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Understanding the mesoscopic 
scaling patterns within cities
Lei Dong1,2, Zhou Huang1, Jiang Zhang3 & Yu Liu1*

Understanding quantitative relationships between urban elements is crucial for a wide range of 
applications. The observation at the macroscopic level demonstrates that the aggregated urban 
quantities (e.g., gross domestic product) scale systematically with population sizes across cities, 
also known as urban scaling laws. However, at the mesoscopic level, we lack an understanding of 
whether the simple scaling relationship holds within cities, which is a fundamental question regarding 
the spatial origin of scaling in urban systems. Here, by analyzing four extensive datasets covering 
millions of mobile phone users and urban facilities, we investigate the scaling phenomena within 
cities. We find that the mesoscopic infrastructure volume and socioeconomic activity scale sub- and 
super-linearly with the active population, respectively. For a same scaling phenomenon, however, 
the exponents vary in cities of similar population sizes. To explain these empirical observations, we 
propose a conceptual framework by considering the heterogeneous distributions of population and 
facilities, and the spatial interactions between them. Analytical and numerical results suggest that, 
despite the large number of complexities that influence urban activities, the simple interaction rules 
can effectively explain the observed regularity and heterogeneity in scaling behaviors within cities.

In spite of the complexity and variety of cities, it turns out that various macroscopic properties related to urban 
activities Y, such as gross domestic product and infrastructure, scale with the population size P in a surprisingly 
simple power-law manner: Y ∼ Pβ , where β is a scaling exponent (or an elasticity, in economic terms) that char-
acterizes the non-linear properties of urban  systems1. In past decades, the macroscopic urban scaling phenomena 
have drawn great scientific interest in  physics2–4,  economics5,6,  transportation7,8,  environment9, urban  studies10,11, 
and interdisciplinary  fields12–14. And data in many urban systems have demonstrated that these power-law rela-
tionships remain remarkably stable in different  countries1,15 and historical  periods16,17.

At the mesoscopic level, however, whether the relationships between urban characteristics obey some univer-
sal patterns remains poorly understood. Here, the notion of the mesoscopic level means a spatial scale around 
a few kilometers within cities, which is the most commonly used spatial unit for urban research and urban 
 planning18. Moreover, a striking variation in population/socioeconomic density emerges at this spatial  scale19–21. 
Nevertheless, current urban scaling frameworks ‘ignore’ those heterogeneous distributions as they usually model 
a city as a whole and study the macroscopic scaling across  cities6,9,14,22–24 or the temporal dynamics of individual 
 cities25–27. (Ref.28 compares the cross-sectional and temporal scaling analyses at the macroscopic level.) Several 
key questions at the mesoscopic level remain unanswered: do sub-units within a single city follow the power-law 
scaling as observed for systems of cities? What is the mechanism behind the potential scaling patterns within 
cities? Answering these questions is critical to reach a better understanding of urban systems.

Our limited understanding of intra-urban scaling stems from the lack of granular data documenting the 
spatial distributions of urban elements such as population, infrastructure, and socioeconomic activity. Mean-
while, increasing urban dynamics presents further challenges to the data and measurement  issue29. For instance, 
population—the key urban element—is quite dynamic within cities, making it ‘inaccurate’ when measuring 
population distribution by static data like census data. As the census population only reflects a snapshot of the 
nighttime distribution of residents, the daytime density of the urban center is highly underestimated (Fig. 1 and 
Supplementary Fig. 1). Recently, researchers have taken crucial steps in mapping the dynamic  population30 or 
considering three-dimensional building  morphologies31–33 in the within-city analysis. Nevertheless, quantitative 
relations between urban elements are still far from clear.

Here, benefiting from the revolution of big data, we analyze the quantitative relationships between popula-
tion, infrastructure, and socioeconomic activity at the mesoscopic level of ten Chinese cities: Beijing, Chengdu, 
Hangzhou, Jinan, Nanjing, Shanghai, Shenzhen, Suzhou, Xi’an, and Zhengzhou (Supplementary Table 1). These 
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cities locate in different geographic regions of China, which helps test the robustness of our findings. To derive 
the quantitative relationship between urban elements (Table 1), we use four extensive micro-datasets, including a 
granular mobile phone dataset covering 107 million people, a building dataset containing the three-dimensional 
information of ∼ 2 million buildings, a firm dataset recording ∼ 13 million firms, and a point of interests (POIs) 
dataset with approximately 1 million commercial facilities, see “Methods” for detailed data descriptions. The 
mobile phone data allow us to construct an ‘active population’ measure to capture the population dynamics 
(detailed below); and the building data provide the venue to quantify the three-dimensional development of 
infrastructure (Fig. 1a). Based on these datasets, we have three empirical observations. First, we find a robust 
sub-linear relationship between active population and infrastructure volume and a robust super-linear relation-
ship for socioeconomic activity within cities. Second, the average intra-urban scaling exponents are consistent 
with the empirical and theoretical results across cities. Third, the exponents of different cities, however, are also 
notably different.

Figure 1.  Spatio-temporal dynamics of population. (a) Illustration of the temporal dynamics of population. The 
office building is of high population density in the daytime and of low density in the nighttime. The residential 
building, however, is the opposite. We assume that for each building the infrastructure volume (blue lines) 
is proportional to total building areas, which equals the footprint area times the number of floors. (b, c) The 
spatial distributions of daytime (b) and nighttime (c) populations for Beijing. These maps were created with the 
Datamaps tool (https ://githu b.com/ericfi sche r/datam aps). The base map is OpenStreetMap, which is licenced 
under the Creative Commons Attribution-ShareAlike 2.0 licence (CC BY-SA). (d, e) The daytime, nighttime, 
and active population density gradients from the city center to the periphery for Beijing (d) and Chengdu (e). 
As expected, the daytime population density is much higher than the nighttime density around the urban center 
in all studies cities. Statistically, the exponential decay function has a higher R2 for both daytime and nighttime 
populations in Beijing. The power decay function achieves higher for daytime density, and exponential function 
has the better performance for nighttime density in Chengdu.

Table 1.  Variables used to estimate scaling characteristics. We assume that the proxy variable is proportional 
to the corresponding scaling characteristics.

Characteristics Proxy variables Dataset

Population Active population Mobile phone dataset

Infrastructure volume Total floor area of buildings Building dataset

Socioeconomic activity (interaction)
Number of firms Firm dataset

POIs of commercial facilities POIs dataset

https://github.com/ericfischer/datamaps
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To explain these observations, we propose a conceptual framework that unifies the heterogeneous popula-
tion distribution and the spatial interactions between people-infrastructure and people-people. Specifically, we 
decompose spatial interactions into two effects: The local effect captures the interaction between local population 
density and infrastructure networks. The global effect captures the city-wide interactions between population 
via the gravity equation, and the spatial distribution of the active population is regarded as a two-dimensional 
gravity field. Analytical and numerical results suggest, despite the large number of complexities that influence 
urban activities, the simple spatial interaction rules can effectively predict sub- and super-linear scaling behav-
iors within cities. The interaction intensity, a city-specific parameter we introduced in each rule, can explain the 
difference in exponents. These findings offer a mechanistic understanding of scaling phenomena within  cities34, 
and echo the fractal and self-similar nature of  cities35.

Results
Active population. To incorporate the temporal dynamics and derive a better measure of the population 
distribution, we employ the concept of the active population (AP), which is a more appropriate proxy than simple 
residential or employment population for estimating socioeconomic  activity15. The AP reflects a mixture of the 
daytime and nighttime populations within a given region by combing them together with the active time as a 
weight �:

Here, the daytime and nighttime populations are estimated by a large-scale mobile phone dataset for the year 2015 
(Fig. 1 and “Methods”). For the ten cities studied, we have a total of 107 million mobile phone users, accounting 
for more than 75% of the total population of these cities (see Supplementary Table 1 for details).

The total AP in one city is the same as the total daytime or nighttime population if there is no intercity com-
muting. Stated simply, we further assume that the ratio of daytime and nighttime is approximately 1:1, i.e., 12 
h for daytime and 12 h for nighttime in one day. Therefore, we have � = 1/2 in Eq. (1). In other words, here we 
use the average of the daytime and nighttime population as a measure of the AP. One benefit of this setting is 
that for cities without mobile phone data, AP could be calculated by the employment (daytime) and residential 
(nighttime) populations, which are available in many cities’ official statistics. In Supplementary Fig. 2, we fur-
ther show the results by adjusting � within reasonable limits ( � = 1/3 and 2/3), and all conclusions are robust.

We present the daytime, nighttime, and active population density gradients from the downtown to the urban 
fringe of Beijing and Chengdu in Fig. 1d,e. Previous studies have found that population density decays from the 
city center with an exponential, power-law-like, or some more complex  forms36. We find similar patterns in the 
granular population data. The population density curves, however, vary significantly between day and night, 
especially around the urban core areas as shown in Fig. 1d,e.

The empirical findings. Given the detailed spatial distributions of urban elements, a proper spatial unit is 
then required to perform the statistical analysis. To make the results of different cities comparable, here we use 
a 2 km × 2 km grid as our analysis units (“Methods”). To address the potential modifiable areal unit problem 
(MAUP), meaning the statistical results are influenced by the scale of the aggregation  unit37–39, we also perform 
a robustness check by varying the grid size, and all results are stable (Supplementary Table 2 and Supplementary 
Fig. 3).

We aggregate the daytime/nighttime/active populations, buildings, firms, and POIs into the corresponding 
grid cell. To derive the scaling exponent, we take the simplest fitting procedure:

where i indexes different grid cells in a city, the dependent variable Yi denotes the infrastructure volume, the 
number of firms, or the number of POIs, and Pi is the population size. ǫi is the error term.

The fitting results between population and infrastructure volume are shown in Fig. 2a–c. Here we use the total 
building areas (i.e., building volumes) to represent the infrastructure volume by assuming a linear relationship 
between them (for example, one elevator services a certain amount of building areas in office buildings or apart-
ments; see Table 1). The reason to use buildings rather than road networks to measure the infrastructure volume 
is that within cities, especially in high-density areas, a large amount of infrastructure is vertically distributed. 
Road networks would underestimate infrastructure volumes in these areas.

Figure 2b shows that in all studied cities, the exponents of infrastructure are less than 1, indicating a robust 
sub-linear relationship with the population size. Interestingly, the average value (over all cities, the dashed line 
in Fig. 2b) between active population and infrastructure volume �βinfra|ap� ≈ 0.833 is very close to 5/6, a theo-
retical value of the scaling exponent between infrastructure and population across  cities14. Moreover, Fig. 2c 
clearly shows that compared with daytime and nighttime populations, the AP achieves the highest R2 in all cities 
( �R2

infra|ap� ≈ 0.839 ), which demonstrates the effectiveness of the AP measurement.
To investigate the super-linear scaling within cities, we collect two granular socioeconomic activity datasets: 

the firm registration record data and the POI data (see “Methods”). We use the number of firms and POIs as the 
proxy variables for socioeconomic activity (Table 1). Figure 2e,h shows that the super-linear scaling between AP 
and socioeconomic activity holds well in both datasets. In all ten cities, the exponents of firms and POIs are both 
greater than 1, and the average value is approximately 1.25, which is very close to the empirical results across 
cities and the theoretical values of 7/614 or 4/340 derived from different models. Similar to the infrastructure 
results, the R2 calculated by the AP is the highest in most cities (Fig. 2f,i). We notice that for the firm dataset, the 

(1)AP = �Pday + (1− �)Pnight .

(2)log10 Yi = log10 Y0 + β log10 Pi + ǫi ,
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daytime population also performs well in terms of the R2 . This is not difficult to understand, as most firm-related 
activities occur during the day and are closely related to the daytime population (employment) distribution.

Despite the robust sub/super-linear patterns, we can also observe differences in the exponents (Fig. 2). Specifi-
cally, for the same scaling phenomenon, the exponents of cities with similar population sizes can be statistically 
different. For instance, the population of Shenzhen and Xi’an is similar (between 12 and 13 million). However, 
the exponents of infrastructure, number of firms and POIs in the two cities are significantly different (Fig. 2). 
A similar pattern is found in the data of Beijing and Shanghai (population is between 22 and 24 million), firms 
scale more superlinearly in Shanghai compared with Beijing (Fig. 2e). These findings suggest that population 
size is not the only determining parameter that influences the scaling phenomena within cities.

The conceptual framework. To explain these empirical observations simultaneously, we propose a con-
ceptual framework. The main ideas are that the two key elements that constitute a city, its physical infrastructure 
and socioeconomic activity, can be modeled by the local and global spatial interactions with its citizens, respec-
tively. The sub-linear scaling is derived by local interactions between population and infrastructure (Fig. 3a), 
because infrastructure networks develop in a decentralized way in order to connect  people14. The super-linear 
scaling is assumed to be the results of global interactions between population (Fig. 3d). All of our analyses below 
consider the heterogeneous population distribution, and this goes beyond previous theoretical frameworks, 
which usually assume a uniform population  distribution14,22.

Let ρi denote the population density of cell i, and ρi = Pi/Ai , where Pi is the active population and Ai is the 
building footprint area within cell i (gray areas in Fig. 3a). Ai is derived by summing the footprint area of all 
buildings located in cell i. Since infrastructure services population in a localized way, we assume that the typical 
length of infrastructure (e.g., roads, pipes, and cables) ℓ depends on ρ in the following form

Figure 2.  Intra-urban scaling of infrastructure and socioeconomic interactions. (a–c) The sub-linear scaling 
between population and infrastructure volume. (d–i) The super-linear scaling between population and the 
number of firms (d–f) and the number of POIs (g–i). (a, d, g) The scatter plots and fitting results of Beijing 
for the infrastructure volume (a), the number of firms (d), and the number of POIs (g). (b, e, h) The scaling 
exponents (± one standard error) of ten studied cities. (c, f, i) R2 of daytime, nighttime, and active populations. 
The mean values of β and R2 are labeled with dashed lines.
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where α ( 0 < α < 1 ) is a city-specific parameter controlling the local interaction intensity. This equation can 
be verified with empirical data of road networks (Fig. 3b), simulated results (Supplementary Fig. 4), and some 
spatial network  models41. Specifically, we collect road network data from Ref.42, which includes twenty 1 square 
mile samples of different world cities. We then calculate the correlation between the average road length ℓ and the 
density of road intersections (a proxy for population density as the number of road intersections is proportional 
to the population  size43). Figure 3b shows that these two variables are well-fitted by Eq. (3), indicating that our 
assumption is backed up by empirical data. The total infrastructure length Vi within cell i is thus given by the 
product of population Pi and average infrastructure length ℓi

This equation means that the larger the α , the smaller the impact of the population P on the infrastructure. 
We notice that Eq. (4) is a special case of the Cobb-Douglas production  function9, 44, which displays constant 
returns to scale as the sum of the exponents equals 1 ( 1− α + α ≡ 1 ). The constant returns to scale means that 
doubling the population P and footprint area A will also double infrastructure volume V. We take the logarithm 
of Eq. (4) and perform a simple OLS regression to estimate the coefficients, (1− α) and α , for each city. As shown 
in Fig. 3e, the exponents of P and A of different cities almost perfectly fall on the predicted line given by the 
constant returns to scale property.

The analytical and empirical results of Eq. (4) imply that both population and footprint area can contribute 
to infrastructure volume, which is rarely mentioned in the scaling literature. In other words, population is not 
the only determining factor that affects the infrastructure within cities (similarly, Ref.9 finds that population and 
built-up area jointly affect the urban carbon dioxide emissions). Take some newly developed areas in a city for 
example, the population size of these areas has not yet grown; therefore the infrastructure volume of these areas 
is much higher than the value predicted by the current population. A similar issue exists for urban slums, where 

(3)ℓ ∼ ρ−α ,

(4)Vi = ℓiPi = (Pi/Ai)
−αPi ∼ P1−α

i Aα
i .

Figure 3.  Interactions and sub-linear scaling. (a) Illustration of the localized connection between AP and 
infrastructure. We assume that an AP connects to its n nearest neighbors by the infrastructure network, and n 
is a constant number. For simplicity, we draw a two-dimensional schematic. In fact, the population distribution 
and infrastructure connections are three-dimensional. (b) ℓ ∼ ρ−α of road network data ( α = 0.562, R2 = 
0.985). (c) Scatter plot between the observed and predicted infrastructure volumes obtained from Eq. (3). (d) 
Illustration of the global interaction between people and people. (e) Scatter plots of �1− α� and 〈α〉 , which are 
the exponents of P and A in the regression log10 Vi = Ci + (1− α) log10 Pi + α log10 Ai , respectively. The red 
line is the prediction of the Cobb–Douglas function with constant returns to scale. (f) R2 s of the ten studied 
cities. The average R2 obtained from Eq. (4) is 0.927 (red dots), and we also put the results of Fig. 2c here (black 
dots) for comparison.
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the infrastructure is much lower than the estimated number based on their population  size45. These intra-urban 
variations in land use partially explain why the data points shown in Fig. 2 are much noisier than the cross-city 
plots. By considering both P and A we can obtain a better fitting result for infrastructure (Fig. 3c and Supple-
mentary Fig. 5), and the average R2 increases from 0.839 to 0.927 (Fig. 3f).

Although P, A, and V are coupled together as shown in Eq. (4), we can still obtain a simple scaling exponent 
between P and V by assuming a power-law relationship between P and A. In Supplementary Fig. 6, we empiri-
cally show that A ∼ Pη ( �η� ≈ 0.734 < 1 ). Thus, we obtain

The exponent βsub = 1− α(1− η) is less than 1, indicating a sub-linear scaling. The tunable parameters α and 
η capture the heterogeneity in different cities.

Unlike sub-linear scaling, we argue that the super-linear scaling within cities is the result of global (i.e., city-
wide) interactions between people (Fig. 3d). To model the global interactions, we employ the gravity model, 
which is widely used to mimic the interaction flows (e.g., people, goods) between different  regions2,3,46. This 
practice also links urban scaling to human mobility, as the gravity model is one of the essential mobility models.

Let qij denote the interaction between cell i and j, according to the gravity model, we have

where dij is the Euclidean distance between the centroid of cell i and j, γ is a parameter controlling the geographi-
cal constrain for the interaction, and k is the constant. This equation includes two effects: (1) the active population 
Pi captures the preferential attachment effect meaning a popular location will attract more people; (2) dγij captures 
the spatial dependence. Here, γ = 1 is particularly noteworthy because of γ = 1 exactly corresponding to the 
gravity field in a two-dimensional  space47, and the model becomes a ‘parameter-free’ model under this setting. 
Experimentally, the value of γ ranges in the interval [1, 1.5]48–51.

Qi , the total interactions of location i, can be derived by summing Eq. (6):

Due to the complicated spatial correlation between Pj and dij , there is no general analytical solution for Qi ; here 
we present the numerical estimations based on the population distribution of the studied cities. Figure 4a shows 
interactions Qi as a function of the active population size Pi for Beijing (see Supplementary Fig. 7 for the results 
of the remaining cities). As can be seen, all data points fall almost exactly on a straight line with a slope greater 
than one, indicating that the gravity function can virtually reproduce the super-linear scaling between popula-
tion and interactions. More importantly, we find that βsup derived by our ‘parameter-free’ model ( γ = 1 ) is very 
close to the theoretical value 7/6 across  cities14, which provides some new insights into the long-standing debate 
over the gravity model coefficients in urban  fields52.

Figure 4b further shows that the scaling exponent βsup increases monotonically as γ increases, and βsup ranges 
from 1.15 to 1.34 when γ ranges from 1 to 2. And we find a linear relationship between γ and βsup within this 
range:

where a = 1.153 (0.001) and b = 0.186 (0.000) ( R2 = 0.999 ). βsup derived from the model is quite similar to 
our empirical findings (see Fig. 2, we assume the number of firms and POIs is proportional to the volume of 
interactions). Also, the tunable parameter γ reflects the variations of global interaction in different cities and 
different urban phenomena.

Spatial autocorrelation, gravity, and super-linear scaling. We notice that the population distribu-
tions of different cities fluctuate considerably (Supplementary Fig.  1), but all cities have similar super-linear 
scaling exponents under the same γ (Supplementary Fig. 7). It is supposed that there should be some unified hid-
den parameters behind the spatial distribution of population contributing to the universal super-linear scaling 
behaviors. Spatial autocorrelation is a good candidate for that parameter under the intra-urban setting, because 
most geographical phenomena have positive spatial autocorrelation and  dependence53. To test this assumption, 
we perform two analyses. First, we randomly swap the values of the cell-level population; thus, everything is 
preserved but the spatial correlations are destroyed. Supplementary Fig. 8 shows that the exponent between 
population and interaction becomes 1 after the shuffling, indicating that the super-linear scaling phenomenon 
disappears after eliminating the spatial correlations.

Second, we calculate Moran’s  I54, the most commonly used indicator for spatial autocorrelation and show 
the connection between Moran’s I and the scaling exponent (“Methods”). We find that the Moran’s I of the 
active population distribution is mostly between 0.55 and 0.75 (Supplementary Table 3), implying that differ-
ent cities have similar spatial autocorrelation patterns in terms of population distribution. Since the difference 
in the values of Moran’s I between different cities is small, we cannot directly test the relationship between 
Moran’s I and super-linear scaling through empirical data. Thus, we conduct a series of numerical simulations 
to generate point patterns with different Moran’s Is (Supplementary Fig. 9). We generate 1× 105 points under a 
two-dimensional Gaussian distribution with the mean µ = 0 and the standard deviation σ varying from 0.25 to 

(5)Vi ∼ P
1−α(1−η)
i .

(6)qij =
kPiPj

d
γ
ij

,

(7)Qi = kPi
∑

j �=i

Pj

d
γ
ij

.

(8)βsup ≈ a+ b(γ − 1),
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4. We then partition the space by 0.5× 0.5 grid cells and calculate the interaction between each cell pair based 
on the gravity equation ( γ = 1 ). For each σ , we run 30 simulations and take the average values of σ and β . We 
highlight two simulation findings: (1) the simulated point distribution and gravity equation effectively resemble 
the super-linear scaling patterns and exponents (Fig. 4c). (2) β increases monotonically as Moran’s I increases, 
and the theoretical value β = 7/6 corresponds to Moran’s I = 0.66 (Fig. 4d), the similar value to the empirical 
results of ten cities (Supplementary Table 3). All these findings point to a promising direction to study the in-
depth connection between spatial patterns and scaling phenomena.

Discussion
In summary, we analyzed a diverse set of urban data, and find that cities exhibit robust intra-urban power-law 
scaling at the mesoscopic level: the infrastructure and socioeconomic activity satisfy sub- and super-linear 
exponents, respectively. Because the size of grid cells used here is somewhat arbitrary, we perform a sensitivity 
analysis by varying the cell size, and all conclusions are robust (Supplementary Table 2). Notably, the average 
intra-urban scaling exponents are consistent with previous cross-city results, providing direct empirical support 
to the hypothesis that cities are self-similar35 and manifest power-law scaling inside themselves as well. This 
finding also echoes the fractal nature of urban systems.

To explain the observed regularity and heterogeneity in the mesoscopic scaling phenomena, we provide a 
conceptual framework by decomposing spatial interactions into local and global effects. The sub-linear scaling 
of infrastructure volume can be derived through the local effect and is found to be jointly influenced by popula-
tion and footprint areas. This sub-linearity also implies that urban spaces are ‘shared’ by citizens, because if the 
area occupied per capita is constant, there will be no sub-linear phenomenon. Nevertheless, the shareability of 
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Figure 4.  Gravity model, Moran’s I, and super-linear scaling. (a) Fitting results between AP and gravity-based 
interactions for Beijing ( γ = 1 ). (b) Urban scaling exponent βsup changes with the values of γ . The mean 
values of βsup (y-axis) were calculated based on the simulation results of the ten studied cities (with ± one 
standard deviation). Interestingly, we find a linear relationship between γ and βsup when γ ranges from 1 to 2 
(the red line), and the cases γ = 1 and 2 effectively reproduce the theoretical estimations of β = 7/6 and 4/3, 
respectively. (c) The super-linear scaling between interaction and the number of nodes (population) with σ = 1 
and γ = 1 . (d) Moran’s I and the scaling exponent β . β increases monotonically as Moran’s I increases, and the 
theoretical value β = 7/6 corresponds to Moran’s I = 0.66, the similar value to the empirical results of Moran’s I.
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different land types is different. In particular, we find that the per capita living area does not seem to change with 
city size (Supplementary Table 4). Detailed analysis of this phenomenon is beyond the scope of this study, but 
quantifying the scaling law between different land types and population size is worthy of further investigation.

The super-linear scaling is attributed to the city-wide interactions, which links urban scaling to human mobil-
ity. By adjusting the city-specific parameters α , η , and γ , we give a better description of the real world, where the 
scaling exponents do not always appear symmetrically as β = 1± δ for super- and sub-linear scaling predicted 
by previous models (Table 2). In particular, there is always a higher exponent for some super-linear scaling 
phenomena such as innovation and epidemic  spreading1; this may be primarily due to these phenomena being 
affected more by global interactions (a larger γ or a more autocorrelated population distribution).

From an application point of view, the revealed properties of intra-urban scaling are of considerable policy 
relevance. For instance, we can map granular socioeconomic activity or population distributions with only 
building data, which is available for many cities. Moreover, urban planners could assess the matching rate of 
facilities, socioeconomic activity, and population at a mesoscopic level within cities, thus guiding urban plan-
ning and renewal in the future.

It is important to note that, due to the accessibility of the dataset, we only present the results from ten large 
Chinese cities with high population density. Further research is needed to show whether the revealed patterns 
hold in other configurations, such as a spatially constrained city like Seattle or San Francisco, or a city whose 
growth has been largely uncontrolled, such as Los Angeles or Mexico City. Also, because our framework is 
minimal, it ignores various factors, such as transportation investment, policy, geographical barriers, all of which 
could affect the distribution of urban elements and the studied scaling phenomena. However, this paper provides 
an empirical and theoretical basis, where additional data and factors can be incorporated.

Methods
Population distribution dataset. The population distribution is estimated by a large-scale mobile phone 
dataset, which is provided by one location-based service provider in China. The mobile phone data have been 
used in our previous  studies55,56, and the population coverage of this dataset is shown in Supplementary Table 1. 
To protect user’s privacy, we adopt a very rigorous protocol in this research. First, all user IDs in our data are 
anonymized to ensure that one cannot associate the data to individual users. Second, all the researchers must 
follow a confidential agreement to use data for approved research. Third, we use data aggregated into the grid 
cell for this study. To estimate the daytime and nighttime population distributions, we take the following steps: 

 (i) Detecting stay point. For each anonymous individual, we have a series of geo-positiong points {times-
tamp, longitude, latitude}. A stay point is defined by a moving distance less than d = 200 m within a 
t = 10 min time threshold. As documented in our previous  research55, the stay points are robust when 
adjusting these thresholds within reasonable ranges.

 (ii) Clustering. We cluster the stay points into different clusters using the DBSCAN  algorithm57. These 
clusters are defined as the stay locations.

 (iii) Classification. We extract 28 features from the data (see Supplementary Table 5 for the main features). 
Then, we use  Xgboost58, a supervised machine learning algorithm, to train two classifiers for the work 
and home location classification, respectively. The classification models are trained with a ground truth 
dataset, which contains ∼ 104 users’ self-reported home and work  locations56. The distributions of work 
and home locations are regarded as the daytime and nighttime population distributions, respectively. 
Figure 1b,c present the spatial distributions of detected home and work locations of Beijing.

To verify the accuracy of the results, we calculate the correlation between mobile phone data inferred home 
locations and the micro-census data of the year 2015 (the same year of our mobile phone dataset) at the district 
level. The R2 s of the linear regression ( logMobilePhone = β log Survey + ǫ ) are 0.97 for Beijing and 0.98 for 
Shanghai, indicating that the mobile phone estimated population has good consistency with the survey data in 
terms of geographical distribution (Supplementary Fig. 10). The correlation between mobile phone data and 
official statistics has also been discussed in the studies of  Estonia59,  Portugal30, and  France60.

Building dataset. The building data were collected from one digital map in China. The geographical layouts 
of the buildings are presented in Supplementary Figs. 1 and 11. We should note that since there is no ground 
truth for the building dataset, we cannot directly measure its quality. In Ref.61, researchers from Microsoft track 
some metrics to measure the quality of a similar building dataset in the US. The IoU (intersection over union) 
of that test set is 0.85.

Table 2.  Scaling exponents within cities and across cities. The empirical and theoretical results across cities are 
obtained from Ref.14.

Exponents

Within cities Across cities

Observation Model Observation Model

βsub [0.70, 0.92] 1− α (1− η) [0.74, 0.92] 1− δ

βsup [1.07, 1.41] a+ b (γ − 1) [1.01, 1.33] 1+ δ
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Firm dataset. We collected firm registration record data from the registry database of the State Administra-
tion for Industry and Commercial Bureau of China. This dataset covers the registered information for firms in 
China, with attributes including firm name, year established, address, operation status, etc. We geocode firm 
addresses into longitude and latitude and then aggregate firms by grid cells of each city. Two limitations of the 
firm data should be noted: firstly, we only have registered address, which may not be the same as the operation 
address; and secondly, firm size (e.g., the number of employees or the revenue) is unreported in the raw dataset.

POI dataset. We collected POI data from http://dianp ing.com, the largest online rating website in China. 
The raw data include detailed locations of restaurants, shops, and service businesses (e.g., hair salon, photo stu-
dio), here we use points of restaurants and shops for our analysis. We note that the penetration rates of dianping.
com in these two categories are high. For example, according to a report by Beijing Cuisine Association, there 
were 147,575 restaurants in operation at the end of 2016. In our dataset, we have 139,131, which covers 94.3% of 
the total number of restaurants.

Threshold. To make the results comparable across cities, we restrict all our data and analysis within the 
urban core area (the distance from the city center ≤ 15 km for Beijing and ≤ 10 km for the remaining cities. The 
coordinates of the city center are presented in Supplementary Table 1). To reduce the potential noise in the data-
sets, we further set four thresholds—10−2 km2 for footprint area, 1000 for mobile phone estimated population, 2 
for the number of firms, and 2 for the number of POIs—to remove cells with values less than the thresholds. The 
number of cells used in the regression is shown in Supplementary Table 1.

Grid cell. We transform the coordinate of each data point to a projected system (Gauss–Kruger) and build 
the grid system. For the grid cell division, we have two further explanations. The first is about the modifiable 
areal unit problem. With this grid style division, we can use different cell sizes to verify the robustness of the 
conclusions, which we have discussed in the “Discussion”, Supplementary Table 2, and Supplementary Fig. 3. 
The second point is about a fundamental question—how to define a city. Undoubtedly, a city is composed of a 
series of sub-units. According to the theory of fractal cities or hierarchical network-embedded cities, we have 
reason to find self-similar units within cities. This kind of grid cell division provides a basis for us to find such 
a unit. Specifically, the 2 km × 2 km grid corresponds to the typical activity range of people’s daily life, which is 
equivalent to a 15 min living circle (people walk at a speed of 4–5 km/h).

Moran’s I. To calculate Moran’s I, we use the following formula:

where n is the number of observations (grid cells in our case), W is the sum of the weights wij for all cell pairs 
in a city, zi = xi − x̄ where x is the active population size at location i and x̄ is the mean active population size 
in the city. Moran’s I has a value from − 1 to 1: − 1 means perfect clustering of dissimilar values (i.e., perfect 
dispersion); 0 indicates no autocorrelation (i.e., perfect randomness); and 1 indicates perfect clustering of similar 
values (opposite of dispersion).

Data and code availability
Data and code necessary to reproduce our results are available through https ://githu b.com/leiii /MesoS calin g.
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