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Experimental study 
on granite acoustic emission 
and micro‑fracture behavior 
with combined compression 
and shear loading: phenomenon 
and mechanism
Yue Cao1, Jinhai Xu2*, Liang Chen3, Peng Wu3 & Faiz Shaikh4

One element that is essential to consider in underground mining engineering applications is the 
possibility of pillar failure, which can result in deadly geological disasters, including earthquakes 
and surface subsidence. Pillars are commonly present under an inclined state and are significantly 
dependent upon combined compression and shear loading. However, many scholars regard the 
pure uniaxial compression strength (UCS) of rock as the main evaluation index of pillar strength, 
which is inconsistent with the field practice. Hence, the present study developed a novel combined 
compression and shear test (C-CAST) system, which was applied in the investigative acoustic 
emission (AE) experiments to characterize the failure mechanism and micro-fracture behavior of 
granite specimens at different inclination angles. The experimental results presented the exponential 
decrease of UCS of inclined specimens with increase in the shear stress component. Changes in the 
inclination angle with a range of 0°–10° produced a splitting-shear failure fracture mode from the 
initial splitting failure. In comparison, an increase in the inclination angle from 10° to 20° produced 
a single shear failure fracture mode from the initial combined splitting-shear failure. The specimens 
exhibited nonlinearly reduced microcrack initiation (CI) and damage (CD) thresholds following 
an increase in the inclination angle, suggesting the dependence of the microcrack initiation and 
propagation on the shear stress component. The ratio of CI and CD thresholds to inclined UCS varies 
within a certain range, indicating that the ratio may be an inherent property of granite specimens 
and is not affected by external load conditions. Additionally, the rock fracture behavior was largely 
dependent upon the mechanism of shear stress component, as validated by the microcrack initiation 
and growth. Finally, a modified empirical formula for pillar strength is proposed to investigate the 
actual strength of inclined pillar. Results of a case study show that the modified formula can be better 
used to evaluate the stability of inclined pillars.

Preserving ore pillar is a popular method in underground mining engineering for meeting engineering 
requirements1. A sound pillar design is paramount to ensure the safety of mine workers while not compromis-
ing the productivity. Meanwhile, pillars are also the support systems of underground mining engineering, which 
can effectively control the surface subsidence. Recently, construction of underground reservoirs has become a 
hot topic in west of China, where pillars are often used as water barriers to prevent the loss of water resources. 
Hence, it is necessary to study the pillar stability for better engineering applications. Comprehensive understand-
ing of the failure mechanism and micro-fracture behavior of pillar at varying conditions is necessary to develop 
the optimal pillar strength design2–6. Past literature focused on optimizing the experimental conditions as these 
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significantly affected the rock material or rock-like material fracture behavior7–13. These studies reported the 
application of uniaxial compression or confined compression loading conditions. However, not enough studies 
investigated the fracture behavior of rock under combined compression and shear. This is essential to simulate 
the test conditions in line with the field conditions.

Many engineering applications have reported the importance of inclination angle as this significantly affects 
the pillar under combined compression and shear loading due to its relation to failure mode as shown in Fig. 1. 
Pariseau14 and Foroughi15 previously reported the effect of the external shear loading on coal pillar stability 
estimation in inclined coal seams. Jessu16 indicated the dependence of the pillar design on the inclination of 
ore body. Specifically, the pillar orientation exhibited axial loading (pure compression) when using horizontal 
pillars and oblique loading (combined compression-shear loading) when using inclined pillars. In addition, the 
shear stress component enhanced the pillar instability. Das17 observed the overestimation of inclined coal pillar 
strength using the traditional pillar strength formulae as these formulae do not consider the inclined rock strata 
shearing characteristics into account. In addition, the bedding plane shear failure also reportedly dominated the 
inclined rock strata. Ching18 suggested that the additional shear stress components may be a result of the inclined 
pillars instability as compared to the fat coal pillars. Suorineni19 challenged the use of the empirical pillar strength 
formulae to investigate the applicability of the conventional uniaxial compressive strength (UCS) given that this 
parameter only highlights the rock strength under pure compression. In comparison, their numerical simulation 
results indicated lower pillar strength due to increase in the pillar inclination. These findings validate the depend-
ence of pillar stability on the pillar inclination. Therefore, characterization of the rock fracture behavior under 
combined compression and shear loading is essential to determine the inclined pillar instability mechanism.

Martin20 carried out pillar case studies, and found that the pillar strength is directly related to the pillar 
width-to-height ratio. Sheorey21 improved the calculation formula of coal pillar strength by introducing buried 
depth and width-to-height ratio. Ebrahim22 reported that weathering and moisture greatly reduce the strength 
of coal pillars. Esterhuizen23 stated that the destruction of the pillar is related to the spalling of the rock and the 
discontinuous shear planes of different angles in the pillar. Swift24 indicated that the increased weathering of 
the mine structure may lead to the destruction of the pillar. However, the above documents do not deal with 
the influence of the dip angle on the stability of the pillar, and ignored the relationship between the combined 
compression- shear load and the stability of the pillar. Xu and Dai25 applied a dynamic impact test, which imple-
mented the modified split Hopkinson pressure bar (SHPB) system, to which the dynamic response and failure 
mechanism results in brittle failure of rocks were due to application of combined compression-shear loading. 
These rock or non-rock material were then subjected to combined compression-shear loading at a high strain rate. 
However, combined compression-shear loading of pillar in actual engineering practices necessitate long-term 
stability for optimal underground mining engineering construction applications. Therefore, characterization of 
the specimen properties and fracture behavior following the application of combined compression and shear at 
low strain rates remains a challenge.

The present study applied a novel combined compression and shear test (C-CAST) system to examine the 
standard granite specimen’s mechanical properties and fracture behavior under combined compression and shear 
loading at low strain rate. The acoustic emission (AE) technology is implemented to characterize the micro-crack 
initiation (CI) and micro-crack damage (CD) at various C-CAST inclination angles. Finally, a modified empirical 
pillar strength formula is proposed to investigate the actual strength of inclined pillar. A case study shows that 
the modified pillar strength formula can be better used to evaluate the stability of inclined pillars. The results can 
provide important reference for strength design and instability mechanism of inclined pillar.

Results
Effect of inclination of specimen on the failure patterns.  Failure pattern of granite specimen under 
a pure uniaxial compression statein Fig. 2 shows a significant amount of parallel cracks formed on the specimen 
in axial direction, all of which clearly exhibit splitting failure. As a whole, the splitting plane is relatively smooth 
(see Fig. 2). Hence, the failure mode of granite specimens at 0° inclination is consistence with previous studies.

The failure pattern of the granite specimen at 5° inclination is shown in Fig. 3. According to Fig. 3a, two major 
cracks are formed on the specimen surface, one of which is nearly parallel to the specimen’s axial direction and 

Figure 1.   Engineering cases about pillars failure1. (a) Inclination limestone pillar; (b) Vertical gypsum pillar; (c) 
Low inclination stone pillar.
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the other is distributed at a certain angle from the axial direction. Both regular shear plane and uneven shear 
planes are alternately observed at an inclination angle of 5° (Fig. 3b,c), suggesting that the granite specimen failure 
mode is dependent on both the shear crack and tensile crack propagation. According to Fig. 4, upon reaching 
an inclination angle of 10°, almost all of the granite specimens show main shear failure plane from their upper 
and lower end faces. Some splitting cracks are also observed around the main shear plane (Fig. 4b,c). This shows 
that the shear failure tends to be more pronounced at 10° inclination compared to the 5° inclination. When the 
inclination angle further reaches 20° (Fig. 5), only one major shear crack runs through the specimen. As a whole, 
the fracture angle (i.e. the angle between macro-crack propagation direction and axial direction of specimen) 

Figure 2.   Granite specimen failure patterns under a uniaxial compression state: (a) Experimental case 1–1; (b) 
experimental case 1–2; and (c) experimental case 1–3.

Figure 3.   Granite specimen failure patterns at an inclination angle of 5°: (a) Experimental case 2–1; (b) 
experimental case 2–2; and (c) experimental case 2–3.
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gradually increases with increasing inclination angle from 10° to 20°. Hence, the results indicated that most 
significant single shear failure happens at an inclination angle of 20°.

According to the above results, the granite specimens show common splitting failure under traditional uni-
axial compression due to the brittle failure of the hard rock. The combined splitting-shear failure mode domi-
nated the specimen’s fracture at inclination angles of 5° and 10°. However, a granite specimen transition from 

Figure 4.   Granite specimen failure pattern at an inclination angle of 10°: (a) Experimental case 3–1; (b) 
experimental case 3–2; and (c) experimental case 3–3.

Figure 5.   Granite specimen failure pattern at an inclination angle of 20°: (a) Experimental case 4–1; (b) 
experimental case 4–2; and (c) experimental case 4–3.
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combined splitting-shear failure to single shear failure is observed as the inclination angles increased from 10° 
to 20°, suggesting the presence of other intrinsic granite failure modes. Nevertheless, the failure modes are 
dependent upon the external loads26–28.

Effect of inclination of specimen on peak strength.  Axial stress–strain curves at different inclination 
angles are generated using Eq. (13) and are shown in Fig. 6. The inclined uniaxial compression strength (IUCS) 
and peak shear strength ( τpeak ) of each specimen stress–strain curves are calculated based on Eqs. (13) and (14) 
(Table 1 and Table 2). It can be seen that the standard deviation of test results are 1.9–3.2 MPa with the coefficient 
of variation from 2.3 to 6.4% for IUCS and 0.2–1.1 MPa with the coefficient of variation from 2.2 to 6.7% for 
τpeak, respectively which indicate the reliability of the test data. With increasing inclination angle from 0° to 20°, 
the average IUCS is decreased by 82.7 MPa at a rate of 64.66%, while the average τpeak is increased by 7.2 MPa 
at a rate of 77.42%.
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Figure 6.   Granite specimen axial stress–strain curves at different inclination angles: (a) Under uniaxial 
compression; (b) 5°; (c) 10°; and (d) 20°.

Table 1.   Granite specimen peak compression strengths at different inclination angles.

Experimental 
scenario (θ) Experimental case Strength (MPa)

Absolute deviation 
(MPa)

Relative deviation 
(%) Mean value (MPa)

Standard deviation 
(MPa)

Coefficient of 
variation (%)

0°

1–1 127.2 0.7 0.5

127.9 3.2 2.51–2 131.4 3.5 2.7

1–3 125.1 2.8 2.2

5°

2–1 107.2 0.9 0.8

106.3 2.4 2.32–2 108.1 1.8 1.7

2–3 103.6 2.7 2.5

10°

3–1 70.6 2.1 2.9

72.7 1.9 2.63–2 73.6 0.9 1.2

3–3 74.0 1.3 1.8

20°

4–1 45.3 0.1 0.2

45.2 2.9 6.44–2 42.3 2.9 6.4

4–3 48.0 2.8 6.2
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Figure 7 presents the dependence of the granite specimen inclination angle on the IUCS and τpeak , wherein 
trend lines 1 and 2 were applied for data fitting. The two fitting curves exhibited variances (R2) of 0.9656 and 
0.9891 (Fig. 7a), respectively, suggesting exponential fitting of the IUCS at these inclination angles. The two other 
fitting curves in Fig. 7b exhibited variances (R2) of 0.989 and 0.8446, respectively, suggesting negative quadratic 
fitting between the inclination angle and τpeak at an inclination range of 0° to 20°. A contribution coefficient of 
shear strength (CCSS) is proposed to determine the dependence of shear stress component on the mechanical 
properties.

where, α is the CCSS, which can be determined by the ratio of τpeak to IUCS. Table 3 shows the CCSS of each 
granite specimen at various inclination angles. Notably, the CCSS was equal to zero at an inclination angle of 0°. 
The average CCSS exhibited about 8.91% and 18.74% increase from θ = 5° to θ = 10° and from θ = 10° to θ = 20° 
(Table 3), respectively. In comparison, the IUCS presented a gradual decrease, thus resulting in a weaker, shear 
stress-induced bond and friction strength among particles as well as reduced specimen deformation resistance.

CI and CD threshold determination techniques.  The strain energy release exhibited the crack initia-
tion and propagation of rock material. In addition, the AE system was employed to monitor the elastic wave. 

(1)α = τpeak
/

IUCS

Table 2.   Peak shear strength of granite specimens at different inclination angles (peak shear strength was 
equal to zero at an inclination angle of 0°).

Experimental 
scenario (θ) Experimental case Strength (MPa)

Absolute deviation 
(MPa)

Relative deviation 
(%) Mean Value (MPa)

Standard deviation 
(MPa)

Coefficient of 
variation (%)

5°

2–1 9.4 0.1 1.1

9.3 0.2 2.22–2 9.5 0.2 2.1

2–3 9.1 0.2 2.2

10°

3–1 12.5 0.4 3.2

12.9 0.3 2.33–2 13.0 0.1 0.8

3–3 13.1 0.2 1.5

20°

4–1 16.5 0.0 0.0

16.5 1.1 6.74–2 15.4 0.9 5.8

4–3 17.5 1.0 5.7
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Figure 7.   Specimen peak compression and peak shear strengths at different inclination angles. Trend lines 1 
and 2 in Fig. 9a,b were fit against the data at an inclination angle range of 0° to 20°.
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Previous studies reported close relationship of the AE signal to the stress–strain curve, as well as its ability to 
effectively showcase the experimental crack evolution process of rock material11,12. Figure 8 presents the sche-
matic diagram of the brittle specimen’s critical stress thresholds (i.e., CI and CD thresholds) and stress–strain 
curve characteristics following the application of uniaxial compression. Non-linear closure was present followed 
by a linear elastic stage, of which the stress–strain curve exhibited a linear slope. An increase in loading stress 
resulted in the development of new micro-cracks. In general, loading stress that induces new crack growth is 
termed crack initiation stress (σCI), and it can be observed when the stress–volumetric strain and stress–lateral 
strain curves depart from linearity28–30. According to Brace29, the cracks are generally initiated at a stress level 
range of 0.3–0.5 UCS following the addition of pure uniaxial compression. Load application onto the specimen 
above the CI threshold then initiates the controllable and stable crack growth, wherein the fracture propagation 
is observed as a slow and stable process. As such, each crack growth increment requires the application of addi-
tional stress. Due to increase in load when the load reaches micro-crack damage threshold (σCD), the crack prop-
agation mode is out of control and begin to enter the stage of unstable crack growth. Hence, the threshold is the 
sign of unstable micro-crack propagation and coincides with the further drastic increase of the AE property rate.

The AE activity has the ability to accurately predict the CI and CD thresholds9,12,28,30,32,33. However, the thresh-
old determination methods of CI and CD may vary, particularly for those with complex loading conditions. 
Wang 11reported the initial tensile crack stress level, which is generally triggered in the opening, as a potential CI 
threshold. Hu30 described two essential points: (1) σCI: the cumulative AE count exhibits a significant increase; 
and (2) σCD: the “cumulative AE hit vs. time” slope presents a dramatic increase following the CI threshold. 
To this, Zhao31 and Kim34 reported the applicability of the “cumulative AE energy or cumulative AE count vs. 
axial stress” slope change in properly defining the σCI and σCD of the rock material during loading. Alternatively, 
Eberhardt35 identified the ‘sharp points’ in the “AE property rate vs. axial stress” curve to determine the σCI and 
σCD. The CI threshold is defined as the axial stress wherein the AE property rate exhibits a significant increase, and 
the point at which loading significantly changes the AE property rates prior to CI. The CD threshold is defined as 
the axial stress that induces a significant increase in the “cumulative AE property (i.e. cumulative AE counts and 
cumulative AE energy) vs. axial stress” slope curve following the CI threshold. Many scholars accept Eberhardt’s 
opinion that defined the two thresholds. Zhao36 showed that the AE hit line method can also be used to define 
the σCI and σCD. Thus, the determination method of CI and CD thresholds is diverse.

Table 3.   Contribution percentage of granite specimen shear strengths (α) at different inclination angles 
(contribution coefficient was equal to zero at an inclination angle of 0°).

Experimental scenario (θ) Experimental case Contribution coefficient (%) Mean value (%)

5°

2–1 8.77

8.782–2 8.79

2–3 8.78

10°

3–1 17.71

17.693–2 17.66

3–3 17.70

20°

4–1 36.42

36.434–2 36.41

4–3 36.46

Volumetric 
strain

Lateral strain Axial strainO

Stress

Crack closure stage

Crack closure stress 

Elastic deformation 
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Crack initiation stress
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Unstable crack growth

Peak stress
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Figure 8.   Brittle specimen critical stress thresholds and stress–strain curve schematic diagram following the 
addition of uniaxial compression31.
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In this section the σCI and σCD of the granite specimens at different inclination angles is established to examine 
the micro-fracture and damage behavior of the granite specimen via combining the above-mentioned methods, 
which primarily involve:(1) the sharp point of AE count rate and AE energy rate; and (2) the slope change of 
“cumulative AE counts and cumulative AE energy vs. axial stress” curve. Table 4 shows the σCI and σCD of each 
specimen determined by the AE count and their ratio to IUCS of the granite specimen at various inclination 
angles. Table 5 indicates the σCI and σCD determined by AE energy and their ratio to IUCS in the inclination range 
from 0° to 20°. Combining Table 4 and Table 5, the average σCI and σCD as well as the average σCI/IUCS, σCD/IUCS 
are obtained as shown in Table 6. Due to the IUCS and AE signals characteristic of the granite specimen in the 
same group are similar, the AE data of a part of laboratory results are presented in Figs. 9, 10, 11, 12, including the 
Test case1-1 (pure uniaxial compression), Test case2-2 (θ = 5°), Test case3-3 (θ = 10°) and Test case4-1 (θ = 20°).      

Table 4.   CI and CD thresholds determined by AE count and their ratio to corresponding peak compression 
strength of granite specimen at various inclination angles.

Experimental 
scenario (θ)

Experimental 
case σCI (MPa)

Mean value 
(MPa) σCD (MPa)

Mean value 
(MPa) σCI/IUCS (%) σCD/IUCS (%)

0°

1–1 54.70

53.30 ± 1.54

101.58

100.43 ± 3.16 41.67 78.521–2 51.76 97.27

1–3 53.43 102.44

5°

2–1 51.46

51.37 ± 2.44

92.50

94.09 ± 1.59 48.32 88.522–2 53.71 95.32

2–3 48.93 94.46

10°

3–1 34.52

32.23 ± 2.29

67.24

68.85 ± 1.61 44.34 94.703–2 31.68 69.81

3–3 30.50 69.50

20°

4–1 24.50

24.25 ± 1.56

38.60

38.79 ± 2.03 53.66 85.814–2 22.69 40.82

4–3 25.57 36.94

Table 5.   CI and CD thresholds determined by AE energy and their ratio to corresponding peak compression 
strength of granite specimen at various inclination angles.

Experimental 
scenario (θ)

Experimental 
case σCI (MPa)

Mean value 
(MPa) σCD (MPa)

Mean value 
(MPa) σCI/IUCS (%) σCD/IUCS (%)

0°

1–1 54.25

51.54 ± 3.24

98.55

99.31 ± 3.91 40.3 77.651–2 52.07 96.17

1–3 48.30 103.22

5°

2–1 51.82

50.69 ± 4.16

90.61

91.68 ± 1.66 47.68 86.252–2 53.71 93.34

2–3 46.53 91.09

10°

3–1 32.75

32.94 ± 1.14

65.47

65.83 ± 1.38 45.31 90.553–2 34.08 67.21

3–3 32.00 64.81

20°

4–1 24.70

24.59 ± 1.66

39.05

38.03 ± 1.75 54.40 84.144–2 22.93 38.76

4–3 26.14 36.28

Table 6.   Mean value of σCI, σCD, σCI/IUCS and σCD/IUCS determined by Tables 5 and 6.

Test scenario CI threshold/σCI, (MPa) CD threshold/σCD, (MPa) σCI/IUCS (%) σCD/IUCS (%)

θ = 0° 52.42 99.87 40.99 78.09

θ = 5° 51.03 92.89 48.00 87.39

θ = 10° 32.59 67.34 44.83 92.63

θ = 20° 24.42 38.41 54.03 84.98
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hits: (a) CI and CD thresholds determined by AE count; (b) CI and CD thresholds determined by AE energy.
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Figure 10.   CI and CD thresholds of granite specimen in Test Case 2–2 (θ = 5°) determined by AE energy and 
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AE count: (a) CI and CD thresholds determined by AE count; (b) CI and CD thresholds determined by AE 
energy.
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Effect of inclination effect of specimen on CI and CD thresholds.  Table 6 presents the CI and CD 
thresholds as well as average CI-to-IUCS and CD-to-IUCS ratios at different inclination angles for granite speci-
mens. Figure 13 shows the CI and CD thresholds vs. inclination angles, wherein both thresholds present a grad-
ual non-linear decrease with the increasing inclination angle. The inclination angles of 5°, 10°, and 20° exhibited 
reduction of average σCI values by 2.65%, 37.83%, and 53.41%, respectively, and reduction of σCD values by 6.99%, 
32.57% and 61.54%, respectively, as compared to that with pure uniaxial compression. These results suggest the 
dependence of the rock material crack initiation and damage on the specimen’s inclination. In addition, the CD 
threshold of the specimen is first decreased slightly from 0° to 5° and then linear decreased sharply from 5° to 
20°, indicating that once inclination angles exceed 5°, the other shear stress component more significantly affects 
the cracking and results in unstable micro-crack propagation.

The present work also calculated the σCI and σCD ratios to IUCS. The σCI/IUCS ratio was within the range 
of 40.99% to 54.03% (Table 6). However, the ratio of σCD/IUCS seems to be at a relatively high stress level of 
78.09% to 92.63%, which is roughly consistence with that described by Bieniawski28 and Amann9 (0.7–0.9 UCS). 
This indicates that the test results of σCI and σCD are reliable. In general, it is possible for significant AE events 
to continue following the CD threshold, wherein the specimen first reaches its peak strength and subsequently 
exhibits fracture. Hence, in the field, we can monitor AE activities by using microseismical detector to determine 
whether the loading applied to pillar has reached the CD threshold and provide a precursor for pillar instability.

Effect of inclination of specimen on the cumulative AE count and AE energy.  The relationship of 
the specimen inclination angle with the cumulative AE count and cumulative AE energy are characterized and 
is shown in Fig. 14. Similarly, the “cumulative AE properties (i.e., AE count and AE energy) vs. time” curve data 
at different inclination angles are also investigated (Figs. 9–12). The inclination angle significantly influenced the 
cumulative AE properties of granite specimen (Fig. 14). The granite specimen at inclination angles of 5°, 10°, 
and 20° exhibited a decrease in cumulative AE activity by 31.38%, 47.91%, and 67.63%, respectively and 21.05%, 
56.87%, and 66.79%, respectively, for the cumulative AE count as compared to specimens with pure uniaxial 
compression. In addition, the required specimen failure loading time was inversely correlated to the inclination 
angle. The granite specimen exhibited applied loading times of 500 s for pure uniaxial compression (θ = 0°), 434 s 

0
1
2
3
4
5
6
7
8
9

10
11

0

3

6

9

12

15

18

0 0.5 1

AE count
Cumulative AE count

A
E 

co
un

t (
×1

00
0)

C
um

ul
at

iv
e 

A
E 

co
un

t (
×1

00
00

)

Normalized axial stress,1

0

3

6

9

12

15

18

0

4

8

12

16

0 0.5 1

Cumulative AE energy
AE energy rate

A
E 

en
er

gy
 ra

te
 (×

10
00

),m
V

2 .m
s

C
um

ul
at

iv
e 

A
E 

en
er

gy
 

(×
10

00
0)

,m
V

2 .m
s

Normalized axial stress,1

σCI=24.5MPa

σ
CD

=38.6MPa

σCI=24.7MPa

σ
CD

=39.05MPa

a b
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for θ = 5°, 301 s for θ = 10°, and 244 s for θ = 20° inclination angles. These results suggest that the shear stress 
component enhanced the specimen fracture.

Starr37 related the average relative shear displacement ( Us ) of the two crack surfaces with the driving shear 
stress ( S ), to which the following equation was derived:

where ν and G are Poisson’s ratio and shear modulus.c is the crack length. Then, Starr further demonstrated that 
the reduction in elastic strain energy ( We ) during crack shear displacement is given by

According to Eq. (3), the reduced elastic strain energy was proportional to the square of the driving shear. 
stress, indicating that a gradual decrease in the AE energy following an increase in the shear stress would be 
observed due to the change in elastic strain energy. This assumption was consistent with the experimental results, 
suggesting its validity. In addition, the higher shear stress enhanced the specimen damage. A gradual increase 
was observed in the shear stress component at higher inclination angles. As a result, the specimen was more 
likely to achieve its peak strength at a shorter time following the application of the same stress loading as well as 
with combined compression and shear loading as compared to specimens with pure uniaxial compression. This 
is consistent with the results shown in Fig. 14.

Discussion
Many scholars have investigated the failure modes of granite specimens collected from different regions under 
pure uniaxial compression38–41. Their results shown that the granite mainly presents splitting failure mode with 
the tensile cracks propagation at room temperature. Bieniawski28 suggested the use of the modified Griffith fail-
ure criterion to characterize the crack initiation mode of brittle rock, especially for granite failure with inclined 
uniaxial compression. This criterion manifests distribution spalling fractures sub-parallel against the maximum 
principal stress direction29,32,33,42,43. The maximum principal stress was parallel to the axial direction with pure 
uniaxial compression, thereby allowing splitting failure. However, higher inclination angles gradually produced 
higher shear stresses, thereby generating deviations in the maximum principal stress direction from the axial 
specimen direction. Hence, the shear failure tends to increase with increasing inclination angle, as shown in 
Fig. 1.

The evolution process of rock fracture was dependent upon the random micro-crack distribution and particle 
friction resistance44. Higher shear stresses reduced the particle friction resistance and enhanced the micro-crack 
initiation and propagation26. The applied shear stress on the particle surface with pure uniaxial compression 
was significantly dependent upon the local stress state redistribution. Hence, it requires greater loading force to 
realize the stress adjustment inside the specimen. However, in the IUCS test, the shear stress component can be 
directly generated by the specimen inclination condition. In addition, higher inclination angles produced higher 
shear stresses, thus further enhancing micro-crack slippage as well as micro-crack initiation and propagation 
even at lower axial loads. Overall, this phenomenon gradually decreased the IUCS at higher inclination angles.

Previous reports undermined the UCS of rock material as these are dependent upon external loading16,26,27. 
In general, UCS is the primary reference index employed for pillar strength designs based on experimental tests 
performed under pure uniaxial compression conditions. However, field applications have indicated that multiple 
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pillars exhibit inclination angles and loadings due to combined compression and shear loading17. Whereas, the 
evaluation methods of pillar strength based on traditional UCS test ignore the influence of inclination angle to 
the pillar stability. It seems unreasonable and limited. Hence, this paper suggests that the corrected inclined UCS 
should be used to design the pillar strength reasonably based on the actual situation.

Tapponier and Brace32 indicated that micro-crack extension at the crack initiation stress point basically 
can only be characterized at the grain-scale. Nevertheless, higher shear stresses can lower the particle friction 
resistance26, indicating that the shear stress can accelerate the crack initiation of the material. In addition, Alkan45 
also observed that the new crack occurs and original crack reopens after elastic deformation with increasing 
shear stress, which indicate the important of shear stress on the σCI. Generally, when the loading stress reaches 
the σCI, the rock specimen still maintains a good bearing capacity, whereas the growth of micro-crack start to 
stable, resulting in the increased damage of the specimen31,34,36. Hence, CI threshold may be used as the initial 
damage point to judge whether the pillar has entered the stable cumulative damage state.

Nicksiar and Martin46 investigated low porosity crystalline crack propagation of specimens using a pure uni-
axial compression test, of which the experimental results indicated tensile cracking dominance at the initial load-
ing stages. In comparison, shear crack was exhibited following CI, and it was mainly observed at values close to 
the peak strength. It means that the shear crack can aggravate the unstable damage degree of the specimen. Brace 
and Byerlee47 investigated the sliding friction effect of rock material at micro-crack surfaces and found that the 
friction coefficient of micro-crack mainly dependent upon the sliding-induced extent of the wear. Nevertheless, 
the specimen sliding friction was highly dependent upon the shear stress26, thereby subsequently increases the 
shear crack. A gradually lowered CD threshold was observed at higher inclination angles following the addition 
of combined compression and shear loading as compared to the specimens with pure uniaxial compression.

Previous studies have reported many pillar stability and design methods, all of which apply Lunder’s “Con-
finement Formula”48 to calculate the pillar strength:

where Ps is pillar strength;K is pillar strength size factor;C1 and C2 are empirical rock mass constants;κ is pillar 
friction term, which can be written as:

where Cpav is average pillar confinement; Coeff  is coefficient of pillar confinement; ω is the ratio of pillar width 
to height.

According to Eq. (4), it can be seen that the pillar strength is closely related to the UCS of rock material. Then, 
the strength loss factor (α) is introduced to obtain the relationship between UCS and IUCS as follows:

where 0 ≤ α ≤ 1 . Integrated Eq. (7), The following Equation will be deduced as

When α = 0 , IUCS is equal to UCS. With the strength loss factor increases, IUCS gradually decrease. Accord-
ing to the Table 1 in the paper, we can obtain the relationship between α and θ , as shown in Fig. 15. In addition, 
the linear and quadratic functions are used to fit this data.

From the Fig. 15, the strength loss factor can also be rewritten as follows:

(4)Ps = K · UCS · (C1 + C2κ)

(5)κ = tan ·{cos .−1[(1− Cpav)/(1+ Cpav).]}

(6)Cpav = Coeff ∗ [log(ω + 0.75)]1.4/ω

(7)α · (θ) = (UCS − IUCS)
/
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where Ai defines the fitting coefficient, which is experimentally determined. Substituting Eqs. (8) and (9) into 
Eq. (4), two modified pillar strength formula considering the effect of pillar inclination angle can be obtained 
as follows

Let’s assume that there is a granite pillar with the ratio of pillar width to height of 2.0. A certain parameter in 
Eq. (10) was first defined to calculate the pillar strength. In general, Coeff  had a value of 0.45, which is suggested 
to generate extraction ratios ranging between 80 to 85% 49. Hence, the values of Cpav in Eq. (6) and κ in Eq. (7) 
can be deduced, respectively, which are 0.25 and 2.67. A previous study defined the values of C1 and C2 as 0.68 
and 0.52, respectively. The pillar strength size factor had a value of 0.5 based on the shape effect formula48. The 
UCS of granite sample at 0° inclination is 127.9 MPa, as shown in Table 1.

Table 7 shows the pillar strength calculated by Eq. (10) under different inclination angles. From the Table 7, 
we can see that the pillar strength is approximately 52.63 MPa for 0° inclination when the strength loss factor 
satisfies the quadratic function (see Fig. 15). For 10 º and 20 º inclination, the actual inclined pillar strength 
was only 0.59-fold (31.03 MPa) and 0.34-fold (17.72 MPa) that of the horizontal pillar, respectively. Therefore, 
the strength of the pillar is easily overestimated if ignoring the influence of inclination angle. It means that the 
modified pillar strength formula can be better used to evaluate the stability of inclined pillars.

Higher inclination angle altered the initial granite specimen splitting failure (θ = 0°) to the combined splitting-
shear failure (θ = 5° and 10°) to the single shear failure (θ = 20°), indicating that splitting failure is not the inherent 
attributes of hard rock and can be affected by external loading. The peak compression strength of the inclined 
specimen decreases almost exponentially with increasing inclination angle. Hence, the corrected inclined uniaxial 
compressive strength (UCS) should be recommended to be incorporated in empirical pillar strength formulae 
for designing the pillar strength reasonably.

The granite specimen’s CI and CD thresholds exhibited a gradual decrease at higher inclination angle, suggest-
ing strong dependence of the shear stress on the combined compression and shear loading, which can weaken 
the frictional resistance among particles and accelerate the micro-crack initiation and damage especially at large 
inclination angle. In addition, the CD threshold first decreases slightly from 0° to 5° and then linear decreases 
sharply from 5° to 20°, indicating that once inclination angle exceeds 5°, the effect of additional shear stress 
component on the unstable propagation of micro-crack is more significant.

The contribution coefficient of nonlinear increase of shear stress with increasing inclination angles shows 
that the changes in the CI and CD threshold-to-peak compression strength ratios are proportional to the range 
of 40.99–54.03% for CI and 78.09–92.63% for CD. These results nullified the effect of the ratio on the specimen 
inclination angle.

The inclination angle is significantly dependent upon the AE properties (i.e., cumulative AE count, cumulative 
AE energy, and AE duration). Lowered AE properties are observed at higher inclination angles as compared to 
the pure uniaxial compression specimens. This is mainly because the shear stress is beneficial to the slipping of 
micro-crack surface and reduce the release of elastic strain energy, which further leads to a decrease in cumula-
tive AE properties.

The present work reported a modified empirical pillar strength formula to characterize the actual inclined 
pillar strength. According to the case results, the inclined pillar exhibited a lower bearing strength as compared 
to the horizontal pillar. These results validated the applicability of the modified pillar strength formula in evalu-
ating inclined pillar stability.

Methods
Experimental material.  The presented experiments employed granite collected from Linyi City, Shandong 
Province, China. Ultrasonic velocity measurements were performed at each direction, to which the consist-
ent 4,350 m/s results at a natural density of approximately 2730 kg/m3 exhibited good isotropy. The employed 
granite material had a crystalline and blocky structure, such that a light gray color was observed at the specimen 
surface (Fig. 16). The drilled cylindrical granite specimens had diameters of 50 mm and heights of 100 mm, all of 
which were cut to appropriate lengths (Fig. 16). These specimens had a height-to-width ratio of 2.0. The granite 
specimen fulfilled the International Society for Rock Mechanics (ISRM) size requirement. The cylindrical speci-
men had a surface roughness of less than 0.02 mm as well as end surfaces, which were perpendicular to its axis, 
of less than 0.001 radians to ensure a flat and smooth specimen surface50.

(9)α · (θ) = A0 + A1θ + A2θ
2 . . .Ai−1θ

i−1 + Aiθ
i =

n
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Anθ
n

(10)Ps = K · UCS ·
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n
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Anθ
n

)

· (C1 + C2κ)

Table 7.   Pillar strength under different inclination angles.

θ (°) 0 5 10 15 20

Quadratic function (MPa) 52.63 40.80 31.03 23.34 17.72

Linear function (MPa) 50.53 42.03 33.54 25.04 16.54
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C‑CAST and AE monitoring system.  To examine the dependence of the combined compression and 
shear loading on the granite strength properties and fracture behavior at low strain rate, the present work gener-
ated a novel C-CAST system. This C-CAST system, which is composed of two symmetrical adaptors, termed the 
top adaptor and bottom adaptor (Fig. 17). Each adaptor mainly includes interior structure and external struc-
ture. Each external adaptor structure has its positioning mark on the material testing system (MTS) platen. The 
interior structure of each adaptor is engraved with dials, which can accurately determine the inclination angle of 
the specimen and avoids the error caused by manual measurement. The granite specimen is situated between the 
upper platen and bottom platen. The test specimens are divided into four groups, corresponding to inclination 
angles of 0°, 5°, 10°, and 20°, of which each group has three specimens. All C-CAST system uniaxial compression 
experimental tests are conducted at the China University of Mining and Technology, China. All applied granite 
specimen load and displacement values were simultaneously performed and recorded at data collection intervals 
of 0.1 s until failure is observed. Additionally, the stress loading experiments are conducted at a loading rate of 
0.5 MPa/s. If the test results by the specimens of each group had a large discreteness, the supplementary tests are 
carried out to reduce the experimental error.

All AE signals that are dependent upon the sudden growth of micro-cracks or slip along existing crack 
surfaces are characterized using a DS5 full-information AE measurement system with an 8-channel transient-
recorder. Two adhesive-affixed sensors onto the specimen surface are employed to detect these AE events 
(Fig. 17), wherein the center frequency is set at 150 kHz. The threshold is the lowest value of the signal collected 
by the acoustic emission equipment. Its setting can effectively reduce the influence of the background noise of 
the experimental site on the experimental parameters. The acoustic emission threshold of this experiment is 
40 dB31,36. Additionally, the AE system maintained data acquisition-MTS synchronization to ensure the accuracy 

Figure 16.   Interior characteristic of the granite studied in this work.

Figure 17.   C-CAST system adapter and its specimen end connection.
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of AE data. Following the completion of the tests, the granite specimens CI and CD thresholds are analyzed 
using the combined AE count and AE energy, which presented the dependence of the inclination angle on the 
specimen micro fracture behavior.

Calculation methods of compression and shear stress components.  Figure 18 presents the granite 
specimen’s stress and displacement characteristics prior to and following the compression tests. The traditional 
uniaxial compression test applied the loading force parallel to the specimen surface using a servo-controlled 
MTS, which is consistent with the 0° granite specimen inclination condition in the C-CAST system. Hence, the 
specimen axial stress and axial strain are easily obtained as follows35,51,52.

where σ0 and ε0 define the specimen axial stress and axial strain at 0° inclination, respectively; F defines the 
MTS-exerted axial compressive force on the specimen surface;.A defines the initial cross-sectional specimen 
area; and L and Le define the initial and final specimen deformation heights, respectively.

At an inclination angle, the vertical loading MTS-applied specimen end face is not presented parallel to the 
axial specimen direction (Fig. 18). This allowed the decomposition of the total vertical loading into the compres-
sion stress component ( σθ ) perpendicular to the specimen’s end face and shear stress component ( τθ ) parallel to 
the specimen’s end face. These results nullified Eqs. (11) and (12) for axial stress and axial strain solution deter-
mination. As such, the granite specimen’s compression stress, shear stress, and axial strain using the C-CAST 
system are determined using the following equations, all of which follow the force decomposition principle26,27:

where εθ defines the axial strain along the specimen height direction; and θ defines the specimen inclination angle.
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