK  . We can then propose an improved approximation, taking into account 

the effect of overlapping hub, of the form �M ≃ max{√kmax,�
core
M ,�oh

M } . In Supplementary Fig. SF4 we check 
this new expression, observing that it provides some improvement in the estimation of the adjacency matrix 
LEV, particularly for networks of large size.

The localization phenomenon of the NB matrix has also strong implications for percolation and thus for 
the related susceptible-infected-removed model for epidemic dynamics. Quite surprisingly, this reveals strong 
analogies with what happens in some regions of the phase-diagram of the paradigmatic susceptible-infected-
susceptible model for epidemic dynamics (SIS)30. The formation (under appropriate conditions) of localized 
clusters below the global epidemic transition is a striking common feature of both types of dynamics, which 
they share despite their completely different nature. This intriguing similarity extends to the predictive power of 
theoretical approaches. For SIS dynamics quenched mean-field theory predicts when localized clusters of activ-
ity start to appear, but misses the formation of an overall endemic  state30. For percolation (and SIR dynamics) 
message-passing theory captures the formation of localized clusters but is not predictive for what concerns the 
possible second transition involving a much larger fraction of the network. The quest for theoretical approaches 
able to understand and predict this nontrivial second transition is a challenging avenue for future research.

Another related line for future research is the exploitation of the improved understanding presented here to 
devise targeted immunization  strategies12.

Methods
Theory for uncorrelated networks. Denoting the PEV of the matrix M as �f = {�x, �w} , we can rewrite 
Eq. (4)  as18

which translates into

Summing over i and rearranging, we obtain

Discarding the solution µM = 1 , which is always an eigenvalue, we have

leading to

which allows us to compute µM once the NBC is known.
Following Ref.2, we can obtain an approximation for the NB matrix PEV (and hence for the NBC) by expand-

ing the eigenvalue relation

that, after some transformations can be written  as2

Let us now compute the average value of vi→l over all outgoing nodes i with a fixed degree ki = k , that is

(13)
∑

j

Aijxj + wi − kiwi = µMxi ,

(14)xi = µMwi ,

(15)µM

∑

j

Aijxj + xi − kixi = µ2
Mxi .

(16)(µM − 1)
∑

i

kixi = (µ2
M − 1)

∑

i

xi .

(17)
∑

i

kixi = (µM + 1)
∑

i

xi ,

(18)µM =
∑

i kixi
∑

i xi
− 1,

(19)µMvk→l =
∑

i→j

Bk→l,i→jvi→j ,

(20)µMvi→l =
∑

j

Aij(1− δjl)vj→i =
∑

j �=l

Aijvj→i .

(21)
vout(k) =

1

kNP(k)

∑

i → l
ki = k

vi→l =
1

kNP(k)

∑

i, l
ki = k

Ailvi→l ,
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where kNP(k) represents the number of edges emanating from nodes of degree k. Applying Eq. (20) to the previ-
ous equation we can write

Assuming  now2 that the components vj→i departing from nodes of degree ki = k have the same distribution 
as in the whole network (assumption valid in the limit of random uncorrelated networks), we can substitute 
vj→i ≃ �v� = ∑

i→j vi→j/(2E) , where E is the number of undirected edges in the original network. With this 
assumption, we can write

Analogously, we can compute the average of vi→l over all ingoing nodes l with fixed degree kl = k,

Applying again Eq. (20), we can write

The matrix element (A2)lj counts the number of walks of length 2 between nodes l and j13, and

counts those walks that start at nodes of degree k and are non-backtracking. In a tree-like network, the num-
ber of such walks is equal to the number of next-nearest neighbors of nodes of degree k, that is in average 
kNP(k)(

〈

k2
〉

− �k�)/�k�13. Therefore, we have

That is, in random uncorrelated networks, we have vout(k) ∼ k − 1 and vin(k) ∼ const. . Extending this relation 
at the level of individual edges, we can approximate the normalized dependence of the components of the NB 
matrix PEV as

(22)
vout(k) =

1

kNP(k)µM

∑

i, l
ki = k

∑

j �=l

AijAilvj→i

(23)
= 1

kNP(k)µM

∑

i, j
ki = k

Aijvj→i

∑

l �=j

Ail

(24)
= k − 1

kNP(k)µM

∑

i, j
ki = k

Aijvj→i .

(25)

vout(k) ≃
�v�(k − 1)

kNP(k)µM

∑

i, j
ki = k

Aij

= �v�(k − 1)

kNP(k)µM
kNP(k) = �v�

µM
(k − 1).

(26)
vin(k) =

1

kNP(k)

∑

i → l
kl = k

vi→l =
1

kNP(k)

∑

i, l
kl = k

Ailvi→l .

(27)

vin(k) =
1

kNP(k)µM

∑

i, l
kl = k

∑

j �=l

AilAijvj→i

≃ �v�
kNP(k)µM

∑

l
kl = k

∑

j �=l

∑

i

AliAij

≃ �v�
kNP(k)µM

∑

l
kl = k

∑

j �=l

(A2)lj .

∑

l
kl = k

∑

j �=l

(A2)lj

(28)vin(k) ≃
�v�
µM

〈

k2
〉

− �k�
�k� .
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In Supplementary Fig. SF5 we check the dependence obtained for the components vi→j of the PEV of the NB 
matrix as a function of the outgoing ki and ingoing kj degree, namely vi→j ∼ ki − 1 . The averaged components 
vout and vin , defined in Eqs. (21) and (26), correctly fulfill the scaling forms vout ∼ k − 1 and vin ∼ const. , respec-
tively. Indeed, for UCM networks, the theoretical predictions in Eqs. (25) and  (28) are extremely well fulfilled.

Localization of the non‑backtracking centrality. The concept of vector localization/delocalization 
refers to whether the components xi of a vector are evenly distributed over the network or they attain a large 
value on some subset of nodes V of size NV and are much smaller in the rest of the network. In the first sce-
nario we have xi ∼ const. for all nodes i, and we say the vector is delocalized. In the second scenario, one has 
xi ∼ const. for i ∈ V  , and xi ∼ 0 for i /∈ V  , and we say the vector is localized on V. For the NBC xi , defined with 
a Euclidean normalization 

∑

i x
2
i = 1 , localization can be measured in terms of the inverse participation ratio 

Y4
2,15, defined as

For a delocalized vector, xi ∼ N−1/2 , so one has Y4(N) ∼ N−1 ; on the other hand, for a vector localized on a 
subgraph of size NV  , we have Y4(N) ∼ N−1

V  . Therefore, fitting the inverse participation ratio to a power-law 
form Y4(N) ∼ N−α , a value α ≃ 1 indicates delocalization, while α < 1 implies localization on a subextensive 
set of nodes of size NV ∼ Nα31. In the extreme case of localization on a finite set of nodes (independent of N), 
one has instead Y4(N) ∼ const.

The functional form derived for xi in Eq. (7) helps to explain the localization properties of the NBC for UCM 
networks observed in Ref.31. In Supplementary Fig. SF6 we show a comparison of the inverse participation ratio 
Y4(N) numerically obtained in power-law UCM networks with the theoretical prediction computed from Eq. (7), 
Yun
4 (N) , and with the prediction obtained from the annealed network approximation Eq. (4), Y an

4 (N) . As we can 
see, the prediction from our expression, Yun

4 (N) , provides an almost perfect match for the numerical observation, 
while the annealed network approximation exhibits sizeable inaccuracies, particularly in the range 2.5 < γ < 3.5.

Largest non‑backtracking eigenvalue of characteristic subgraphs. Dangling star graph. Let us 
consider a dangling star network, see Supplementary Fig. SF1a, formed by a hub h of degree K connected to 
K − 1 leaves l of degree 1 and by one edge to a connector node n of a generic network. By applying Eq. (15), we 
obtain the following equations for the LEV µM and the NBC:

where kn is the degree of node n, xl is the NBC centrality of each leaf, and the equations corresponding to the 
rest of the nodes i  = n are the same as in the absence of the dangling star.

From the first two equations, assuming µM  = 0 , we obtain xh = µMxl and xn = µMxh . Introducing the last 
equality into the third equation, the dependence on xh drops out and the equation takes the form of Eq. (15) in the 
absence of the dangling star. We conclude therefore that a dangling star is unable to alter the value of the overall 
LEV µM and its NBC depends only on the centrality of the connector node n. The reason for this is the absence of 
non-backtracking paths between the hub and the leaves, so that the hub has the effect of a node of degree  one2,9.

Integrated star graph. The case of an integrated star of degree K, i.e., a star connected by K edges to K randomly 
chosen connector nodes in a network, Supplementary Fig. SF1b, is more difficult to analyze. To simplify calcula-
tions, we consider the case of a regular network with fixed degree q. For symmetry reasons, the nodes connected 
to the hub, of degree q+ 1 , have approximately the same NBC, x1 , different from the centrality x2 of the nodes 
not connected to the hub, and also from x0 , the centrality of the hub. Applying the Ihara–Bass determinant for-
mula, Eq. (15), we can write

(29)vi→j ≃
ki − 1

∑

l kl(kl − 1)
.

(30)Y4(N) =
∑

i

x4i .

(31)µM [(K − 1)xl + xn] − (K − 1)xh = µ2
Mxh,

(32)µMxh = µ2
Mxl ,

(33)µM





�

i  =h

Anixi + xh



− knxn = µ2
Mxn,

µMKx1 = (K + µ2
M − 1)x0,

µM

[

x0 + q
K

N
x1 + q

(

1− K

N

)

x2

]

= (q+ µ2
M)x1,

µM

[

q
K

N
x1 + q

(

1− K

N

)

x2

]

= (q+ µ2
M − 1)x2,
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where to ease calculations, we have made the mean-field assumption that nodes in the network are neighbors 
of nodes connected to the hub with probability K/N, and otherwise with probability 1− K/N , which is valid in 
the limit of large K and N. These conditions lead to the equation for µM

where we have factorized the trivial solution µM = 1 . This is an algebraic equation of fifth order than cannot be 
solved analytically in general. However, for K(K − 1)q ≫ N , assuming µM ≫ q− 1 , it reduces to

leading to the solution

Instead for K(K − 1)q ≪ N , assuming µM = q− 1+ ǫ and expanding Eq. (34) to first order in ǫ , we obtain

Hence the value of µM is very close to the value q− 1 of the original random regular network, with a correction 
that vanishes with N. We conclude that the addition of a finite integrated hub does not change the value µM of 
the whole network unless K(K − 1)q ≫ N , a case which may be relevant in small networks. Not surprisingly, 
the uncorrelated expression Eq. (8) fails here, since it predicts a finite value µun

M ∼ 2q , in the limit of large K.
While we considered a star integrated into a homogeneous network, Supplementary Fig. SF7 shows that the 

same picture is valid also in the case of power-law distributed synthetic networks, replacing q by the network 
average degree 〈k〉 : for K up to values of the order of (N/〈k〉)1/2 the addition of the hub has no effect on µM ; for 
larger values, Eq. (36) holds.

Overlapping hubs. Let us consider now a graph composed of n hubs, sharing all their K leaves, see Supplemen-
tary Fig. SF1c. We can evaluate µM and xi by applying again the Ihara–Bass determinant formula. For symmetry 
reasons, the components xh of the hubs are equal, and correspondingly the components xℓ of the leaves. Thus, 
from Eq. (15) we can write

Imposing that the components xh and xℓ are non-zero, we obtain the largest eigenvalue

while the NB centralities fulfill

That is, for large K, the NBC becomes strongly localized in the hubs.
In Supplementary Fig. SF8 we check the effects of adding n overlapping hubs of degree K to power-law dis-

tributed synthetic networks. As we can see, as soon as µoh
M  is large enough (in practice, when 

K > 1+
( �k2�

�k� − 1
)2

/(n− 1) ), the actual value of the NB LEV is dominated by the presence of the overlapping 
hubs.

K‑core decomposition. The K-core  decomposition32 is an iterative classification process of the vertices of a 
network in layers of increasing density of mutual connections, denoted by increasing values of the index K. One 
starts removing the vertices of degree k = 1 , repeating the process until only nodes with degree k ≥ 2 are left. 
The removed nodes constitute the K = 1 shell, and the remaining ones are the K = 2 core. At the next step, all 
vertices with degree k = 2 are iteratively removed, thus leaving the K = 3 core. The procedure is repeated until 
the maximum K-core (of index KM ) is reached, such that one more iteration removes all nodes in the network. 
The maximum K-core of generic networks is usually a homogeneous  subgraph23. The K-core structure of net-
works has been proposed as a classification of node importance in dynamical processes on complex  topologies33.

Algorithm to determine optimal n and K values for overlapping hubs. The determination of the 
set of all overlapping hubs in a real-world network is highly time consuming. We can however obtain a working 

(34)
µ5
M + µ4

M

(

1− q
)

+ µ3
M

(

q− 1
)

− µ2
M

[

Kq(K − 1)

N
+ (q− 1)2

]

+ µM
q(K − 1)(N − K)

N
− q(K − 1)(q− 1) = 0

,

(35)µ5
M + µ2

M

Kq(K − 1)

N
= 0,

(36)µh
M ≃

(

qK(K − 1)

N

)1/3

.

(37)ǫ = (q− 1)2 + (q− 1)

(q− 1)4 + (q− 1)3 + q(K − 1)

Kq(K − 1)

N
.

(38)µMKxℓ = (K + µ2
M − 1)xh,

(39)µMnxh = (n+ µ2
M − 1)xℓ,

(40)µoh
M =

√

(n− 1)(K − 1),

(41)
x2ℓ
x2h

= K − 1

K2

n2
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approximation using the following greedy algorithm: We order the nodes in decreasing order of their degree, 
i1, i2, . . . , iN . Starting from node iα , we visit the set of nodes iα , iα+1, . . . iα+q and identify and identify the num-
ber of common neighbors Kα

q  , that are common neighbors of the set of nodes iα , iα+1, . . . iα+q . Repeating this 
process for all nodes in the network, we compute the values Kα

q  for all nodes α and all sets of nodes (in decreasing 
order of degree) of length q+ 1 . We choose as values of n and K the values of q+ 1 and Kα

q  that maximize the 
product q(Kα

q − 1).

Numerical simulations of bond percolation. We consider the bond percolation process in which net-
work edges are randomly kept with probability p and removed with probability 1− p . For each realization of 
this process with a given value of p, one considers the largest cluster remaining in the network, of size Sp . The 
average of this quantity over independent realization is denoted by 

〈

Sp
〉

 . The critical percolation point pc sepa-
rates a subcritical phase at p < pc , in which only clusters of small size are present, so that 

〈

Sp
〉

/N → 0 in the 
thermodynamic limit N → ∞ , from a supercritical phase at p > pc , in which there is a finite spanning cluster 
leading to 

〈

Sp
〉

/N → const.34.
In order to estimate the value of the percolation point, one considers the susceptibility χ2(p) , defined  as18,35

The percolation threshold pc is defined as the value of p for which χ2(p) shows a  maximum35. To compute 
numerically χ2(p) in real-world networks we perform the averages on bond percolation experiments applying 
the Newman-Ziff  algorithm36.
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