
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21476  | https://doi.org/10.1038/s41598-020-78173-w

www.nature.com/scientificreports

Impact of the transverse direction 
on the many‑body tunneling 
dynamics in a two‑dimensional 
bosonic Josephson junction
Anal Bhowmik 1,2*, Sudip Kumar Haldar 1,2,3 & Ofir E. Alon 1,2

Tunneling in a many‑body system appears as one of the novel implications of quantum physics, in 
which particles move in space under an otherwise classically‑forbidden potential barrier. Here, we 
theoretically describe the quantum dynamics of the tunneling phenomenon of a few intricate bosonic 
clouds in a closed system of a two‑dimensional symmetric double‑well potential. We examine how the 
inclusion of the transverse direction, orthogonal to the junction of the double‑well, can intervene in 
the tunneling dynamics of bosonic clouds. We use a well‑known many‑body numerical method, called 
the multiconfigurational time‑dependent Hartree for bosons (MCTDHB) method. MCTDHB allows one 
to obtain accurately the time‑dependent many‑particle wavefunction of the bosons which in principle 
entails all the information of interest about the system under investigation. We analyze the tunneling 
dynamics by preparing the initial state of the bosonic clouds in the left well of the double‑well either 
as the ground, longitudinally or transversely excited, or a vortex state. We unravel the detailed 
mechanism of the tunneling process by analyzing the evolution in time of the survival probability, 
depletion and fragmentation, and the many‑particle position, momentum, and angular‑momentum 
expectation values and their variances. As a general rule, all objects lose coherence while tunneling 
through the barrier and the states which include transverse excitations do so faster. In particular for 
the later states, we show that even when the transverse direction is seemingly frozen, prominent 
many‑body dynamics in a two‑dimensional bosonic Josephson junction occurs. Implications are briefly 
discussed.

After the experimental observations of Bose–Einstein condensation (BEC)1–3, ultra-cold quantum gases have 
emerged as one of the most advanced platforms to mimic a wide variety of typical models of condensed-matter 
physics, optics, high-energy physics, and even of quantum biology and  chemistry4–11. One of such well known 
paradigms of quantum physics is the existence of Josephson effect which is a clear manifestation of the macro-
scopic quantum coherence, originally predicted for  superconductors12 and later observed in superfluid 3He13 
and gaseous  BECs14,15. When ultra-cold bosons are tunneling in a double-well potential, the system is usually 
referred to as bosonic Josephson junction (BJJ)16.

An extensive theoretical study of trapped BECs in one-dimensional double-well potentials is available using 
a variety of theoretical  approaches17–30. Some of the interesting features, such as Josephson  oscillations14,28,31,32 
and self  trapping14,32 have been reported using a two-mode theory. Also, one-dimensional Josephson oscillations 
are studied using a quantum-Langevin approach and the exact Tonks–Girardeau solution in the impenetrable-
boson  limit33. The quantum tunneling of two one-dimensional quasi-condensates have been investigated recently 
 theoretically34 as well as  experimentally35. A full many-body Schrödinger dynamics starting from the ground state 
of the BEC in one of the wells (hereafter for brevity, ground state of the BEC) has been studied in one-dimensional 
double-well potentials and shows the development of fragmentation and loss of coherence in the  BEC36–40. The 
uncertainty product of the many-particle position and momentum  operators41 as well as the evolution in time 
of the position and momentum  variances40 have been studied by solving the full many-body Schrödinger equa-
tion. The development of fragmentation of the ground state of the BEC validates the necessity of a many-body 
treatment in order to obtain the accurate dynamical behavior of bosons in the BJJ.
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Tunneling dynamics of the ground state of a trapped BEC in higher dimensions has also been explored using 
two-mode or improved two-mode  models42,43. Ananikian and Bergeman showed that when the extent of the 
wave function in each well vary appreciably with time, the nonlinear interaction term creates a temporal change 
in the tunneling energy or  rate42. Spagnolli et al. reported a detailed study of the transition from Rabi to plasma 
oscillations by crossing over from the attractive to repulsive inter-atomic interaction in terms of the evolution 
of atomic  imbalance43. Moreover, in two dimensions (2D), the tunneling dynamics of trapped vortices were 
studied using Gross–Pitaevskii mean-field model in 2D  superfluids44, in an harmonic potential with a Gauss-
ian potential  barrier45, and between two pinning  potentials46. Salgueiro et al. proposed a method of generating 
replicas of a vortex state in a double-well potential formed by conjoining two Gaussian potentials using the 
mean-field  approach47. Garcia-March and Carr showed a comparative study of the tunneling of axisymmetric 
and transverse vortex  structures48. The most of the literature in relation with ground and vortex states of a BEC 
in a two-dimensional double-well potential are devoted to the density oscillations between the wells. There is a 
recent study of tunneling dynamics of the vortex state using an in-principle numerically-exact many-body theory 
in a 2D radial double-well  trap49. Beinke et al. showed that the development of the fragmentation of the vortex 
state is accompanied by damping of the amplitude of the survival probability, thereby indicating the importance 
of the accurate many-body theoretical  treatment49. Moreover, on a different note, the hidden vortices in a rotating 
double-well  potential50, excitation of non-zero angular-momentum modes in tunnel-coupled two-dimensional 
Bose  gas51, the creation of vortices in a BEC by external laser beam with orbital angular-momentum52–54, and the 
dissipative dynamics in an atomic Josephson junction between Fermi  superfluids55,56 are studied in the literature. 
Although there is some literature discussing the dynamics of the ground and vortex states in a double-well poten-
tial, there is no detailed investigation of the inter-connection of the density oscillations with the time evolution of 
quantum mechanical observables and their variances, let alone beyond one spatial dimension. Furthermore, to 
the best of our knowledge, there is no available literature which discusses the tunneling dynamics of complicated 
bosonic objects in a double-well potential by solving the many-particle problem at the many-body level of theory.

The main focus of this work is to explain the physics behind the tunneling dynamics of a few intricate bosonic 
clouds in a 2D double-well potential by analyzing the time evolution of various physical quantities, focusing on 
tunneling scenarios and research questions which require at least a 2D geometry to investigate. In order to explore 
the tunneling dynamics in a 2D symmetric double-well with the junction along the x direction, we consider four 
basic structures of bosonic clouds in the harmonic potential, namely, ground, x-excited, y-excited, and vortex 
states. Per definition, the y-excited and vortex states have no one-dimensional analogs. Although, there are one-
dimensional analogs to the ground and x-excited states, we ask how the inclusion of the transverse direction 
can affect the overall dynamics of all four initial states. A general question we ask is if there is any difference 
between the many-body and mean-field dynamics in the 2D BJJ. We ask whether and how quantum correlations 
develop in the process of tunneling for the initial states considered here. Will there be any qualitative and quan-
titative differences in the correlations due to the different initial structures of the bosonic clouds? Therefore, to 
investigate the tunneling dynamics in detail in a 2D double-well, we need to solve the many-body Schrödinger 
equation numerically accurately. A particularly suitable approach to solve the full Schrödinger equation is called 
the multiconfigurational time-dependent Hartree for bosons (MCTDHB)  method57–59.

In this paper, we show that the ground and excited states can tunnel through the barrier without destroying 
their initial structures. But the vortex state creates two vortex dipoles in the tunneling process and the dipoles 
rotate around the minima of the respective well. We find that the creation of the dipoles from the vortex states 
relies on the tunneling of the excited states considered here. We observe a difference between the mean-field and 
many-body density oscillations in the long-time dynamics for all objects due to the growing degree of quantum 
correlations in the later. We show that the fragmentation develops faster when there is transverse excitation in 
the system. Moreover, the mechanism of the development of fragmentation exhibits significant differences when 
there are transverse excitations. All in all, we have studied the time evolution of a purely many-body quantity, 
fragmentation, and discussed its impact on the survival probability, expectation values and variances. We find 
an interconnection between the density oscillations and some quantum mechanical quantities by accurately cal-
culating the time evolution of the survival probability and the many-particle position, momentum, and angular-
momentum expectation values and their variances, both at the mean-field and many-body levels. As the variance 
is a sensitive probe of  correlations60, even when the bosons are fully condensed, comparisons of the mean-field 
and many-body variances show that the correlations have different impact on the different physical quantities 
depending on the initial structure of the bosonic cloud and the presence of transverse excitations in the system. 
Moreover, as the ground and longitudinally-excited states have one-dimensional manifestations, to show the 
impact of the transverse direction we compare the dynamics of different quantum mechanical quantities found 
in two-dimensional double-well potential and their one-dimensional analogs.

System and methodology
According to the time-dependent many-body Schrödinger equation, the dynamics of N interacting structureless 
bosons are governed by

Here, ĥ(r) = T̂(r)+ V̂(r) is the one-particle Hamiltonian where T̂(r) and V̂(r) represent the kinetic energy and 
trap potential, respectively. Ŵ(rj − rk) is a short-range repulsive inter-particle interaction modeled by a Gaussian 

function, W(r1 − r2) = �0
e−(r1−r2)

2/2σ 2

2πσ 2
 with σ = 0.25

√
π  , to avoid the regularization problems of the zero-
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ranged contact potential in two spatial  dimensions49,61–64, also see supplemental material for the one-dimensional 
analog of the interaction. The particular shape of the inter-particle interaction model potential does not impact 
the physics of the bosons to be described below. To quantify the interaction strength, the mean-field interaction 
parameter � = �0(N − 1) is standardly introduced. Throughout this work, r = (x, y) is the position vector in 
two spatial dimensions and the natural units � = m = 1 are employed.

We solve the time-dependent many-boson Schrödinger equation presented in Eq. (1) using the MCTDHB 
 method36,39,40,49,57,58,61,65–73,73–82. The method is well documented and applied in the  literature59. Detailed derivation 
of the MCTDHB equations of motion is described  in58. For our numerical computations, we use the numerical 
implementation  in83,84. MCTDHB uses the ansatz

where |n; t� = |n1, n2, . . . , nM; t� are the time-dependent permanents obtained by distributing N bosons in M 
time-adaptive single-particle orbitals. In the limit M → ∞ , the permanents |n; t� span the complete N−particle 
Hilbert space and the expansion in Eq. (2) becomes formally exact. The usage of time-adaptive permanents allows 
one to solve the time-dependent Schrödinger equation numerically accurately with finite, often quite small 
number of orbitals M85. At the opposite end, for M = 1 , Eq. (2) becomes the Gross–Pitaevskii ansatz and solves 
the time-dependent Gross–Pitaevskii equation. In other words, for M = 1 Eq. (2) boils down to the time depend-
ent Gross–Pitaeveskii equation, �GP(r1, . . . , rN ; t) =

∏N
j=1 φj(r, t) , and accordingly the MCTDHB equations of 

 motion58 reduce to [ĥ(r)+ (N − 1)
∫

dr′|φ(r′, t)|2Ŵ(r − r
′)]φ(r, t) = i

∂φ(r, t)

∂t
59.

The main theme of this work is to explore the dynamical behavior of the ground, longitudinally and trans-
versely excited, and vortex states in a symmetric 2D double-well in terms of different physical quantities such as 
the survival probability, depletion and fragmentation, and the many-particle position, momentum, and angular-
momentum variances. These would help us to extract relevant information embedded in the N-boson time-
dependent wavefunction and shed light on the physics of tunneling in the junction. We begin our analysis by 
preparing the initial state either as the ground ( �G ), x-excited ( �X ) or y-excited ( �Y ), or a linear combination 
of �X and �Y , i.e. a vortex state ( �V ), of non-interacting many bosons at the left well of a 2D symmetric double-
well potential. The double well potential is formed by fusing together two harmonic potentials, 
VL(x, y) =

1

2
(x + 2)2 + 1

2
y2 and VR(x, y) =

1
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(x − 2)2 + 1

2
y2 , where VL(x, y) and VR(x, y) represent the left and 

right wells of the trap potential, respectively, with a quadratic polynomial 
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and −∞ < y < ∞ , and is given by

VT (x, y) (see Fig. 1a) is a natural 2D generalization of the one-dimensional potential used, e.g.,  in41. The math-
ematical forms of the initial conditions, �G , �X  , �Y  , and �V  , are taken as �G = 1√

π
F(x, y) , 

�X =
√

2

π
(x + 2)F(x, y)  ,  �Y =

√

2

π
yF(x, y)  ,  a n d  �V = 1√

2
(�X + i�Y )  ,  w h e r e 

F(x, y) = exp[−{(x + 2)2 + y2}/2] , and their initial density distributions are shown in Fig. 1. Here, �G and �X 
can have one-dimensional analogs, therefore, to study the different quantum mechanical properties using these 
states in their one-dimensional analogs, one has to decouple the transverse direction from the longitudinal 
direction. The derivation to move from two dimensions to one dimension for �G and �X is included in the sup-
plemental material.

In order to investigate the time evolution of the prepared initial states, we suddenly quench the inter-particle 
interaction at t = 0 from � = 0 to � = 0.01π accompanied by the change of trapping potential from the initial 
single-well, VL(x, y) , to the final double-well, VT (x, y) , potential. The consistency of the initial-state preparation 
is discussed in the supplemental material. Now, we will investigate the tunneling dynamics of the considered 
bosonic clouds in the symmetric double-well potential VT (x, y).

The tunneling dynamics and its analysis
In this section, we explore in detail the time evolution of various physical quantities for a collection of bosons 
trapped in a 2D symmetric double-well. In particular, we are interested to show the time variation of the survival 
probability in the left well, the degree of fragmentation of the bosons, and the expectation values and variances 
of the position, momentum, and angular-momentum many-particle operators for the initial states, �G , �X , �Y , 
and �V . These quantities draw increasingly more involved information from the time-dependent many-boson 
wave function, namely, from the density, reduced one-particle density matrix, and reduced two-particle density 
matrix, respectively. As the double-well potential is symmetric, preparation of the initial state either in left or 
right well does not affect the quantities discussed here.

Our research approach is a combined investigation of the dynamics at the mean-field and many-body levels 
of theory. The MCTDHB theory incorporates the correlations among the bosons, therefore to highlight the 
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many-body effects, we compare the many-body survival probability, expectation values, and variances computed 
using the MCTDHB method with the corresponding mean-field ( M = 1 time-adaptive orbitals) results. In our 
work, we have performed all the many-body computations for �G and �X using M = 6 time-adaptive orbitals, 
while for �Y and �V using M = 10 time-adaptive orbitals. We shall see later on that the inclusion of the trans-
verse excitations generally requires more time-adaptive orbitals to faithfully represent the many-body dynamics. 
In order to check the convergence with respect to the orbital numbers, we have repeated our computations with 
M = 10 orbitals for �G and �X and with M = 12 orbitals for �Y  and �V ; all the results are found to be well 
converged, see the supplemental material for more details. For the numerical solution, we use a grid of 642 points 
in a box of size [−10, 10)× [−10, 10) with periodic boundary conditions. Convergence of the results with respect 
to the number of grid points has been verified using a grid of 1282 points, see the supplemental material. All 
many-body computations are carried out for a finite number of bosons, N = 10 , with the inter-boson interaction 
� = 0.01π . The mean-field computations are done for the same interaction parameter � = 0.01π . Therefore, 
one can relate the tunneling dynamics of the bosonic clouds between the many-body and mean-field levels. 
Furthermore, it is instructive to mention that all the systems mentioned here are weakly interacting, which allows 
us to mimic the so-called infinite-particle limit of the interacting bosons, at least for very short times. We set the 
time-scale for the dynamics equal to the period of the Rabi oscillations (tRabi) in the double well trap presented 
in Eq. (3). Here tRabi =

2π

�E
= 132.498 , where �E is the energy difference between the ground state and first 

excited state, calculated by diagonalizing the single-particle Hamiltonian using discrete variable representation 
method. The ground and excited states in the 2D double-well are the even and odd functions along the x-direc-
tion. We shall use the same time scale for all tunneling processes discussed below, to facilitate a direct comparison 
between them.

Density and survival probability. We begin our investigation with the time evolution of the most basic 
quantity, the density ρ(x, y; t) of the bosonic clouds �G , �X , �Y , and �V . To this end, we present the intercon-
nection between the four densities with respect to the survival probability in the left well, 

PL(t) =
0
∫

x=−∞

+∞
∫

y=−∞
dxdy

ρ(x, y; t)
N

 . In Fig. 2, we compare the many-body dynamics of PL(t) with the corre-

sponding mean-field results. In order to have a more detailed description of the tunneling dynamics of the 
considered initial states, we depict surface plots of the density oscillations at the many-body level in Fig. 3. We 
observe in Fig. 2 the tunneling of the density back and forth between the left and right wells for all bosonic 
clouds, but the frequency of the tunneling oscillations are distinct for the different initial states, apart from �G 
and �Y which have essentially the same frequency of oscillations. The tunneling dynamics are consistent with 
the density oscillations shown in Fig. 3. For a particular initial state the frequency of the tunneling oscillations is 
practically identical at the mean-field and many-body levels, but certainly it does not remain so for the ampli-
tudes of the tunneling oscillations in the course of time evolution. As �G and �Y both lie (in the non-interacting 
system) in the lowest band along the x-direction (the direction along which the barrier is formed), the tunneling 

2D double−well Potential

(a)

ΨG at t/tRabi=0

(b)

ΨX at t/tRabi=0

(c)

ΨY at t/tRabi=0

(d)

ΨV at t/tRabi=0

X
Y

(e)

Figure 1.  Schematic diagrams for (a) the 2D double-well potential described in Eq. (3) and the initial density 
distributions for (b) �G , (c) �X , (d) �Y , and (e) �V . The x- and y-axes are shown in panel (e). The quantities 
shown are dimensionless.
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oscillations of �Y are very similar to those of �G at the mean-field level, both in frequency and in amplitude. On 
the other hand, �X lies (in the non-interacting system) in the first excited band along the x-direction, it ’feels’ a 
smaller potential barrier, and therefore its tunneling oscillations are faster. Furthermore, the effect of coupling 
between the lowest energy band and the higher excited states produces high-frequency breathing oscillations for 
�X.

We observe the complete tunneling of bosons from the left well to the right well without destroying the 
structure of the initial states in Fig. 3 for �G , �X , and �Y at about t = 0.50tRabi , t = 0.09tRabi and t = 0.50tRabi , 
respectively. Recall the interaction is weak (� = 0.01π) and the tunneling period is very close to that of non-
interacting bosons. It is clear from Figs. 2 and 3 that the nature of tunneling for the vortex state is very different 
and intricate compared to the other initial bosonic clouds. As �V is a linear combination of �X and �Y at t = 0 
and the interaction is weak, the tunneling of �V  can be interpreted by combining the resulting dynamics of 
�X and �Y . In Fig. 3, it is shown that the vortex state initially destroys its structure in the process of tunneling 
and creates two dipole states. It is noted that the essentially full tunneling of �V happens at about t = 2.50tRabi 
but partial tunneling (around 95%) of �V is observed at about t = 0.50tRabi . With progress of time, the dipole 
structures rotate and change their relative phase. The collapse of the vortex structure into dipoles and the rota-
tion of these dipoles take place due to the different tunneling frequencies of �X and �Y . At t = 2.50tRabi ,�V 
practically tunnels to the right well. It is one of that definite moments in time when each of the clouds of �X 
and �Y individually and practically completely tunnels to the right well after around 14 and 2.5 oscillations, 
respectively. Similarly, in the mean-field, �X , �Y and hence �V completely tunnel back to the left well at about 
t = 5.00tRabi (not shown).

The beginning of the time evolution in all panels of Fig. 2 shows a complete overlap between the mean-field 
and many-body results, thereby confirming that the survival probability can be accurately described by the 
mean-field theory at short time scales for the interaction strength considered here. Correspondingly, the densi-
ties per particle computed at the many-body level in Fig. 3 match the mean-field densities per particles of the 
bosonic clouds. This situation emulates the so-called infinite-particle limit of the time-dependent many-boson 
Schrödinger equation, in which the time-dependent density per particle coincides with the respective density 
obtained from the time-dependent Gross-Pitaevskii equation, see in this  respect41,86. As time progresses, we 
observe incomplete tunneling of the densities of all the systems at the many-body level, a first signature of 
the build up of many-body correlations, resulting in a gradual decrease in the amplitudes of the oscillations. 
The decay in the amplitudes of the tunneling oscillations can not be seen at the level of mean-field theory. The 
results generalize what is known in the literature for tunneling from the ground state (of the left well) in  BJJs36. 
Looking at Fig. 2, the decay rates of the density oscillations for �X and �V are rather similar and quite smaller 
from the decay rates of �G and �Y . The intuition suggests that since �X and �V ’feel’ a smaller barrier when 
tunneling, many-body effects would develop slower, and hence the above-discussed decay rates are smaller. 

Figure 2.  Time evolution of the survival probability in the left well, PL(t) , of a symmetric 2D double-well 
potential for the initial states (a) �G , (b) �X , (c) �Y , and (d) �V . Mean-field results are in red solid line and 
corresponding many-body results are in blue solid line. The interaction parameter is � = 0.01π and the number 
of bosons is N = 10 . The many-body time evolutions are computed using the MCTDHB method with M = 6 
time-adaptive orbitals for �G and �X and M = 10 time-adaptive orbitals for �Y and �V . See the text for more 
details. The quantities shown are dimensionless.
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Correspondingly, �G has the highest decay rate and hence reaches the smallest amplitude of oscillations at the 
largest time presented here. As �G and �X have one-dimensional manifestations, we compare the survival prob-
abilities of these states calculated in two-dimensional double-well potential with their respective one-dimensional 
analogs both at the mean-field and many-body levels, and we find that the results are essentially identical in 
terms of amplitude and frequency due to the treatment of weakly interacting system (see Fig. S11 of supplemental 
material).

We shall analyze further measures and signatures of the many-body dynamics, and impact of the transverse 
direction, and return to this intuitive reasoning in the next subsection. As the transversely-excited and vortex 
states cannot be created in one spatial dimensions, it will be particularly interesting to dig deeper into the many-
body as well as the mean-field dynamics of the �Y  and �V states of BECs in the two-dimensional geometry. 
Furthermore, we shall be looking for signatures originating from the impact of the transverse direction in the 
tunneling dynamics of �G and �X which do have one-dimensional analogs.

Dynamics of the condensate fraction and fragmentation. We have already found a difference 
between the mean-field and many-body time developments of the survival probability, PL(t) . This difference 
implies that there are many-body correlations which gradually appear in the tunneling process. To study the 
effect of the quantum correlations on the tunneling dynamics, we would like to discuss how the depletion or 
fragmentation emerges, depending on the shape of the different initial states. To this end, we compute the 

Figure 3.  Time evolution of the many-body density oscillations in a symmetric 2D double-well. The 
interaction parameter is � = 0.01π and the number of bosons is N = 10 . Shown are the densities per particle 
for the initial states �G (first row, from left to right, at t

tRabi
= 0, 0.11, 0.26, 0.34 , and 0.50); �X (second row, at 

t
tRabi

= 0, 0.03, 0.05, 0.06 , and 0.09); �Y (third row, at t
tRabi

= 0, 0.15, 0.26, 0.34 , and 0.50); and �V (fourth and 
fifth rows, at t

tRabi
= 0, 0.08, 0.19, 0.22, 0.24 and 0.31, 0.35, 1.17, 2.34, 2.50). The many-body time evolutions are 

computed using the MCTDHB method with M = 6 time-adaptive orbitals for �G and �X and M = 10 time-
adaptive orbitals for �Y and �V . See the text for more details. The quantities shown are dimensionless.
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reduced one-particle density matrix from the time-dependent many-boson wave-function (Eq. 2) and diagonal-
ize the former for obtaining the time-dependent occupation numbers nj(t) and natural orbitals φj(x, y; t)87,88. 

Here we present the time evolution of the condensate fraction, 
n1(t)

N
 , and the details of the depletion 

nj>1(t)

N
 of 

the initial states in terms of the occupation numbers of the natural orbitals. The change in the occupation num-
ber of the first natural orbital signifies the loss of coherence in the initial state. We use the term fragmentation in 
a broad manner, to indicate a large amount of depletion, rather than only in its strict meaning of a macroscopic 
occupation of more than a single natural orbital.

Figure 4 presents the time-dependent occupation of the first natural orbital for the initial states �G , �X , �Y , 
and �V . The corresponding occupations of the higher natural orbitals are collected in Fig. 5. As the MCTDHB 
computations have been performed with M = 6 self-consistent orbitals for �G and �X and M = 10 self-consistent 
orbitals for �Y and �V , we have plotted the occupancies of the higher natural orbitals to have a comparative 
study among all the initial states and show how coherence is lost. For the dynamics at longer times and conver-
gence of the individual occupation numbers see the supplemental material. Overall, here it is observed that as 
time increases the occupation of the first natural orbital decreases with a weak oscillatory background, and the 
occupations of all the higher natural orbitals gradually increase, generally and in particular the lower ones in an 
oscillatory manner. Some of the smaller ones, e.g., for �Y , are oscillatory first and then increasing. The oscillatory 
background atop of the global time-evolution of the occupation numbers is in reminiscence of the tunneling 
back and forth in the junction. Furthermore, one can see some high-frequency oscillations in the profiles of the 
natural occupancy of the higher orbitals. These types of oscillations are the consequence of the time-dependent 
density oscillations. Figures 4 and 5 demonstrate that all the initial states start depleting and eventually become 
fragmented with time. Also, we find that 

n1(t)

N
 of �G and �X in two-dimensional double-well fall on top of the 

corresponding results of one-dimensional analogs (see Fig. S12 of supplemental material).
Examination of the respective occupation numbers of �G , �X , �Y , and �V reveal a few trends. The first and 

perhaps the most prominent one, is that transverse excitation enhances fragmentation. Indeed, as time passes 
by, �Y losses coherence faster than �G and, analogously, �V losses coherence faster than �X , see Fig. 4. On the 
other hand, longitudinal excitations suppress fragmentation, namely, �X losses coherence slower than �G and, 
similarly, �V losses coherence slower than �Y . All in all, �Y is the fastest to fragment and �X is the slowest. The 
second is a comparison of the fragmentation dynamics in Fig. 4 to the decay of the amplitude of the density oscil-
lations, see Fig. 2. Since fragmentation can develop due to the transverse excitations, also see below, there is no 
one-to-one correlation between the two properties of the junction, as is the case in one spatial  dimension36,38. For 
instance, �Y is more fragmented than �G , but the density oscillations of the former decay slower than the latter.

Finally, we discuss and compare how the higher natural orbitals become occupied in the four initial states, 
see Fig. 5. We notice that whenever the initial state is transversely excited, �Y , or is a linear combination consist-
ing of a transversely excited state, �V , it requires a larger number of self-consistent orbitals to accurately represent 
its dynamical behavior. Furthermore, examining for each state the largest higher natural densities sheds light on 
the microscopic mechanism of fragmentation. In particular, we find that the second and third natural densities 
for �G and the second natural density for �X have reflection symmetry with no-node in the y-direction, they 
only have excitation in the x-direction at t = 10tRabi (not shown). For �Y , we observe that the second, third, and 
fourth natural densities have one, zero and two nodes at t = 10tRabi in the y-direction, respectively (see Fig. S7 
of supplemental material). Unlike the other three initial states, the natural densities of the three larger (second, 
third, and fourth) orbitals for �V show complex structures having zero, two and one nodes, respectively, in the 
x-y plane at t = 10tRabi (see Fig. S8 of supplemental material). However, the shape of the natural orbitals of �V 
exhibits the presence of the longitudinal and transverse excitations in the system. Moreover, we notice that the 
occupancy of all the higher natural orbitals of �G are essentially identical when calculated in the two-dimensional 

Figure 4.  Time-dependent condensate fraction, n1(t)/N , in a symmetric 2D double-well for the initial states 
�G , �X , �Y , and �V . The number of bosons is N = 10 and the interaction parameter � = 0.01π . The results 
have been obtained by the MCTDHB method with M = 6 time-adaptive orbitals for �G and �X and M = 10 
time-adaptive orbitals for �Y and �V . See the text for more details. Color codes are explained in the panel. The 
quantities shown are dimensionless.
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double-well potential and their corresponding one-dimensional analogs. But from the comparison study for �X , 
we found that there is a deviation for 

n3(t)

N
 , with slightly higher occupation in the one-dimensional analog (see 

Fig. S13 of supplemental material). This deviation signifies that, although the interaction is weak, unlike the 
survival probability there is no one-to-one correspondence of the development of fragmentation when one moves 
from two dimensions to one dimension. Rather, the latter instead it depends on the dimensionality of the bosons 
and how the transverse direction affects the dynamics of a particular initial state.

Observables and the dynamics of their expectation values and variances. So far, we discussed 
the transport of the bosons in the junction in terms of the survival probability and the loss of coherence and 
development of fragmentation in the reduced one-particle density matrix. To shed further light on the time-
dependent many-particle wavefunction and on possible geometrical and dimensional effects, we resort to fur-
ther quantities, the position operator along the x- and y-direction, the momentum operator along the x- and 
y-direction, and the angular-momentum operator of z component. Here we demonstrate the dynamics of the 
expectation values and the variances of the above-mentioned operators and draw a connection with the survival 
probability and fragmentation.

Let us start with a brief discussion about the expectation values of observables and their dynamics. We find 
that the expectation value of the X̂ =

∑N
j=1 x̂j position operator, 

1

N
��|X̂|��(t) , for all initial states possesses a 

similar structure as found for the respective survival probability profile, see Fig. 2. Namely, at the mean-field 
level, 

1

N
��|X̂|��(t) are oscillating in between the two minima of the double-well potential starting from the 

initial value −2 at t = 0 , see Table 1. While at the many-body level, we find numerically that 
1

N
��|X̂|��(t) for 

all initial states eventually vanish with time due to the gradual increase of many-body correlations as described 
in the many-body survival probability (results are not shown).

For t = 0 , we note that the expectation value of the P̂X =
∑N

j=1
1
i

∂
∂xj

 momentum operator vanishes, 
1

N
��|P̂X |��(0) = 0 , due to parity (reflection in x for �G , �X , and �Y ; inversion through the origin for �V ) and 

translation. Similarly, the expectation values of Ŷ =
∑N

j=1 ŷj and P̂Y =
∑N

j=1
1
i

∂
∂yj

 along the transverse direction 

Figure 5.  Details of the depletion. Time evolution of the occupation numbers per particle of the higher natural 
orbitals, nj>1(t)/N , in a symmetric 2D double-well for the initial states (a) �G , (b) �X , (c) �Y , and (d) �V . The 
results have been obtained by the MCTDHB method with M = 6 time-adaptive orbitals for �G and �X and 
M = 10 time-adaptive orbitals for �Y and �V . See the text for more details. Color codes are explained in the 
panel. The quantities shown are dimensionless.
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vanish, 
1

N
��|Ŷ |��(0) = 1

N
��|P̂Y |��(0) = 0 , due to parity (reflection in y for �G , �X , and �Y ; inversion for 

�V ). Table 1 summarizes the results. At t > 0 some of these symmetries are exactly conserved, and the expecta-
tion values 

1

N
��|Ŷ |�� and 

1

N
��|P̂Y |�� vanish. But the expectation value 

1

N
��|P̂X |�� shows oscillatory behavior 

for all states at t > 0 for the mean-field as well as the many-body dynamics. For �G and �Y , 
1

N
��|P̂X |�� keeps 

on oscillating between +0.15 and −0.15 , while for �X , the values are +0.70 and −0.70 , and for �V , it oscillates 
between +0.45 and −0.45 at the mean-field level. The dynamics of 

1

N
��|P̂X |�� at the many-body level overlaps 

only initially with the respective expectation values at the mean-field level and eventually shows a decay in 
amplitude at long-time as many-body correlations develop contrary to the mean-field level.

We now move to the angular-momentum which is a fundamental property in 2D taking the operator form 

L̂Z =
∑N

j=1

1

i

(

xj
∂

∂yj
− yj

∂

∂xj

)

 . In connection with the above-discussed quantities, angular-momentum is a 

combination of position and momentum operators. As is expected, at t = 0 the expectation value of the angular-
momentum operator, 

1

N
��|L̂Z |��(0) , is one for the vortex state while it has a null value for all other states. For 

t > 0 , 
1

N
��|L̂Z |�� for �G , �X , and �Y  vanishes at the mean-field as well as the many-body level due to the 

reflection symmetry in y. But for �V , 
1

N
��|L̂Z |��(t > 0) shows an interesting oscillatory motion. Recall that 

angular-momentum is not a conserved quantity in the junction. At the mean-field level this oscillatory behavior 
is with values between +1 and −1 , where as at the many-body level, there is a decay of the amplitude of oscilla-
tions due to the loss of coherence of the vortex state (see Fig 6) and decay of density oscillations (see Fig. S1(d) 
of supplemental material). Connecting the expectation value of the angular momentum with the density profile 
of �V , it is found that Fig 3p–y have 

1

N
��|L̂Z |�� values +1 , 0, −0.5 , 0, 0.5, 0.5, 0, −1 , +1 , and −0.7 , respectively, 

at the many-body level. It is noted that the 
1

N
��|L̂Z |�� values at the many-body level initially (until about 

t = 4tRabi ) overlap with the corresponding mean-field results (see Fig 6), therefore we observe the same values 
of 

1

N
��|L̂Z |�� at the mean-field and many-body levels at times when the snapshots of Fig 3(p)-(y) are taken. 

Table 1.  Expectation values of the observables and their variances at t = 0 . See the text for more details. The 
quantities shown are dimensionless.

State
1

N
�X̂�

1

N
�Ŷ�

1

N
�P̂X �

1

N
�P̂Y �

1

N
�L̂Z�

1

N
�

2

X̂

1

N
�

2

Ŷ

1

N
�

2

P̂X

1

N
�

2

P̂Y

1

N
�

2

L̂Z

�G -2 0 0 0 0 1

2

1

2

1

2

1

2
2

�X -2 0 0 0 0 3

2

1

2

3

2

1

2
3

�Y -2 0 0 0 0 1

2

3

2

1

2

3

2
7

�V -2 0 0 0 1 1 1 1 1 4

Figure 6.  Dynamics of the angular-momentum expectation value per particle, 
1

N
��V |L̂Z |�V � , in a symmetric 

2D double-well for the vortex state (�V ) with N = 10 bosons. Mean-field ( M = 1 time-adaptive orbitals) result 
is presented in red and corresponding many-body result ( M = 10 time-adaptive orbitals) in blue. See the text 
for more details. The quantities shown are dimensionless.
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Figure 3(x) finds the value +1 for 
1

N
��|L̂Z |�� even though the density profile does not produce a pure vortex 

state. This phase difference in the vortex structure occurs due the different tunneling frequency of �X and �Y . 
Also, it is noticed that the many-body 

1

N
��|L̂Z |�� is −0.7 when the vortex state practically tunnels to the right 

well (see Fig. 3y).
Now we start the discussion about the many-particle variances of the previously discussed observables at the 

mean-field and many-body levels. The variances at t = 0 are analytically calculated and presented in Table 1. At 
t = 0 , the center-of-mass of the bosonic clouds are at the position (a, b) = (−2, 0) . To calculate the variances, 
we have used the general relation between the variances at (a, b) and at the origin. It is known that for the posi-
tion and momentum operators, the variances do not change with the position of the center-of-mass of the clouds, 
i . e . ,  

1

N
�2

X̂

∣

∣

∣

�(a,b)
= 1

N
�2

X̂

∣

∣

∣

�(0,0)
 ,  

1

N
�2

Ŷ

∣

∣

∣

�(a,b)
= 1

N
�2

Ŷ

∣

∣

∣

�(0,0)
 ,  

1

N
�2

P̂X

∣

∣

∣

�(a,b)
= 1

N
�2

P̂X

∣

∣

∣

�(0,0)
 ,  a n d 

1

N
�2

P̂Y

∣

∣

∣

�(a,b)
= 1

N
�2

P̂Y

∣

∣

∣

�(0,0)
 . For our system, the variance of the angular-momentum operator boils down to 

(see supplemental material  and80)

In Fig. 7, we present the time-dependent many-particle position variances per particle, 
1

N
�2

X̂
(t) and 

1

N
�2

Ŷ
(t) , 

in a symmetric 2D double-well potential for all the initial states of the bosonic clouds. We show that the many-
body correlations can lead to a deviation in 

1

N
�2

X̂
(t) which can not be seen at the mean-field level. Both the 

many-body and mean-field values of 
1

N
�2

X̂
(t) vary in time in an oscillatory manner for all the initial states 

considered here with the highest frequency of oscillations for �X which is consistent with the respective survival 
probability. However, there are couple of clear differences that can be seen due to the many-body correlations. 
Here the mean-field 

1

N
�2

X̂
(t) oscillates with a constant amplitude, whereas the many-body 

1

N
�2

X̂
(t) oscillates 

with a growing amplitude. Moreover, the pace of growth of 
1

N
�2

X̂
(t) is different for different initial states. One 

of the interesting features shown in Fig. 7 is that the minima values of the many-body 
1

N
�2

X̂
(t) increase with 

time for each of the initial states with a maximal deviation occurs for �G . The increase of minima values of 
1

N
�2

X̂
(t) due to the growing degree of fragmentation can be found in the literature but only for the ground state 

in one-dimensional double-well  potentials39,40. Also, we notice high-frequency small-amplitude oscillations, 
specially for the vortex state, on top of the peaks of the large-amplitude oscillations of 

1

N
�2

X̂
(t) . Such high-fre-

quency oscillations occur due to the breathing-mode oscillations of the system. As �G and �X have one-dimen-
sional analogs, we compare 

1

N
�2

X̂
(t) for these states obtained from the two- and one-dimensional double-wells 

both at the mean-field and many-body levels, and we find a consistency between 
1

N
�2

X̂
(t) and fragmentation 

dynamics. The comparison shows that only the many-body 
1

N
�2

X̂
(t) of �X have a small difference between two 

dimensions and corresponding one dimension analog (see Fig. S14 of supplemental material). It suggests that 
the impact of the transverse direction on different quantities are different for different initial states.

Unlike 
1

N
�2

X̂
(t) , the mean-field and many-body values of 

1

N
�2

Ŷ
(t) have very small fluctuations, of the order 

of 10−3 , and therefore their dynamics look more of a constant at the presented scale. The overlap of the mean-
field and many-body values of 

1

N
�2

Ŷ
(t) tells us that the mean-field results are a good approximation of the 

many-body results for the position variance in the transverse direction. 
1

N
�2

Ŷ
(t) suggests that even though there 

is practically no motion along the y-direction, the combination of the motion along the x-direction with the 
existence of the almost-frozen transverse degree of freedom could lead to dynamics of the angular-momentum 
variance in the junction, as will be shown below, which can not be accounted in the one-dimensional 
geometry.

To show whether the many-body correlations have any effect on the variance of momentum operator, we 
compare the many-body 

1

N
�2

P̂X
(t) and 

1

N
�2

P̂Y
(t) with the corresponding mean-field results. Here it is worthwhile 

to mention that the momentum variance is comparatively a more complex quantity than the position variance 
in the junction as the former one is more sensitive to changes in the shape of the orbitals. In Fig. 8, we see that 
the mean-field 

1

N
�2

P̂X
(t) oscillates around a certain value for each of the initial states considered here. But the 

many-body 
1

N
�2

P̂X
(t) shows oscillations with a slowly growing values. It is found that 

1

N
�2

P̂X
(t) for �X are always 

higher than for the other states. We observe that 
1

N
�2

P̂X
(t) for �V is in between the respective results of �X and 

�Y till the time considered here, which is more evident in the momentum variance along the y-direction, dis-
cussed below. The high frequency oscillations occurring in the momentum variance, which are more prominent 
for the states �X and �V , are due to the stronger breathing oscillations of the system along the x-direction. As 

(4)
1

N
�2

L̂Z

∣

∣

∣

�(a,b)
= 1

N
�2

L̂Z

∣

∣

∣

�(0,0)
+ a2

1

N
�2

P̂Y

∣

∣

∣

�(0,0)
.



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21476  | https://doi.org/10.1038/s41598-020-78173-w

www.nature.com/scientificreports/

discussed in case of 
1

N
�2

X̂
(t) , we also compare 

1

N
�2

P̂X
(t) of �G and �X between their two dimensions and cor-

responding one dimension analogs and observe a small difference only for the many-body 
1

N
�2

P̂X
(t) of �X (see 

Fig. S15 of supplemental material).
As presented in the discussion of 

1

N
�2

Ŷ
(t) , the momentum variance along the y-direction, 

1

N
�2

P̂Y
(t), also 

exhibits very small fluctuations, of the order of 10−3 , for all the initial states of bosonic clouds both at the mean-
field as well as the many-body level. The mean-field and many-body values of 

1

N
�2

P̂Y
(t) practically overlap with 

each other with almost constant values, being 0.5, 0.5, 1.5, and 1.0 for the states �G , �X , �Y , and �V , respectively. 
As the vortex state is the combination of �X and �Y , 

1

N
�2

P̂Y
(t) for �V is exactly in between the corresponding 

results of �X and �Y . Similarly to 
1

N
�2

Ŷ
(t) , the non-zero values of 

1

N
�2

P̂Y
(t) with small fluctuations indicate the 

Figure 7.  The mean-field ( M = 1 time-adaptive orbitals, in red) and many-body (in blue) time-dependent 
position variances per particle, 

1

N
�2

X̂
(t) and 

1

N
�2

Ŷ
(t) , are presented in the left and right columns, respectively. 

The different initial states, �G , �X , �Y , and �V , for N = 10 bosons are plotted row-wise. The many-body results 
are computed using the MCTDHB method with M = 6 orbitals for �G and �X and M = 10 orbitals for �Y and 
�V . See the text for more details. The quantities shown are dimensionless.
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Figure 8.  The mean-field ( M = 1 time-adaptive orbitals, in red) and many-body (in blue) time-dependent 
position variances per particle, 

1

N
�2

P̂X
(t) and 

1

N
�2

P̂Y
(t) , are presented in the left and right columns, respectively. 

The different initial states, �G , �X , �Y , and �V , for N = 10 bosons are plotted row-wise. The many-body results 
are computed using the MCTDHB method with M = 6 orbitals for �G and �X and M = 10 orbitals for �Y and 
�V . See the text for more details. The quantities shown are dimensionless.
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existence of transverse motion of the bosonic clouds which will have a consequential effect to the dynamics of 
the angular-momentum variance in the junction.

Now, we move to the discussion of the angular-momentum variance per particle, 
1

N
�2

L̂Z
(t) , presented in 

Fig. 9. We observe a marginal difference in the angular-momentum variance calculated at the many-body and 
mean-field levels for the states �G and �X , implying that the mean-field theory will be enough to discuss 

1

N
�2

L̂Z
(t) 

for these two states. Fig. 9a finds that 
1

N
�2

L̂Z
(t) of �G oscillates with amplitude of fluctuations in the order of 

10−1 . In comparison with �G , �X has a larger amplitude of oscillations of 
1

N
�2

L̂Z
(t) which varies from the value 

2.4 to 3.6. The fluctuations in the angular-momentum at the many-body level are governed by the structure of 
the many-body wave-function, shapes of the time-dependent orbitals, and the mechanism of fragmentation. 
Therefore, without excitation in the y-direction, fragmentation occurring due to the barrier in the x-direction 
does hardly impact the fluctuations in the angular-momentum for �G and �X . From Fig. 9a,b, one can find that 
the amount of fluctuations atop the base-line are practically same at the mean-field and many-body levels. These 
fluctuations are around 5% and 20% for the states �G and �X , respectively.

Contrary to �G and �X , exciting many-body features have been found for the angular-momentum variance 
of �Y and �V . Figure 9c,d show that the many-body 

1

N
�2

L̂Z
(t) for �Y and �V are oscillatory in nature with a 

growing amplitude. Also, their minima values are increasing with time. The maximal fluctuations on top of the 
baseline of the angular-momentum variance for �Y and �V at the mean-field level are found around 7% and 
25% , respectively, while at the many-body level they are approximately 34% and 112% , respectively. A difference 
in the onset of the angular-momentum fluctuations for �Y and �V at the many-body level can be described by 
analyzing how fragmentation develops in the system. Unlike �G and �X , transverse excitation is involved in the 
lowest excited natural orbitals, φ2 , φ3 , and φ4 (see Figs. S7 and S8 in the supplemental material) of �Y and �V , 
leading to large fluctuations in the angular-momentum variance. It is found that after t ≈ 12tRabi , the amplitude 
of the oscillations of 

1

N
�2

L̂Z
(t) starts decaying for �Y . 

1

N
�2

L̂Z
(t) of �V shows two types of oscillations very promi-

nently, one with a larger amplitude and smaller frequency which arises due to the density oscillations and the 
second one with a smaller amplitude but higher frequency due to the breathing oscillations of the system. 
Another feature of 

1

N
�2

L̂Z
(t) is that the mean-field values of 

1

N
�2

L̂Z
(t) for �Y are always larger than the respective 

Figure 9.  Dynamics of the angular-momentum variance per particle, 
1

N
�2

L̂Z
(t) , in a symmetric 2D double-well 

for the initial states (a) �G , (b) �X , (c) �Y , and (d) �V with N = 10 bosons. The interaction parameter 
� = 0.01π . Mean-field ( M = 1 time-adaptive orbitals) results are presented in red and corresponding many-
body results are shown in blue. MCTDHB results are computed with M = 6 time-adaptive orbitals for �G and 
�X , and M = 10 time-adaptive orbitals for �Y and �V . See the text for more details. The quantities shown are 
dimensionless.
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values for �V , but the many-body 
1

N
�2

L̂Z
(t) of �V eventually becomes in time larger compared to the correspond-

ing values of �Y . The features of all the quantum mechanical observables, expectation values, and their variances 
discussed above certainly determine that the mean-field level of theory is not sufficient to accurately explain the 
dynamics of a trapped system in a two-dimensional geometry.

Long‑time dynamics. So far, we have displayed in a detail study the dynamical behavior of the density 
oscillations, loss of coherence, development of fragmentation, expectation values, and variances of a few basic 
quantum mechanical operators in a symmetric 2D double-well in the short to intermediate time domain (t = 0 
to 16tRabi) . The results show that the presence of transverse excitations requires a larger number of time adaptive 
orbitals to accurately represent the many-body effects of the quantities discussed here. Before ending this sec-
tion, it is worthwhile to include a flavour of the long-time dynamics of the most basic property, PL(t) . In Fig. 10, 
we have registered the long-time dynamics of PL(t) for the four initial states �G , �X , �Y , and �V . Snapshots of 
the density oscillations are shown in Fig. 11. The long-time dynamics of other quantities along with their con-
vergence are discussed in the supplemental material. The plots show that the densities of the systems tunnel back 
and forth without changing the amplitude and frequency at the mean-field level, even for the long-time dynam-
ics. One can clearly observe that the many-body PL(t) displays a collapse in the oscillations, for all the initial 
bosonic clouds. The collapse of the oscillations is already shown only for the ground state, both in  theoretically38 
and  experimentally38. However, we find that rate of collapse is different for different initial states. Among the 
four initial states, the collapse of �G is the quickest and of �V is the slowest for this symmetric 2D double-well.

The collapse of the initial states are consistent with the density oscillations shown in Fig. 11. The snapshots 
of the mean-field and many-body density oscillations are taken at t = 10tRabi , 20tRabi , and 30tRabi . Unlike the 
dynamics at the mean-field level, the many-body dynamics of �G , �X , and �Y show the generation of replicas of 
the respective initial states in the process of tunneling. But the time evolution of the vortex state in a double-well 
is completely different in comparison with the other three initial states. Both at the mean-field and many-body 
levels, �V generates two dipoles at the two potential minima and they change their orientation in the process of 
evolution. It can be seen from the figure that in spite of the generation of vortex dipoles in two dissimilar level 
of theory, the evolution of the dipoles are different in terms of shape and orientation due to the development of 
the many-body fragmentation in the system.

Figure 10.  Long-time dynamical evolution of the survival probability of N = 10 bosons in the left well of a 
symmetric 2D double-well for the initial states (a) �G , (b) �X , (c) �Y , and (d) �V . The interaction parameter 
� = 0.01π . Mean-field results (in red) and corresponding many-body results (in blue). MCTDHB results are 
computed with M = 6 time-adaptive orbitals for �G and �X , and M = 10 time-adaptive orbitals for �Y and �V . 
The quantities shown are dimensionless.
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Concluding remarks
In the present work, we have studied the tunneling dynamics of initially coherent bosonic clouds in a two-
dimensional double-well potential. The bosonic systems are prepared either as the ground, transversely or longi-
tudinally excited, or vortex state in the left well of a symmetric 2D double-well potential. Although, the tunneling 
dynamics of the ground and longitudinally excited states have one-dimensional manifestations, here we examine 
their two-dimensional analogs by solving the full many-body Schrödinger equation and compare the results with 
their one-dimensional analogs. Moreover, we study the transversely excited and vortex states which do not have 
any one-dimensional analog, and require at least a two-dimensional geometry to be realized.

Explicitly, we have performed the numerical simulations to study the dynamics of the �G , �X , �Y , and �V 
states based on a well-known method, MCTDHB. We observe the dynamical behavior of a few physical quanti-
ties such as the survival probability in the left well, depletion and fragmentation, and the many-particle position, 
momentum, and angular-momentum expectation values and variances of each of the bosonic clouds when they 
tunnel back and forth in the double-well potential. To show the impact of growing degree of fragmentation with 
time, we compare the respective quantities at the many-body level of theory with their respective mean-field 
results.

We have shown that apart from the vortex state, all other initial states can tunnel through the barrier without 
destroying their initial structures at the mean-field level as well as at the many-body level. But the vortex state 
distorts its structure while it tunnels and produces two vortex dipoles which rotate around the minima of the 
corresponding well both at the mean-field and many-body levels. However, the shape and orientation of the 
dipoles, in the long-time dynamics, are found to be different at the mean-field level in comparison with the 
many-body level when one observes the density oscillations of �V . We find that the creation of the vortex dipoles 
occurs due to differences in the tunneling frequencies of �X and �Y  . Moreover, the effect of the many-body 
correlation appears even in the dynamics of the most basic quantity, i.e., the survival probability, in terms of the 
collapse of the density oscillations which can not be seen using the Gross–Pitaevskii theory. Also, the collapse 
rates are found to be different for the different initial states considered here. Therefore, the loss of coherence and 
development of fragmentation demonstrate the clear signature of many-body correlations on the dynamics of 
the bosonic clouds in the two-dimensional BJJ. We notice that the rate of loss of coherence or development of 
fragmentation is maximum for �Y  and minimum for �X . Examining the first few natural orbitals for all the 
states, we observe that the presence of transverse excitations enhances the loss of coherence for �Y and �V , and 
impacts the dynamics of physical quantities discussed in this work. Interestingly, the increase of loss of coherence 

Figure 11.  Time evolution of the mean-field (first and third rows) and many-body (second and fourth rows) 
density oscillations in a symmetric 2D double-well. The interaction parameter is � = 0.01π and the number of 
bosons is N = 10 . Shown are snapshots for the densities per particle at t = 10tRabi (first and fourth columns), 
20tRabi (second and fifth columns), and 30tRabi (third and sixth columns) for the initial states �G , �X , �Y , and 
�V . The MCTDHB computation is performed with M = 6 time-adaptive orbitals for �G and �X , and with 
M = 10 time-adaptive orbitals for �Y and �V . The quantities shown are dimensionless.
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due to the transverse excitations occurs even when the transverse degrees-of-freedom as quantified by 
1

N
�2

Ŷ
(t) 

and 
1

N
�2

P̂Y
(t) are seemingly frozen, see below.

Based on the time-evolution of the survival probability and fragmentation, we have further discussed how 
the many-body correlations affect some basic quantum mechanical observables and their variances. Precisely, 
we present the interconnection of many-particle variances, 

1

N
�2

X̂
(t) , 

1

N
�2

Ŷ
(t) , 

1

N
�2

P̂X
(t) , 

1

N
�2

P̂Y
(t) , and 

1

N
�2

L̂Z
(t) 

with the density oscillations and fragmentation. The many-body variances incorporate the depletion and frag-
mentation, generally leading to different values with the respective mean-field variances. It is observed that the 
time-evolution of each variance vary due to the different initial structures of the bosonic cloud. The distinctive 
feature of the breathing-mode oscillations in addition to the density oscillations are found in the time evolution 
of 

1

N
�2

X̂
(t) , 

1

N
�2

P̂X
(t) , and 

1

N
�2

L̂Z
(t) . The breathing-mode oscillations are the most prominent for the initial 

states �X and �V . We show that the existence of the transverse degrees-of-freedom, although nearly frozen, can 
have significant influence on angular-momentum properties in the system. It is clear from the investigation that 
the information of the many-body features can not be extracted from only the shape of the density profile of the 
system, but it requires a close analysis of the natural orbitals and microscopic mechanism of the fragmentation. 
The present investigation shows that the tunneling dynamics of the ground, excited, and vortex states in two-
dimension bosonic Josephson junction is very rich and many-body theory is required to accurately represent 
their dynamics. We believe that our work will motivate researchers to study the out-of-equilibrium tunneling 
dynamics of more complex and intricate objects.
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