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Age‑related changes in visual 
search: manipulation of colour 
cues based on cone contrast 
and opponent modulation space
Shuto Tamura1 & Keiko Sato2*

Reduced retinal illuminance affects colour perception in older adults, and studies show that they 
exhibit deficiencies in yellow‑blue (YB) discrimination. However, the influence of colour cues on the 
visual attention in older individuals remains unclarified. Visual attention refers to the cognitive model 
by which we prioritise regions within the visual space and selectively process information. The present 
study aimed to explore the effect of colour on visual search performance in older observers. In our 
experiment, younger observers wearing glasses with a filter that simulated the spectral transmittance 
of the aging human lens and older observers performed two types of search tasks, feature search (FS) 
and conjunction search (CS), under three colour conditions: red‑green, YB, and luminance. Targets and 
distractors were designed on the basis of the Derrington–Krauskopf–Lennie colour representation. In 
FS tasks, reaction times changed according to colour in all groups, especially under the YB condition, 
regardless of the presence or absence of distractors. In CS tasks with distractors, older participants 
and younger participants wearing glasses showed slower responses under chromatic conditions than 
under the achromatic condition. These results provide preliminary evidence that, for older observers, 
visual search performance may be affected by impairments in chromatic colour discrimination.

Visual attention refers to the cognitive operations that selectively collect and process critical visual information, 
and visual search tasks are vital tools for investigating visual attention in humans. In such tasks, participants 
usually confirm the appearance of a specific target as quickly as possible. The tasks can be manipulated by varying 
the number of distractors presented with the target. The time required to detect the target (reaction time, RT)1,2 
or the accuracy in detecting the target when the stimuli appear  briefly3,4 can be measured and further analysed. 
Generally, RT and accuracy in visual search are the crucial performance criteria to investigate how covert atten-
tion selects and controls important information.

Many studies related to visual attention have been executed on the basis of the feature integration theory 
(FIT): proposed in the  1980s5, this theory presents visual attention as a sequential process strategy. The FIT argues 
that visual characteristics such as colour and orientation are initially parsed into separate maps in the first stage, 
and that information from each map is merged in the second stage. This integration of individual characteristics 
requires the creation of a master map of locations, which indicates what combinations of visual characteristics 
coexist at each location on the map. The FIT explains the dichotomy between the parallel-like functions of 
feature searching (FS) and the serial-like functions of conjunction searching (CS). In FS, a target is defined by 
a unique visual feature (for example, colour, shape, orientation, or size). Thus, the number of distractors has 
little noticeable effect on target search performance. On the other hand, in CS, the target shares visual charac-
teristics with the distractors and is designed by the combination of two attributes, resulting in a steep RT/CS 
slope. This is because attention to each item for feature integration is required until the target is identified. Thus, 
search performance in CS tasks is largely influenced by the number of  distractors5. However, FIT assumes the 
absence of the bottom-up factor in the CS condition. In counterpoint to the FIT, the guided search theory posits 
that attentional location is determined by an interaction of bottom-up stimulus characteristics with top-down 
strategic  processes6–8. The bottom-up factor of stimulus indicates the featural dissimilarity of the information 
at a given location with information at all other locations, while top-down processing refers to the modulation 
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that increases the relative activation of locations containing task-relevant stimulus properties. In visual search, 
attention will be directed to the item with the highest priority.

Older adults are often slower and less accurate than are younger adults in performing visual-search tasks, sug-
gesting an age-related decline in attentional  functioning9,10. The slope of RT and display-size function is typically 
higher for older adults than for younger  adults11,12. When the visual target is a featural singleton, however, older 
adults typically exhibit independence between RT and display size, indicating a highly efficient search despite 
slower overall  RT13,14. Because target selection is less effortful, “pop-out” occurs due to salient differences between 
the features of the target and the  distractors9. On the other hand, there is evidence that an age-related decline 
occurs specifically in top-down attentional guidance; e.g., research on the effect of age on top-down guidance in 
a CS task suggests that the age-related decline in search performance is particularly  robust13,15–17. To summarize, 
older adults typically feature a slower RT and less accuracy than do younger adults in difficult tasks that rely 
heavily on visual search and  discrimination10. Furthermore, older adults experience difficulty in interpreting the 
cue and setting search parameters when the target varies across  tasks18.

Visual function declines only slightly or not at all until the age of 50–60 years, after which the decline in visual 
function rapidly  accelerates19. The age-induced decline in colour perception specifically is due to reductions in 
retinal illuminance. Concomitant changes in light transmission through the ocular media limit the amount of 
light delivered to the cone cells. These developments are exacerbated by the densification and yellowing of the 
lens, which reduce the transmission of short-wavelength  light20–22.

The human retina features three types, each of which is sensitive to a different spectrum: short (S)-, medium 
(M)-, and long (L)-wavelength lights. The human trichromatic mechanism is composed of the cone-contrast 
system and the opponent modulation system, which yield three pairs of mutually exclusive opponent categories: 
red-green (L − M), yellow-blue (S − (L + M)), and white-black (L + M). Colour perception in older adults has been 
investigated by assessing colour discrimination. Knoblauch et al.23 suggested that older observers are less able 
than are younger observers to discriminate colours on the yellow-blue opponent axis. Furthermore, yellow-blue 
sensitivity could be poorer than red-green sensitivity in older adults over the age of 40 years24. These results can 
be attributed to receptor (and post-receptor) dysfunctions linked to age-related changes in the neurons required 
to discriminate colour. Moreover, greater reductions in short-wavelength light transmission occurs with increased 
age, resulting in an increase in yellow-blue discrimination  threshold20.

Colour also provides top-down guidance to locate items in conjunction search  tasks8. Hence, in visual search 
tasks in which the target and the distractors have the same shape but are coloured differently—especially in 
yellow-blue opponent colours—the search performance of older observers may be worse than that of their 
younger counterparts. In short, older adults may show declines in bottom-up visual processing at the sensory 
level. However, in search tasks that require the yellow-blue discrimination, whether bottom–up processes may 
be insulated from age-related decline, or whether there is any change specifically associated with top-down 
attentional guidance, is less clear.

The present study aimed to explore whether colour cues influence visual attention among older subjects as 
gauged by a visual search task. Visual colour stimuli were defined on the basis of Derrington–Krauskopf–Lennie 
(DKL) colour  space25 to investigate the effect of colour based on the cone-contrast and opponent modulation 
systems. The colour attributes of the target and distractors were composed of the three channels: the red-green 
opponent (RG), yellow-blue opponent (YB), and white-black (WB) (Fig. 1a). Twenty-four younger observers, 
half of whom wore glasses with filters simulating the spectral transmittance of the aging human lens, while the 
other half did not, and 12 older observers underwent visual search testing involving both FS and CS, with and 
without distractors; hence, the present study elaborates on a prior investigation that reported an effect of colour 
on search performance among older individuals using only the FS  task26. For tasks without distractors in the 
current study, an item was presented at random locations on the display, and the observers responded whether 

Luminance (WB)
YB opponent 

RG opponent

+[S-(L+M)]

-[S-(L+M)]
+[L-M]

-[L-M]

a b

WB

RG

YB

FS 
- no distractors

FS 
- with distractors

CS
- with distractors

Figure 1.  (a) DKL colour space, (b) sample displays in each condition. CS conjunction search, DKL 
Derrington–Krauskopf–Lennie, FS feature search, L long-wavelength, M middle-wavelength, RG red-green, S 
short-wavelength, YB yellow-blue.



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21328  | https://doi.org/10.1038/s41598-020-78303-4

www.nature.com/scientificreports/

it was the target or not. For tasks with distractors, we added 49 items to the display, and the participants were 
instructed to judge whether a given target appeared on the display or not. In the FS condition, the target was 
differentiated from the distractor by a single colour feature (RG, YB, and WB; Fig. 1b). In the CS condition, the 
target differed from the distractor based on one of the aforementioned colour and shape features (Fig. 1b). RTs 
and accuracy in detecting targets were measured, and the search performance for all three groups were analysed 
according to colour conditions.

Results
To compare the search performance of the age groups, we performed separate three-way analyses of variance 
(ANOVA) of raw RT, z-transformed RT (zRT) and the number of errors under the FS and CS conditions with 
the within-subject factors of task (i.e., no-distractor and distractor), colour condition (i.e., WB, RG, and YB), 
and the between-subject factor of age group (i.e., younger, younger with glasses, and older). Since the primary 
aim of this study was to examine differences between age groups, only significant interaction effects involving 
group differences (i.e., task × age group, colour × age group, or task × colour × age group) were evaluated and are 
discussed here. Therefore, main effects of task and colour, as well as the task × colour interaction are not discussed.

Raw RT. For the FS tasks, we observed no significant three-way interaction (task × colour × age), and observed 
significant interaction between colour and age group (F(4, 65.95) = 5.18, p = 0.001, ηG2 = 0.039). An analysis of 
simple effects on the interaction revealed an effect of age for all colour conditions (WB: F(2, 33) = 23.8, p < 0.001, 
ηG

2 = 0.539; RG: F(2, 33) = 41.6, p < 0.001, ηG2 = 0.648; YB: F(2, 33) = 41.6, p < 0.001, ηG2 = 0.648), and an effect of 
colour for all age groups was observed (younger: F(1.99, 21.9) = 5.48, p = 0.012, ηG2 = 0.052; younger with glasses: 
F(1.96, 21.55) = 24.5, p < 0.001, ηG2 = 0.288; older: F(1.95, 21.49) = 31.0, p < 0.001, ηG2 = 0.267). Pairwise multiple 
comparison tests of colour conditions revealed responses under the YB condition to be significantly slower than 
under the WB (younger: p = 0.038; younger with glasses: p < 0.001; older: p < 0.001) and RG conditions (younger: 
p = 0.038; younger with glasses: p < 0.001; older: p < 0.001). For older group, responses to RG stimuli were slower 
than to WB stimuli (p = 0.041). The mean RTs for the tasks with and without distractors are shown in the upper 
panels of Fig. 2a,b, respectively.

For CS tasks, we observed a significant three-way interaction between task, colour and age group (F(2.31, 
38.1) = 5.81, p = 0.005, ηG2 = 0.061). To compare the search performance of the age group under each task type, 
we performed separate two-way ANOVA. For tasks without distractors, we observed significant interaction 
between colour and age group (F(2.75, 45.38) = 9.80, p < 0.001, ηG2 = 0.204). A simple effects analysis for this 
interaction revealed an effect of age for each colour condition (WB: F(2, 33) = 23.6, p < 0.001, ηG2 = 0.589; RG: 
F(2, 33) = 25.1, p < 0.001, ηG2 = 0.603; YB: F(2, 33) = 29.7, p < 0.001, ηG2 = 0.643), and an effect of colour at each 
age (younger: F(1.87, 20.52) = 19.9, p < 0.001, ηG2 = 0.408; younger with glasses: F(1.15, 12.6) = 42.7, p < 0.001, 
ηG

2 = 0.634; older: F(1.38, 15.16) = 34.8, p < 0.001, ηG2 = 0.578). Pairwise multiple comparison tests for colour 
conditions revealed responses under the YB condition to be significantly slower than under the WB (younger: 
p < 0.001; younger with glasses: p < 0.001; older: p < 0.001) and RG conditions (younger: p = 0.002; younger with 
glasses: p < 0.001; older: p < 0.001). Furthermore, the RG condition induced slower responses that did the WB 
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Figure 2.  Mean RTs and z-transformed RT for tasks without (a) and with distractors (b) under the FS condition 
for younger, younger-with-glasses, and older observers. Error bars indicate the standard error. RT reaction time, 
FS feature search, WB luminance, RG red-green, YB yellow-blue.
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condition (younger: p = 0.023, younger with glasses: p < 0.001; older: p = 0.005). For tasks with distractors, we 
observed significant interactions between age and colour (F(2.28, 37.6) = 6.51, p = 0.003, ηG2 = 0.138). For this 
interaction, a simple effects analysis revealed an effect of age for each colour (WB: F(2, 33) = 11.5, p < 0.001, ηG2 
= 0.412; RG: F(2, 33) = 17.9, p < 0.001, ηG2 = 0.521; YB: F(2, 33) = 14.8, p < 0.001, ηG2 = 0.472), and an effect of 
colour at each age (younger: F(1.42, 15.66) = 13.9, p < 0.001,ηG2 = 0.120; younger with glasses: F(1.05, 11.6) = 13.0, 
p = 0.004, ηG2 = 0.291; older: F(1.12, 12.36) = 12.6, p = 0.003, ηG2 = 0.333). Pairwise multiple comparison tests for 
colour conditions revealed that YB stimuli yielded slower responses than did the WB (younger: p < 0.001; younger 
with glasses: p = 0.006; older: p = 0.008) and RG stimuli (younger: p = 0.014; younger with glasses: p = 0.009; older: 
p = 0.008). For all ages, responses to RG stimuli were slower than to WB stimuli (younger: p = 0.032; younger 
with glasses: p = 0.020; older: p = 0.033). The mean RTs for tasks with and without distractors are shown in the 
upper panels of Figs. 3a,b, respectively.

Z‑transformed RT. Z-transformation controls for individual differences in the baseline  RT27 and confirms 
whether the differences between younger and older observers reflect a qualitative difference or simply age-
related slowing. Referring to this analysis, the overall mean of each individual was subtracted from the mean 
of each condition; the difference was then divided by the standard deviation of the condition means. zRT was 
calculated separately for the FS and CS conditions and followed by the performance of an ANOVA.

For the FS tasks, we observed no significant three-way interaction (task × colour × age), and observed a signifi-
cant interaction between colour and age group (F(3.47, 57.3) = 3.18, p = 0.025, ηG2 = 0.065). An analysis of simple 
effects on the interaction revealed an effect of age for the WB and YB colour conditions (WB: F(2, 33) = 4.25, 
p = 0.023, ηG2 = 0.108; YB: F(2, 33) = 7.04, p = 0.003, ηG2 = 0.110), and an effect of colour for all age groups 
was observed (younger: F(1.31, 14.36) = 5.91, p = 0.022, ηG2 = 0.135; younger with glasses: F(1.87, 20.56) = 21.3, 
p < 0.001, ηG2 = 0.454; older: F(1.48, 16.3) = 25.2, p < 0.001, ηG2 = 0.486). Pairwise multiple comparison tests 
of colour conditions revealed responses under the YB condition to be significantly slower than under the WB 
(younger: p = 0.004; younger with glasses: p < 0.001; older: p < 0.001) and RG conditions (younger: p = 0.007; 
younger with glasses: p < 0.001; older: p < 0.001). In the older group, responses to RG stimuli were slower than to 
WB stimuli (p = 0.054). The mean zRTs for the tasks with and without distractors are shown in the lower panels 
of Fig. 2a,b, respectively.

For CS tasks, we observed a significant three-way interaction between task, colour, and age group (F(3.45, 
56.94) = 3.34, p = 0.021, ηG2 = 0.023). To compare the search performance of the age group under each task type, 
we performed a separate two-way ANOVA. For tasks without distractors, we observed a significant interaction 
between age and colour (F(3.54, 58.45) = 3.91, p = 0.009, ηG2 = 0.056). A simple effects analysis for this interac-
tion revealed an effect of age for the WB and RG conditions (WB: F(2, 33) = 5.15, p = 0.011, ηG2 = 0.238; RG: F(2, 
33) = 5.91, p = 0.006, ηG2 = 0.264), and an effect of colour at each age (younger: F(1.84, 20.26) = 3.88, p = 0.040, ηG2 
= 0.086; younger with glasses: F(1.59, 17.45) = 14.5, p < 0.001, ηG2 = 0.318; older: F(1.77, 19.45) = 18.3, p < 0.001, 
ηG

2 = 0.261). Pairwise multiple comparison tests for colour conditions revealed that the YB condition induced 
slower responses than did the WB (younger with glasses: p = 0.001; older: p < 0.001) and RG conditions (younger 
with glasses: p = 0.001; older: p < 0.001). Responses in the younger group did not change among the colour 
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conditions. For tasks with distractors, we observed significant interactions between age and colour (F(3.35, 
55.26) = 4.50, p = 0.005, ηG2 = 0.165). For this interaction, a simple effects analysis revealed an effect of age for 
the YB condition (F(2, 33) = 5.63, p = 0.008, ηG2 = 0.254), and an effect of colour at each age (younger: F(1.39, 
15.27) = 10.9, p = 0.003, ηG2 = 0.443; younger with glasses: F(1.42, 15.63) = 19.9, p < 0.001; ηG2 = 0.557; older: 
F(1.45, 15.9) = 20.0, p < 0.001, ηG2 = 0.568). Pairwise multiple comparison tests for colour conditions revealed 
the YB condition to be slower than the WB (younger: p = 0.001; younger with glasses: p = 0.001; older: p < 0.001) 
and RG conditions (younger with glasses: p = 0.002; older: p = 0.005). Responses under the RG condition were 
slower than under the WB condition (younger: p = 0.034; younger with glasses: p = 0.008; older: p = 0.008). The 
mean zRTs for the tasks with and without distractors are shown in the lower panels of Fig. 3a,b, respectively.

Errors. Similarly, we performed a mixed ANOVA using task, colour and age as factors to examine the num-
ber of errors made in the FS and CS tasks. For the FS tasks, we observed no significant interactions for either 
task type. For CS tasks, we observed a significant three-way interaction between task, colour and age (F(2.48, 
40.91) = 7.02, p = 0.001, ηG2 = 0.072). To compare the search performance of the age group under each task type, 
we performed separate two-way ANOVA. For the tasks without distractors, we observed significant interac-
tions between age and colour (F(3.16, 52.11) = 3.52, p = 0.020, ηG2 = 0.092). A simple effects analysis following 
a significant interaction between age and colour revealed an effect of age at YB (F(2, 33) = 3.66, p = 0.037, ηG2 = 
0.182) and an effect of colour among younger participants with glasses (F(1.64, 18.05) = 4.18, p = 0.039, ηG2 = 
0.082) and older participants (F(1.32, 14.51) = 6.75, p = 0.015, ηG2 = 0.258). However, pairwise multiple compari-
son tests for colour conditions revealed no significant differences between colour conditions for either younger 
observes with glasses or older observers. For tasks with distractors, we found a significant interaction between 
age and colour (F(2.37, 39.05) = 8.78, p < 0.001, ηG2 = 0.200). A simple effects analysis revealed effects of age at YB 
(F(2, 33) = 10.23, p < 0.001, ηG2 = 0.383) and an effect of colour among younger observers with glasses (F(1.71, 
18.83) = 12.00, p < 0.001, ηG2 = 0.228) and older participants (F(1.04, 11.47) = 12.93, p = 0.004, ηG2 = 0.371). Pair-
wise multiple comparison tests for colour conditions revealed that both younger participants with glasses and 
older observers made more errors under the YB than under the WB condition (younger with glasses: p = 0.007; 
older: p = 0.012) and more errors under the RG condition than under the WB condition (younger with glasses: 
p = 0.007; older: p = 0.043). Only older observes made more errors under the YB condition than under the RG 
condition (p = 0.012). The mean number of errors per 30 trials for CS tasks with and without distractors is shown 
in Fig. 4a,b, respectively.

Additional experiment using non‑equivalent luminance contrast. We performed an additional 
experiment for younger and older participants to investigate search performance under the chromatic colour 
conditions with non-equivalent luminance contrast (only CS tasks). Under the non-equivalent luminance con-
dition, we observed no significant interactions between age and colour for either task type (see Supplementary 
Fig. S2). We further compared RTs between the additional experiment (black background: high contrast) and 
the first experiment (grey background: low contrast) by three-way ANOVA using age, background type, and 
colour as factors. For tasks without distractors, there was a significant interaction between age, background type, 
and colour condition (F(1, 44) = 12.64, p < 0.001, ηG2 = 0.063). Among younger observers, there were no differ-
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ences between background types under either colour condition; however, among older observers, a significant 
interaction was observed (F(1, 22) = 23.69, p < 0.001, ηG2 = 0.193). There was a significant difference between 
background types only under the YB condition (see Supplementary Fig. S3).

For tasks including distractors, we observed a significant interaction between age, background type, and 
colour (F(1, 44) = 7.15, p = 0.011, ηG2 = 0.045). For both younger and older observers, there were significant 
interactions between background type and colour condition (younger: F(1, 22) = 4.60, p = 0.043, ηG2 = 0.011; 
older: F(1, 22) = 7.92, p = 0.006, ηG2 = 0.112). Under the YB condition, RTs were significantly slower for the grey 
background than for the black background among older observers, but not among younger observers (see Sup-
plementary Fig. S4).

Discussion
The present study aimed to explore the effect of colour on visual search performance among older individuals. 
For FS tasks, we observed no significant interaction between age, task type (with and without distractor) and 
colour, but a significant interaction between age and colour was noted. Regardless of the presence or absence of 
distractors, RTs under the YB condition were significantly slower than under the WB and RG conditions among 
younger observers and younger observers with glasses whose lenses emulated the aging human lens. A significant 
difference in RTs to WB and RG stimuli was only found for older observers. RTs in older observers were slowest 
under the YB condition and fastest under the WB condition.

When the target and the distractor dimensions differed only in colour, especially when colours in the 
S − (L + M) direction (YB colours) were used, we observed a significant difference in RTs among chromatic 
colour conditions (RG and YB) for older participants and younger participants wearing the glasses as predicted. 
However, we observed a significant difference in RTs between the RG and YB conditions, even among younger 
participants. Previous research has associated the S-opponent system with a longer response latency than that 
of the L/M-opponent  system28,29. Smithson and  Mollon30 confirmed this finding psychophysically by observing 
a 20–30 ms-difference between the L/M-opponent and S-opponent systems. Exploring the effect of chromatic-
ity on RT for a variety of stimulus conditions, O’Donell et al.31 reported that RTs were strongly influenced by 
stimulus size when the chromatic stimulus is modulated along the S − (L + M) pathway. Furthermore, Lindsey 
et al.32 suggested that visual searching for reddish targets is much easier than for purplish targets, which induce 
greater excitation of the S cones. These studies suggest the differences between the temporal responsiveness of 
the L − M or S − (L + M) opponent mechanism.

RTs to RG stimuli were significantly slower than WB stimuli for older observers. This result can be attrib-
uted to the fact that the chromatic sensitivities are not uniform throughout the  lifespan33. Both the RG and YB 
discrimination thresholds gradually increase across the life  span20,34. In our experiment, to ascertain if the dif-
ferences between younger and older observers reflect the reduction of transmittance of short-wavelength light, 
we used glasses with filters simulating the spectral transmittance of an aging human  lens35. Previous research 
using these glasses has indicated that the yellowing of the human lens strongly influences reaction time for 
colour  targets36. However, the RTs of younger participants with aging filters did not quantitatively coincide with 
those of the elderly participants. RTs are markedly slower for older participants than for younger participant 
wearing glasses, and is particular susceptible to the influence of  colour36. The current results also indicated that 
search performance in the FS task was more affected by colour conditions in older participants than in younger 
participants wearing glasses.

For older participants, RTs were slower in the CS task than in the FS task. Trick and  Enns37 reported that older 
observers responded more slowly than younger observers under the CS condition, suggesting that older observ-
ers may be less capable than younger observers to voluntarily shift their attention between items. Scialfa and 
 Joffe16 indicated that age-related deficits in RTs were greatest in CS tasks and target-absent trials. Furthermore, 
Muller-Obhring38 mentioned that while older adults can capitalize on early parallel stages of visual information 
processing, age-related limitations arise at later serial processing stages; this conclusion further implies a require-
ment for self-guided selective attention and executive control. In accordance with these previous research studies 
on visual search for the conjunction of two  features13,15–17,37, the results of our study suggest that the age-related 
decline in CS task performance is particularly robust.

For CS tasks with and without distractors, we observed significant interactions between age and colour for raw 
RTs. For all groups, RTs were slowest under the YB condition and fastest under the WB condition. However, the 
differences among colour conditions were greater for younger participants with glasses than for younger observ-
ers, and were much greater for older observers than for their younger counterparts. Among younger observers, 
RTs in the CS task with distractors differed between the RG and YB conditions by approximately 170 ms; this 
difference increased to 1000 and 2400 ms among younger observers with glasses and older observers, respectively.

For z-transformed RTs that controlled for individual differences, we observed significant interactions between 
age and colour under the task without distractors. For the younger group, RTs did not change among the colour 
conditions, however RTs in younger participants with glasses and older group were slowest under the YB con-
dition and fastest under the WB and RG conditions. In the tasks with distractors, RTs in younger participants 
were slower for chromatic colour stimuli (RG and YB) than for achromatic stimuli (WB). Younger participants 
with glasses and the older group showed the slowest responses under the YB condition, followed by the RG, 
and WB conditions.

Under the CS condition, the target presented was a square in the target colour, and the distractor was either 
a pentagon in the target colour or a square in a non-target colour (Fig. 1b). In this task, a contrast in luminance 
between the background and stimuli is assumed to be an effective cue for detecting contours. Employing a visual 
search task that used shape as a feature under conditions of high- and low-luminance contrast between the back-
ground and stimuli, Takahashi et al.39 reported RTs to be higher under the low-contrast condition than under 
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the high-contrast condition. In addition, Tollner et al.40 adopted a visual search task that required participants 
to respond to the orientation of a line within the target under three contrast conditions (low, middle, and high); 
their study found that RTs increased as contrast decreased. Furthermore, using a dual task paradigm in which 
the observer was required to detect peripheral test stimuli while performing an attention task, Uchikawa et al.41 
reported that the chromatic RG and YB directions required greater attentional resources than the achromatic 
WB direction; as in the present study, Uchikawa et al.41 created peripheral stimuli based on the L + M, L − M, 
and S − (L + M) axes. In the present experiment the target colours under the chromatic colour conditions had the 
same luminance as the background (equivalent luminance contrast). This method may have rendered the detec-
tion of target’s contour more difficult under the chromatic condition than under the achromatic condition. This 
supposition prompted us to perform additional experiments involving both younger and older participants to 
investigate search performance under the chromatic colour conditions with non-equivalent luminance contrast: 
we only observed significant differences in RTs to RG and YB stimuli among older participants, suggesting that 
older individuals experienced difficulty in detecting the target under the YB condition due to a decreased ability 
to differentiate two colours on the S − (L + M) axis.

Under the CS task, younger participants with glasses showed slower responses under the YB condition than 
under the RG condition, which was similar to the results of the older group. The lens filter, which simulated 
the yellowing of the aging human lens, modifies the colour difference between the colour target and the back-
ground on the  retina36. This modification lengthened the RTs of younger observers with glasses. RTs under the 
YB condition in the CS tasks were markedly slower for older observers due to the age-related decline in search 
performance. This was especially apparent when visual selection rendered the discernment of the target from 
the surrounding distractors more  difficult10. Our stimuli in the chromatic condition, as aforementioned, were 
specified at equivalent luminance. Hence, participants needed to detect the target shape using only chromatic 
information. In the chromatic CS tasks, more attentional resources were required to discriminate the edge of 
the target from the background colour, resulting in decreased performance, particularly under the YB condition 
(i.e. for S-cone isolating stimuli).

Concerning the number of errors, we observed significant differences in tasks containing distractors among 
colour conditions in the younger observes with glasses and the older group. The latter had the highest number 
of errors involving large inter-subject variability under the YB condition, followed by the RG and WB conditions 
in that order. By contrast, among younger observers wearing glasses, the number of errors did not differ between 
the RG and YB conditions. This may have been due to changes in search strategy across age. Coyne et al.42 indi-
cated that older observers are more likely to adopt an impulsive search strategy than are younger observers. The 
difference in the number of errors between the younger observers wearing glasses and their older counterparts 
may thus be attributed to the impulsivity and individual differences among the latter.

We considered the search performance in the CS task for older observers both in terms of top-down and 
bottom-up attentional processing. Since Madden et al.43 reported that younger adults benefit more from distrac-
tor homogeneity in CS tasks and achieve faster RTs than do older adults, it has been assumed that older adults 
experience difficulties in both perceptual grouping (bottom-up processes) and the inhibition of distractors (top-
down processes). Most forms of visual search represent the combined influence of top-down and bottom-up 
attentional processing. Attentional guidance can be either top-down (i.e., can depend primarily on the observer’s 
goals and knowledge of the task structure) or bottom-up (i.e., can be relatively more determined by the local 
properties of the visual display)44. Top-down attention is essential in complex search tasks such as the CS condi-
tion. In contrast, when the target differs from the distractors in a unique feature, such as in the FS condition, the 
target visually pops out of the display visually in a bottom-up (stimulus-driven) manner. However, Anderson 
et al.45 discussed search performance in the CS condition in terms of the bottom-up process; they argued that the 
bottom-up parsing of visual information into sub-groups is affected by the discriminability between the target 
and the distractors within each dimension defining the target. In particular, they demonstrated that differences 
in the colour of the target and distractors are critical. Thus, the presence of a colour cue may enhance the bottom-
up process whereby elements of visual information are parsed into sub-groups. Furthermore, Anderson et al.46 
provided evidence for a two-stage framework for the top-down guidance of attention under the CS condition 
and proposed that visual displays are initially parsed into colour feature-based groups (i.e., a process modulated 
by the presence of an initial cue to the colour of target). Subsequently, searching is directed to other features of 
the colour-based groups. Hence, cues to other features of the target are only effective at the second stage (i.e., 
the search process is re-configured in the CS condition based on the presence of top-down cues). This two-stage 
framework supports the notion that, in CS tasks with distractors, observers initially carry out bottom-up parsing 
of the visual information into colour-based  groups46. This process is affected by the discriminability between 
the target and the distractors. Subsequent searching is directed to the shape feature of the colour-based groups. 
Hence, for older observers, the search process in the YB condition was affected by deficiencies in chromatic 
colour discrimination (i.e., the colour-based group could not be adequately constructed). Participants were 
consequently required to rely on shape features in the next stage of searching. Search performance was further 
affected by low luminance contrast, which confounded the detection of the edges of a shape in the present study. 
However, we should note that distinguishing a deficit in executive control from a more basic mechanism, such 
as that of perceptual speed, is difficult.

The present study is subjected to some limitations. First, although the older participants had normal colour 
vision, the older participants in this study did not undergo medical evaluations for visual field, peripheral colour 
vision, or light scatter, nor were they screened for eye diseases with ophthalmological assessment. Hence, we can-
not differentiate the effects of eye diseases that may affect the retina from the gradual decline in vision ascribed to 
normal  aging20. The prevalence of many ocular diseases increases substantially with age: e.g., age-related macular 
degeneration, glaucoma, diabetic retinopathy, optic neuropathies, etc. Vision-limiting media opacities such as 
age-related cataracts, irregularities of the cornea or sclera are also more prevalent among older  populations19. 
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Furthermore, intraocular light scattering induced by age-related cataracts results in a veiling illuminance super-
imposed upon the retinal image and a concomitant reduction of retinal  contrast47,48. The ocular diseases, char-
acteristic of older adults, generate variability in colour perception. For instance, Paramei and  Oakley49 suggested 
that there is greater variability in colour detection thresholds with an increase in scatter among individuals over 
the age of 60 years. Such distribution issues in the colour perception of older observers may have influenced 
the current results. This limitation may have been exacerbated by our relatively limited sample. Future studies 
should take these issues into consideration by emphasizing the recruitment of individuals who represent the 
average status of older populations without ocular disease. Furthermore, Berine et al. indicated that the short 
wavelength-sensitive function in the periphery declines with increasing age from the detection  tasks50. In order 
to observe the effects of declined visual acuity and short-wavelength sensitive function in peripheral vision, 
ophthalmological assessment for older participants and accurately controlled presentations of stimuli are needed.

The present study may have further been limited by the fact that the stimuli used in the RG and YB conditions 
were defined with a specific contrast in the DKL colour space, and not across the full range of colour contrast. 
It is thus possible that the presently reported results depend on contrast level. Confirmation of this possibility 
warrants further investigation. However, the results of the present study provide preliminary evidence that, 
for older observers, visual search performance is affected by impairments in chromatic colour discrimination, 
especially of the S-cone isolating stimuli.

Methods
Participants. The present study included 12 younger observers (mean age ± SD 21.9 ± 0.79 years; age range 
21–23 years), 12 younger observers (mean age ± SD 22.4 ± 1.08 years; age range 21–24 years) who wore glasses 
with filters simulating the spectral transmittance of the aging human lens, and 12 older observers (mean age 
70.7 ± 3.47 years; age range 66–77 years). The additional experiment included 12 younger observers (mean age 
22.3 ± 1.23 years; age range 21–25 years) and 12 older observers (69.1 ± 4.38 years; age range 64–79 years). The 
younger observers were recruited from universities, and the older observers were residents from nearby commu-
nities. All participants had normal or corrected-to-normal vision acuity (20/32 or better) assessed by Freiburg 
Visual Acuity  Test51, and normal color vision assessed using Ishihara pseudoisochromatic  plates52. Further, the 
older participants were also screened with the Mini-mental State Examination (MMSE), and none of them 
showed early symptoms of dementia. Written informed consent was obtained from all participants, and the 
experiments was performed in accordance with the Declaration of Helsinki and with approval from the Ethics 
Committee of Kagawa University (28-005, 01-003). All individuals participated in our experiment voluntarily 
and received a gift certificate as compensation.

Apparatus. We conducted the experiments in a dark laboratory room under D65 ceiling lighting. The visual 
stimuli were presented on a monitor (EIZO, ColorEdge CX 270, 1920 × 1200 resolution), which was calibrated 
for a white reference point (x = 0.3153, y = 0.3226, Y = 98.21 cd/m2) and the Adobe RGB colour gamut. In addi-
tion, colour temperature was set to 6500 K, and the gamma value of the monitor was set to 2.2 using a colorim-
eter (EIZO, EX2). The heads of the participants were fixed using a chin rest, and the viewing distance between 
the monitor and the observers was fixed at 50 cm. Twelve younger participants were asked to wear glasses (Itoh 
Optical Industrial Co., Ltd., SeniorView™) with filters simulating the spectral transmittance of the aging human 
 lens35. The normalized reflectance of this filter measured by the spectrometer (StellarNet Inc., BLACK-Comet 
UV–VIS) is illustrated in Supplementary Fig. S5. We controlled the experiment program using MATLAB (ver-
sion 9.4.0.813654, Mathworks, USA) and Psychtoolbox (version 3.0.14, http://psych toolb ox.org).

Stimuli. As in our prior  study26, all colour stimuli were designed based on the DKL colour representation. 
The DKL colour  representation25,53,54, an extension of the MacLeod–Boynton chromaticity  diagram55, is similar 
to the cone-contrast space, which is based on a model of early visual processing. This model focuses on responses 
to the background and deviations from the background, reflecting the fact that the DKL colour space represents 
colour contrasts among stimuli; i.e., colour is defined by modulations along three different cardinal axes. First, 
the L-, M-, and S-cones are modulated along the achromatic direction such that the contrast to the background 
is identical (i.e. ΔL/Lb = ΔM/Mb = ΔS/Sb, where ΔL, ΔM, and ΔS represent the differences between each stimulus 
and the background, respectively; and  Lb,  Mb, and  Sb, indicate the L-, M-, and S-cone excitations for the back-
ground colour). The second direction expresses a modulation along an RG axis to maintain constant excitation 
of the S-cones—i.e. ΔS = 0—and vary that of the L and M cones such that their sum remains constant. Thus, 
this direction is referred to as an RG isoluminant  axis53. Only the S cone is modulated along the third direction: 
ΔL and ΔM = 0. Therefore, this direction is referred to as an S-cone isoluminant  axis53. The two chromatic axes 
intersect at the grey point and span an isoluminant plane through the grey point. All lights in this plane have the 
same luminance as defined by the sphotopic luminosity  function56.

The colour stimuli are often defined in terms of the responses of a set of hypothesised post-receptor mecha-
nisms that are isolated by these cardinal colour  modulations25,53. The three directions represent two opponent col-
our mechanisms and an achromatic mechanism (see Fig. 1a). One of the two opponent axes is a reddish–greenish 
opponent system that considers the weighted difference between the differential L-and M-cone excitations; the 
other is a yellow-violet opponent system that considers the weighted difference between the differential S-cone 
and the sum of the differential L- and M-cone excitations. The achromatic axis sums up the weighted differential 
L- and M- cone signals. These mutually orthogonal directions are referred to as ‘L − M’, ‘S − (L + M)’, and ‘L + M’25. 
In this paper, we defined the two chromatic directions and achromatic direction of our stimuli as follows: red-
green axis, ‘L − M’; yellow-violet axis, ‘S − (L + M)’; achromatic axis, ‘L + M’.

http://psychtoolbox.org
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To define a colour stimulus based on the DKL colour model, we measured the tristimulus XYZ values of R, G, 
B, and the white point, which represents the limits of our display, using a luminance and colour metre (KONICA 
MINOLTA, CS-150). We translated the tristimulus XYZ values into amounts of L-, M-, and S-cone excitation 
based on the cone fundamentals of Hunt–Pointer–Esteves (normalised to illuminant D65)57. ΔL, ΔM, and ΔS 
were then calculated using the following equations: ΔL = (Ls − Lb)/Lb, ΔM = (Ms − Mb)/Mb, and ΔS = (Ss − Sb)/Sb. 
The subscript ‘s’ in each equation denotes the stimulus; and subscript ‘b’, the background colour. Lastly, the DKL 
values were calculated according to the cone-contrast weights defined by  Brainard53.

The endpoints of the L − M and S − (L + M) axes were determined by the available monitor gamut. Increments 
and decrements along the L − M axis were 0.21 (+ [L − M]) and − 0.16 (− [L − M]) for the L- and M-cone con-
trasts, respectively. Positive modulations along the S − (L + M) axis were 0.0 for the L- and M-cone contrasts and 
0.89 for the S-cone contrast (+ [S − (L + M)]). Negative modulations were 0.0 for the L- and M-cone contrasts and 
− 0.43 for the S-cone contrast (− [S − (L + M)]). The CIE 1931 coordinates of the neutral grey background were 
x = 0.3132 and y = 0.3091, and the luminance value was 49.26 cd/m2. Additionally, we used black (Y = 1.135 cd/
m2) and white (Y = 97.40 cd/m2) stimuli modulated along the luminance (L + M) direction. The measured values 
of the stimuli are shown in Supplementary Table S1.

Furthermore, we performed an additional experiment with the luminance of the background set to 1.135 cd/
m2. Two chromatic colour conditions (YB and RG conditions) were performed with and without distractors (see 
Supplementary Fig. S1).

Procedure. Participants performed FS and CS tasks under the three colour conditions: the YB, in which 
− [S − (L + M)] vs. + [S − (L + M)] stimuli appeared on the monitor; RG, in which + [L − M] vs. − [L − M] stimuli 
appeared on the monitor; and WB, in which white vs. black were displayed. In all tasks, the target colour was 
− [S − (L + M)] in the YB condition, − [L − M] in the RG condition, and white in the WB condition. In FS tasks, 
the target was defined by colour only, and squares were presented in the target or non-target colour. In CS tasks, 
the target was defined by colour and shape, and squares in the target colour, squares in the non-target colour, and 
pentagons in the target colour were presented. In all conditions, the target was a square with the target colour. 
Each condition included trials with and without distractors. For tasks without distractors, only one item (the 
target or the distractor) always appeared on the monitor (Fig. 1b). This item was presented anywhere in the area 
of 16.6° × 16.6°. For the CS and FS tasks with distractors, the target was presented in a random location along 
with 48 distractors (Fig. 1b).

The participants performed the search task under 12 conditions, which consisted of the search type and the 
presence or absence of distractors under each colour condition [two search types: FS and CS tasks × two condi-
tions: without distractors and with distractors × three colour conditions: WB, RG, and YB]. The participants 
performed the FS task and the CS task without distractors followed by the same tasks with distractors. The order 
of presentation of the colour conditions was counterbalanced across trials. The target was displayed as a square 
patch, and distractors appeared as square or pentagonal patches of 1.83° × 1.83° in size. Under each condition, 
a target appeared in half of the trials, and the participants were instructed to determine whether a target was 
present as quickly and accurately as possible using a keyboard. Each condition included 30 trials without dis-
tractors and 60 trials with distractors. Prior to each condition, the participants completed 15 practice trials. A 
fixation point displayed at a visual angle of 0.69° in diameter appeared for 1000 ms between trials. Furthermore, 
visual feedback (‘Error!’) for incorrect responses was presented for 2000 ms at the centre of the monitor. Each 
participant completed all tasks, including the practice trial, within 90 min; the participants were allowed 5-min 
breaks to lessen the effects of fatigue.

Statistical analyses. Results are presented as means ± SEM. All response values lying more than three 
standard deviations above or below the mean for a given participant were excluded. The distributions were sys-
tematically tested for normality before the appropriate tests were applied. Parametric tests (repeated-measures 
ANOVA, Greenhouse–Geisser’s adjustment to correct for violating the assumption of sphericity with repeated-
measures ANOVA, and Shaffer’s modified sequentially rejective procedure for multiple comparisons) were 
performed using R-open source software, version 3.4.1 (R Development Core Team). A p-value of < 0.05 was 
considered significant.

Data availability
All data generated or analysed during this study are included in this published article. The datasets generated dur-
ing and/or analysed during the current study are available from the corresponding author on reasonable request.
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