
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21876  | https://doi.org/10.1038/s41598-020-78224-2

www.nature.com/scientificreports

Dynamics of social network 
emergence explain network 
evolution
Caleb Pomeroy1, Robert M. Bond2, Peter J. Mucha3 & Skyler J. Cranmer1*

Networked systems emerge and subsequently evolve. Although several models describe the process 
of network evolution, researchers know far less about the initial process of network emergence. Here, 
we report temporal survey results of a real-world social network starting from its point of inception. 
We find that individuals’ ties undergo an initial cycle of rapid expansion and contraction. This process 
helps to explain the eventual interactions and working structure in the network (in this case, scientific 
collaboration). We propose a stylized concept and model of “churn” to describe the process of network 
emergence and stabilization. Our empirical and simulation results suggest that these network 
emergence dynamics may be instrumental for explaining network details, as well as behavioral 
outcomes at later time periods.

A host of social, biological, and technological systems emerge and subsequently evolve as  networks1–6. Network 
models parsimoniously represent the evolutionary dynamics of these complex systems. Simple, lower-order 
processes that govern tie formation and dissolution, such as transitivity, reciprocity, fitness, homophily, and 
preferential  attachment7–10, in turn generate important structural features like transitive triplets, motif distribu-
tions, and skewed degree  distributions11–13. In human populations, these processes help to explain patterns of 
inequality, health outcomes, and cooperative  stability14–19, among others.

The origins of social networks, however, remain elusive. New social environments, such as geographic reloca-
tion or the inceptions of new jobs and educational programs, give rise to nascent, previously unobserved social 
networks. In an ideal typical case, new social networks emerge when unfamiliar individuals enter a new situa-
tion and form relationships for the first time. For example, a university’s first-year orientation leads to the first 
interactions between most incoming students. Students’ social networks might emerge gradually according to 
well-known processes of constant growth, e.g. Ref. 9. Alternatively, initial interactions might differ from later evo-
lutionary periods marked by more stable relationships, in which case tie formation behavior varies across time.

Here, we investigate the latter network emergence case, which poses a greater challenge to extant evolutionary 
models and theory. We propose that a broad cross-section of emerging networks undergo a process of “churn,” 
marked by an expansion and contraction of ties. As networks emerge, individuals initially form several previ-
ously unobserved ties. Many of these initial ties eventually dissolve as individuals settle into relatively stable sets 
of relationships. Because network evolution depends on previous network  states20, the distribution of ties that 
results from this churn process might help to explain the network’s subsequent evolution. If so, an individual’s 
churn experience could provide expectations about future outcomes, which is important because social networks 
influence phenomena as diverse as academic  success21,22, voting  behavior23, and cognitive  health24,25.

Results
To examine the concept of churn, we fielded a daily survey in a real-world social setting that collected granular 
data on the network emergence process. A key advantage of this survey was the observation of the network from 
the point of inception, which is often difficult to observe in nature. In the summer of 2018, 76 individuals under-
took a four-week training program in a geographically secluded location in North America. Participants were 
housed together, and the schedule included both structured daily workshops and unstructured social time. Indi-
viduals ranged from graduate students to university faculty members and professional researchers from at least 
22 countries. We asked participants to report the other program participants with whom they interacted each 
day—including the time duration of those interactions – from day 1 through 26, the final day of the program. 
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Further, the program included a mandatory group research project designed to cumulate in a co-authored 
scientific paper due one year later. Therefore, in addition to the daily interaction network, the data include a 
behavioral measure of scientific collaboration during and after the summer program. Importantly, only 1.1% of 
possible dyadic pairs knew each other prior to the program. The data thus describe the emergence and evolution 
of new, previously unobserved social and scientific collaboration networks in a fixed population of scientists.

First, we investigate patterns of interaction over time. If the network emerges gradually according to constant 
growth processes, then the network emergence process would be consistent with extant models. However, if 
patterns of interaction in early periods differ substantially from later periods, then extant models are unlikely to 
explain network emergence. We apply Geweke’s diagnostic to the network’s density over time, which uses a 
standard Z-score, z = X̄1−X̄2√

var(X1)+var(X2)
 , to test for the equality of means between two segments of a Markov 

 chain26. We find a significant change in density after day 6 and therefore treat days 1–6 and days 7–26 as the 
churn and post-churn periods, respectively. Figure 1(A) displays higher mean, median, and variance in reported 
tie counts during the churn period (shaded grey) compared to the post-churn period (t-test: x̄1:6 = 6.21 , 
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Figure 1.  Interperiod differences. (A) The churn period (shaded grey) displays higher mean, median, and 
variance of ties. The figure counts ties from the perspective of alters. For example, if one individual reports one 
tie to three alters, the ego has three ties but the alters each have one tie. The plot displays the latter number. 
(B) The churn period displays higher counts of mutually reported (i.e. reciprocated) ties and closed triads. We 
assess whether mutuality and transitivity in the network are different from chance using a conditional uniform 
graph  test27. The results show that levels of mutuality and transitivity are present at statistically significant rates 
( p < .05 ), with the exceptions of mutuality on days 23 and 26. (C) Time spent together increases over time. 
(D) Dyads who reported at least one tie during the post-churn period, plotted according to whether that dyad 
reported a tie during the churn phase. The left panel displays density normalized counts of ties reported during 
the post-churn period. The right panel displays density normalized hours spent together during the post-churn 
period.
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x̄7:26 = 2.47 , p < .01 , t = 24.46 ; Mood’s test: x̃1:6 = 6 , x̃7:26 = 2 , p < .01 , χ2 = 469.63 ; F-test: s21:6 = 9.78 , 
s27:26 = 2.98 , p < .01 , F = 3.28 ). Further, these differences in interactions appear to be a network-wide phenom-
enon. Figure 1(B) reports temporal counts of mutually reported ties and closed triads. Churn period ties are 
highly reciprocal and clustered, which points to an initial process of participants meeting other participants at 
a rate substantially higher than they sustain in the future. Naturally, these differences suggest a temporal change 
in the tie generating process.

Temporal differences in tie counts, mutuality, and clustering reveal important variation in tie formation behav-
ior, but these statistics do not necessarily capture tie strength or durability. Figure 1(C) displays the distributions 
of interaction frequency over time. Mean time spent together increases (t-test: x̄1:6 = 24 mins, x̄7:26 = 61 mins, 
p < .01 , t = 3.65 , comparing the means of daily means), which suggests that individuals settle into more mean-
ingful relationships over time. Further, Fig. 1(D) plots counts of dyads who met during the churn period and in 
turn reported a post-churn tie compared to dyads who did not meet during the churn period but later reported 
a post-churn tie. The left panel illustrates that dyads who met during the churn period report higher numbers 
of subsequent interactions compared to dyads who did not meet during the churn period (t-test: x̄tie = 3.20 , 
x̄no tie = 2.08 , p < .01 , t = 8.91 ; KS test: p < .01 , D = .20 ; Mood’s test: x̃tie = 2 , x̃no tie = 1 , p < .01 , χ2 = 40.83 ). 
The right panel illustrates that dyads who met during the churn period report more time spent together during 
the post-churn period (t-test: x̄tie = 153 mins, x̄no tie = 85 mins, p < .01 , t = 6.10 ; KS test: p < .01 , D = .14 ; 
Mood’s test: x̃tie = 62 mins, x̃no tie = 41 mins, p < .01 , χ2 = 11.77 ). These results suggest that dyads who met 
during the churn period in turn display greater durability and strength of interaction during the post-churn 
period relative to dyads who first met after the churn period. These descriptive results indicate that tie formation 
behavior and meaningfulness of interaction varies across the churn and post-churn periods.

Next, we examine whether these differences are important for the network’s evolution. If the churn period 
fails to explain variance in later evolutionary periods, then we can ignore the churn process. To model the net-
work’s evolution, we use a temporal extension of the exponential random graph model ([T]ERGM). ERGMs 
are a popular family of inferential network models that, in the most basic form, model the probability of a tie 
in an outcome network as a function of exogenous (e.g. nodal attributes) and endogenous (e.g. homophily) 
 parameters28–30. In the cross-sectional case (i.e. a single outcome network at one point in time), the ERGM 
treats the outcome network as a single multivariate observation and estimates the specified parameters via 
maximum likelihood. The TERGM is an extension of the ERGM for longitudinally observed networks in discrete 
 time31. The TERGM defines the probability of a network at time t as a function of covariates at time t, as well as 
dependencies on networks in previous time periods, and then pools estimates over all time periods to compute 
the probability of the time series of  networks32. We use maximum pseudolikelihood to estimate the parameters 
with bootstrapped confidence  intervals33. The coefficients can be interpreted as the log-odds of forming a tie, 
akin to logistic regression coefficients.

Figure 2(A) presents the results of two TERGMs fitted to the post-churn period (i.e. days 7 through 26). In 
addition to dyadic interactions on the day (i.e. an “edges” term, omitted for ease of visualization), the models 
contain structural and homophily-based variables that often influence network evolution. In the models, in-two-
stars are motifs in which directed ties exist from nodes j and k to node i, but no tie exists between j and k, which 
provides a measure of  popularity30. Out-two-stars are motifs in which directed ties exist from node i to nodes j 
and k, but no tie exists between j and k, which provides a measure of sociality. Four-cycles model the presence 
of “square” motifs, namely a cycle of directed ties ij, jk, kl, and li. The geometrically weighted edgewise shared 
partners (GWESP) term captures triadic closure (i.e. clustering) in the network. The homophily terms capture 
the propensity for ties to form between two individuals ij who are both male (or non-male), American (or non-
American), and white (or non-white),  respectively34. The model’s “memory” term includes all ties present and 
absent in the previous day, which accounts for tie autoregression and temporal stability in the network’s ties. 
Finally, the first model includes ties observed during the churn period as a predictor (our primary parameter of 
interest), whereas the second model omits this information.

The results indicate that, on average, dyads who met during the churn period are 3 times more likely to 
report a tie during the post-churn period [ exp(1.12) = 3.06 ]. The coefficients on other model predictors do not 
appreciably change with the addition of churn ties as an explanatory variable. This stability suggests that churn 
ties help to explain variance independent of traditional tie formation predictors. This information would oth-
erwise be unavailable had the network been observed only after participants’ initial interactions. Furthermore, 
the coefficient on the model’s memory term varies little with the addition of churn ties. This suggests that churn 
ties explain variance beyond the simple presence of tie autoregression.

Although these results suggest that churn ties help to explain the network’s evolution, a natural question is 
whether these churn ties explain disproportionate variance in subsequent tie formation, relative to ties observed 
in any given period of the program. In the SI, Tables S3-S4 report evidence that churn ties explain disproportion-
ate variance in subsequent tie evolution. When tie weights contain raw counts of interactions, each churn tie in 
a given dyad displays a larger log-odds coefficient than ties observed during any given period that precedes a 
wave of the interaction network, that is, the observed network at time t (0.54, 95% CI [0.48, 0.58] vs. 0.33, 95% 
CI [0.30, 0.37]; z = 6.67 ). When tie weights instead contain counts of interactions normalized by the number 
of waves of interaction, the coefficient on all ties becomes larger than the coefficient on churn ties (3.22, 95% 
CI [2.90, 3.50] vs. 5.49, 95% CI [4.91, 6.25]; z = 6.03 ). However, this result implies that each churn tie explains 
3.22/5.49 = 59% of subsequent interaction tie formation. Thus, regardless of transformation, ties observed in 
the first six days of the program alone in turn explain the majority of subsequent tie formation.

These results indicate that the churn process helps to explain the interaction network’s evolution. However, 
social networks also powerfully influence individuals’ outcomes beyond daily interactions. We next examine 
whether the churn process is related to subsequent behavioral outcomes among participants, particularly their 
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Figure 2.  Inference and simulations. (A) TERGM results indicate that churn ties help to explain the interaction 
network’s evolution over days 7 through 26. The plot omits the model’s edges term for ease of visualization. (B) The 
evolution of the scientific collaboration network. Tie color represents the presence (red) or absence (white) of a churn 
tie in the interaction network. Research speed dating occurred during the second day of the program, followed by 
group meetings in weeks 2 and 3 and a final paper submitted within one year of the program. The percentage of churn 
ties are as follows: N1 = 75.0% , N2 = 64.1% , N3 = 72.9% , N4 = 75.3% ). The network diagrams are generated 
using the statnet package (version 2019.6) in the R statistical programming  environment35,36. (C) TERGM results 
indicate that churn ties help to explain the scientific collaboration network’s evolution. The plot omits the model’s 
edges term for ease of visualization. (D) 1000 density distributions simulated from the model closely approximate 
the interaction network’s observed density distributions. (E) Counts of 2-stars simulated from the model closely 
approximate the interaction network’s observed counts of 2-stars, but the model under-predicts at period 3. Global 
transitivities in the simulated networks follow the same trend as the transitivities observed in the data, but the model 
consistently under-predicts actual transitivity level. Confidence intervals become too narrow to visualize as the number 
of simulations increases. Thus, these trend lines represent the statistic counts to which the model converges.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21876  | https://doi.org/10.1038/s41598-020-78224-2

www.nature.com/scientificreports/

collaboration on scientific papers. The summer program included self-organized opportunities for participants 
to exchange research interests and form project groups. The program’s second day included a “research speed 
dating” session for participants to discuss research interests. The program’s second and third weeks included two 
group meetings to form final project groups. In turn, groups submitted an optional, co-authored scientific paper 
within one year of the program. Because 39 individuals worked on multiple final papers, these collaborations 
constitute a co-authorship network.

Figure 2(B) plots the evolution of the collaboration network. Collaboration tie color represents the presence 
(red) or absence (white) of a churn tie in the interaction network (i.e. whether those individuals met during the 
first 6 days of the program). Although the majority of collaborators met at least once during the churn period 
( N1 = 75.0% , N2 = 64.1% , N3 = 72.9% , N4 = 75.3% ), research ties between individuals who did not meet dur-
ing the churn period dissolved with greater frequency. From group meeting one to the final paper submission, 
36.4% of churn ties dissolved and 62.6% of non-churn ties dissolved (z-test: χ2 = 20.84 , p < .001 ). Therefore, 
individuals who met during the churn period formed more durable co-authorship ties compared to individuals 
who did not meet during the churn period.

To add inferential precision, Fig. 2(C) presents the results of two TERGMs fitted to the scientific collabora-
tion network’s evolution. The first model includes churn ties as a predictor, and the second model omits these 
ties as an explanatory variable. The other covariates in the model mirror those used in the interaction network 
model presented above, with the exception that we use the undirected versions of these statistics, because the 
co-authorship network contains undirected ties. Undirected two-stars are motifs in which an undirected tie exists 
between node i and node j, as well as node i and node k, with no tie between j and k. A negative coefficient on 
this statistic would indicate that unclosed triads are relatively unlikely, which would be consistent with previ-
ous work that finds high levels of clustering in co-authorship  networks37. Four-cycles (i.e. square-like motifs) 
capture the propensity for two individuals i and k to have the same co-authors j and l, but to not be co-authors 
themselves. GWESP models the tendency towards triadic closure in co-authorship patterns. The homophily 
parameters model the possibility that individuals who share certain characteristics are more likely to co-author. 
The memory term captures temporal stability in research ties, namely that collaboration ties at time t depend 
on whether or not the individuals were research collaborators at time t − 1.

The results indicate that, on average, dyads who met during the churn period are 1.38 times more likely to 
form scientific collaboration ties [ exp(0.32) = 1.38 ]. This result is noteworthy, because the model’s memory 
term contains all collaboration ties present and absent in the previous period of the collaboration network. Thus, 
churn ties explain variance in project collaboration independent of the research groups themselves. Coefficients 
on other predictors in the model do not appreciably change with the addition of the churn ties. Thus, churn ties 
provide explanatory information independent of other known co-authorship predictors, such as  clustering38,39. 
Together, these results imply that an individual’s churn experience provides explanatory leverage on scientific 
collaboration as late as one year after the program.

Although these results suggest that churn ties help to explain the scientific network’s evolution, we also exam-
ine whether churn ties explain disproportionate variance in subsequent tie formation. In the SI, Tables S5-S6 
report evidence that churn ties explain disproportionate variance in subsequent tie evolution. When tie weights 
contain raw counts of interactions, each churn tie in a given dyad displays a larger log-odds coefficient than 
ties observed during any given period that precedes a wave of the scientific network (0.20, 95% CI [0.18, 0.23] 
vs. 0.11, 95% CI [0.06, 0.21]; z = 2.27 ). When tie weights instead contain counts of interactions normalized by 
the number of waves of interaction, the coefficient on all ties becomes larger than the coefficient on churn ties 
(1.20, 95% CI [1.08, 1.36] vs. 2.22, 95% CI [1.48, 3.11]; z = 2.61 ). However, this result implies that each churn 
tie explains 1.20/2.22 = 54% of subsequent scientific tie formation. Thus, regardless of transformation, interac-
tion ties observed in the first six days of the program alone in turn explain the majority of subsequent scientific 
tie formation.

Finally, we use the observed interaction network data to introduce a model of the churn process. For a fixed 
level of sociality, dynamics during the churn versus post-churn periods should differ for at least two reasons. First, 
individuals exhibit some fixed social bandwidth above which the maintenance of relationships is physically or 
psychologically  untenable40–42. Thus, individuals should form relationships up to some threshold and dissolve ties 
above that threshold. Second, under conditions of the emergence of a new network, some time cost accompanies 
the possibility of tie formation. During the earliest iterations of tie formation, the fewest individuals know each 
other. Therefore, the greatest number of potential connections exist. As individuals settle into friendships and 
cliques, however, a node’s set of available social worlds begins to shrink. Here, we operationalize these social 
bandwidth and time cost parameters for a fixed level of sociality. 

 i. Choose some fixed number of nodes, V.
 ii. Choose some fixed level of sociality, i.e. a fixed probability of tie gain, pgain.
 iii. Choose some time cost, α , such that nodes lose ties with plosst ∼ bin(1, pt) where pt = (T − t)−α , 

0 < α < 1 , t ∈ {1, . . . ,T} , and T equals the total number of time slices in the network sequence.
 iv. Choose some fixed social bandwidth, b, 0 ≤ b ≤ 1 , that limits the number of possible ties, b(V − 1) , that 

a given node can maintain. Nodes with degree (number of ties) below this limit form new ties with prob-
ability pgain and lose existing ties with probability plosst . Above this limit, nodes lose ties with probability 
plosst with no opportunity for tie gain.

Figure  2(D) plots density distributions from 1000 model simulations for parameters V = 76 , α = 0.45 , 
pgain = 0.07 , and b = 0.21 . We optimize on observed network density to estimate these parameters. The simu-
lations closely approximate the observed density distributions. Figure 2(E) displays the simulation results for 
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two-stars and triads. The model closely approximates the observed two-stars but under-predicts global transi-
tivities. Figure S9 provides additional model simulations, which illustrate that higher levels of sociality, higher 
social bandwidths, and lower time costs produce networks with higher densities, all else equal.

Together, our empirical results suggest that tie formation behavior during the earliest periods of network 
emergence may differ significantly from later evolutionary periods. These results are consistent with a previous 
study of a large-scale online game network, which displayed large differences in tie formation and dissolution 
probabilities in earlier versus later evolutionary periods [Fig. S3 in Ref. 1]. Further, the churn process helps to 
explain the interaction network’s evolution, as well as the evolution of scientific collaboration during and after 
the program. These results are consistent with recent work that finds that integration into an emerging student 
network explains academic  performance22 (see also Ref. 21). However, our results also suggest that the very earli-
est interactions between individuals are key to understanding the evolution of the emerging social network and 
behavioral outcomes at later time periods. Finally, whereas previous work finds evidence of ego-level tie distri-
bution stability after entering a new social  setting42, our study provides a finer-grained-in-time analysis of the 
emergence and evolution of those new ties, finding in particular that the earliest ties disproportionately explain 
variance in later interaction patterns, as well as collaboration in the scientific network. Whereas co-authorship 
networks represent an important area of previous network scientific  inquiry37–39, our study provides empirical 
results and a theoretical model that demonstrate the ways in which those co-authorship networks can emerge.

The proposed concept and model of churn narrows the scope of the network emergence problem, particularly 
in new networks marked by an initial cycle of rapid tie expansion and contraction. This concept may apply to a 
broad cross-section of new social situations, but a more developed taxonomy of the dimensions that constitute 
“new” networks would prove fruitful. We emphasize that this study’s empirical component relies on one case 
of network emergence, in which interaction ties and scientific collaboration ties evolve over time. We exercise 
caution about drawing generalizations from a single case of network emergence. For example, planned events at 
the summer program may exert structural influence on interactions beyond the simple presence of self-organ-
ized interactions. The program may also be unique, because the setting included both social and professional, 
research-based components. The computational results from our theoretical model suggest that this process 
could unfold in contexts in which individuals face time costs (i.e. the set of potential alters shrinks over time) and 
display social bandwidths (i.e. a limit exists on the number of relationships an ego can feasibly maintain). How-
ever, follow up studies that examine the emergence of other networks will help to clarify the extent to which the 
concept of churn generalizes across contexts and whether structured events or activities moderate the findings.

In addition, future work might consider processes of community formation and evolution in emerging net-
works, such as the extent to which the earliest community ties exert disproportionate influence on subsequent 
meso-structural evolution and whether those ties influence or depend on relationships in other emerging or 
established network  layers43,44. Second, cooperation evolution research might gain from attention to the ways 
in which the earliest periods of network formation affect the chances for future  cooperation45. For example, 
previous work finds that excessive ties can hinder  cooperation46, and our results suggest that the churn period 
might provide insights into this tie rewiring and dissolution process as the network moves towards more stable 
evolution. Third, the question of network emergence might benefit from investigation via Bayesian frameworks 
of network evolution, both theoretically—such as the extent to which nodes disproportionately learn from and 
update ties according to the nodes’ earliest  experiences47—as well as methodologically, such as inferential models 
that use the earliest network interactions to predict later  interactions48,49. Finally, future work would benefit from 
random assignment procedures to better isolate underlying tie formation mechanisms, attention to contexts in 
which node entrance and exit are possible, and extension of the model presented here. For example, the model 
accommodates ego- and network-level representations, as well as directed or undirected ties, but could also 
extend to weighted or signed ties.

Ethics approval and consent to participate. All protocols in the study adhere to relevant institutional 
guidelines and regulations. This study was determined exempt by The Ohio State University’s Institutional 
Review Board (#2018E0343 and #2019E0900). All participants were over the age of 18, and informed consent 
was obtained from all survey participants.
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