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Forecasting the long‑term trend 
of COVID‑19 epidemic using 
a dynamic model
Jichao Sun1,2, Xi Chen1,2, Ziheng Zhang1,2, Shengzhang Lai1, Bo Zhao1, Hualuo Liu1, 
Shuojia Wang1, Wenjing Huan1, Ruihui Zhao1, Man Tat Alexander Ng1* & Yefeng Zheng1*

The current outbreak of coronavirus disease 2019 (COVID‑19) has recently been declared as a 
pandemic and spread over 200 countries and territories. Forecasting the long‑term trend of the 
COVID‑19 epidemic can help health authorities determine the transmission characteristics of the 
virus and take appropriate prevention and control strategies beforehand. Previous studies that 
solely applied traditional epidemic models or machine learning models were subject to underfitting 
or overfitting problems. We propose a new model named Dynamic‑Susceptible‑Exposed‑Infective‑
Quarantined (D‑SEIQ), by making appropriate modifications of the Susceptible‑Exposed‑Infective‑
Recovered (SEIR) model and integrating machine learning based parameter optimization under 
epidemiological rational constraints. We used the model to predict the long‑term reported 
cumulative numbers of COVID‑19 cases in China from January 27, 2020. We evaluated our model on 
officially reported confirmed cases from three different regions in China, and the results proved the 
effectiveness of our model in terms of simulating and predicting the trend of the COVID‑19 outbreak. 
In China‑Excluding‑Hubei area within 7 days after the first public report, our model successfully 
and accurately predicted the long trend up to 40 days and the exact date of the outbreak peak. The 
predicted cumulative number (12,506) by March 10, 2020, was only 3·8% different from the actual 
number (13,005). The parameters obtained by our model proved the effectiveness of prevention and 
intervention strategies on epidemic control in China. The prediction results for five other countries 
suggested the external validity of our model. The integrated approach of epidemic and machine 
learning models could accurately forecast the long‑term trend of the COVID‑19 outbreak. The model 
parameters also provided insights into the analysis of COVID‑19 transmission and the effectiveness of 
interventions in China.

Coronavirus disease 2019 (COVID-19) is infectious pneumonia caused by severe acute respiratory syndrome 
coronavirus  21. The disease was first reported in December 2019 in Wuhan city, the capital of Hubei province 
in China, and has since then spread across China and  globally2. As of 19 August, a total of 22 million COVID-
19 cases and 773,067 deaths have been reported in more than 200 countries and  territories3. The World Health 
Organization (WHO) has declared the COVID-19 outbreak as a Public Health Emergency of International 
Concern and a pandemic  recently4.

Forecasting the long-term trend of the epidemic can help health authorities determine the transmission 
characteristics of the virus and develop appropriate prevention and containment strategies beforehand. Recently, 
some researchers applied the traditional epidemic models like Susceptible-Exposed-Infective-Recovery (SEIR) 
or machine learning models like logistic regression to predict the trend of COVID-195,6. To the best of our 
knowledge, most of those researches were performed retrospectively, or subject to overfitting or underfitting 
problems. The validity of the SEIR model depends on accurate estimation of virus transmission characteristics 
such as the basic reproduction number  R0, incubation period, and infectious period. In a real scenario, those 
parameters are not easy to estimate. For example, Wu et al. made an estimation of the basic reproduction number 
using exported cases from China to abroad/overseas and estimated that 75,815 individuals had been infected 
in Wuhan as of 25  January6, which significantly overestimated the figure. On the other hand, due to insufficient 
training data and valid features, machine learning models were subject to overfitting, restricted to retrospective 
analysis, or only forecasting short-term  trends5,7–10.
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To address the aforementioned issues, we propose a novel model named Dynamic-Susceptible-Exposed-Infec-
tive-Quarantined (D-SEIQ), by making appropriate modifications of the SEIR model and integrating machine 
learning based parameter optimization under reasonable constraints. Our D-SEIQ model effectively improves 
the performance of long-term trend forecast for COVID-19 outbreak in China and five other countries. In addi-
tion, the model parameters, such as the dynamic reproduction number, could provide insights into the analysis 
of COVID-19 transmission characteristics and the effectiveness of interventions.

Methods
D‑SEIQ model. The primary differences from our D-SEIQ model and SEIR model include (1) replacing 
recovered individuals R with quarantined individuals Q , and (2) introducing time-dependent dynamics to the 
estimation of the effective reproduction number Rt.

SEIR model is a classic compartmental model that has been initially used to simulate the spread of flu. Some 
previous work employed the SEIR model to predict the trend for COVID-19, which assumed that the exposed 
individuals (who were infected but displays no symptoms) are not  infective2. However, it has been reported that 
COVID-19 might be transmissible for exposed  individuals11. Moreover, R compartment in the traditional SEIR 
model indicates recovered cases or more precisely removed cases, who were removed from the total popula-
tion and lost their infective or susceptible properties. Unlike flu patients who recovered soon after treatment or 
untreated, there was no specialized treatment for COVID-19, and COVID-19 patients were usually quarantined 
quickly by health workers and lost their infective or susceptible properties. In this scenario, the counterpart of 
R compartment in the traditional SEIR model should be replaced quarantined compartment (Q). Therefore, 
the infectious period which was the time between state infection (I) and recovered (R) in the traditional SEIR 
model, corresponded to the time between state infection (I) and quarantined (Q) in the COVID-19 epidemic. 
Therefore, we replaced the recovered individuals R with the quarantined individuals Q, and the model became 
the SEIQ model. The quarantined individuals Q indicated the confirmed cases who were detected and centrally 
quarantined. The quarantined individuals Q became either recovered (RQ) or death (DQ) eventually. Meanwhile, 
some infected cases recovered or deceased without being detected and diagnosed. We defined those cases as 
undetected recovered (Ru) and death (Du) cases. The epidemic spreading model for the SEIQ model is therefore 
illustrated in Fig. 1.

The transmission dynamics are governed by the following system of equations:

where N = S(t)+ E(t)+ I(t)+ Q(t)+ Ru(t)+ Du(t) is the total population, which is assumed a constant.
Like the SEIR model, parameter β indicates the infectious rate with β =

Rt
TE

 where Rt is the dynamic effective 
reproduction number and TE is the average duration of incubation; parameter σ indicates the incubation rate with 
σ = 1

TE
 . However, in our model, parameter γ indicates the quarantine rate with γ = 1

TI
 (where TI is the average 

duration of an infectious individual to be detected and quarantined). The parameter TI reflects the timeliness 
of patient detection and admission and usually varies across different regions. Parameters ε and μ indicate the 
undetected recovered and death rate, respectively.

(1)

dS(t)

dt
=

−S(t)I(t)

N

dE(t)

dt
=

S(t)I(t)

N
− E(t)

dI(t)

dt
= E(t)− I(t)− εI(t)− µI(t)

dQ(t)
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= I(t)

Figure 1.  Epidemic spreading diagram for SEIQ model. S: susceptible; E: exposed; I: infective; Q : quarantined. 
Parameter β indicates the infectious rate. Parameter σ indicates the incubation rate with σ =

1

TE
 (incubation 

period). Parameter γ indicates the quarantine rate with γ =
1

TI
 (infectious period).



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21122  | https://doi.org/10.1038/s41598-020-78084-w

www.nature.com/scientificreports/

The basic reproduction number R0 is the most important parameter to determine the intrinsic transmissibility 
of COVID-19, and it is defined as the average number of infections one infectious agent can generate over the 
course of the infectious period without any interventions. R0 was assumed to be a constant or arbitrarily modified 
at specific points for forecasting in previous  work12,13. However, in real-world scenarios, with the development 
of the epidemic, more and more interventions are often taken to control the spread, which gradually reduces 
R0 . In this work, the basic reproduction number R0 is generalized to a dynamic value Rt , which is defined as 
the average number of secondary infectious cases generated by an infectious at time t. After the worldwide 
outbreak of COVID-19, many governments took considerable measures to contain the spread of the virus. In 
our preliminary analysis and some previous  work14, the infectious rate β was shown to decrease exponentially 
with time. As parameter TE is constant, the effective reproduction number Rt should follow a similar pattern as 
decreasing exponentially with time. Thus, we introduced time-dependent dynamics to the estimation of Rt for 
better simulation of the real-world transmission,

where R∞ is the final reproduction number at the end of the pandemic and θ is the decrease ratio of the repro-
duction number, which is associated with the corresponding interventions. At the very beginning when t = 0 , 
Rt = R0 , and it gradually reduces to R∞ as t increases. The epidemic is considered to be under control with 
Rt < 1 , and the reasonable range of R∞ was provided in some previous analysis of  coronavirus15.

Parameter constraints and optimization. The simulation and prediction of the D-SEIQ model require 
the determination of parameters R0,R∞,TE,TI , θ . Although we incorporated machine learning techniques to 
help us to fit the reported data, the parameter range needs to be pre-set carefully and to conform to epidemio-
logical rationality. For instance, Wu et al. applied an adjusted SEIR model to estimate R0 ( R0 = 2.68 ) in major 
cities of China by analyzing the number of cases exported from Wuhan  internationally6. Some work concluded 
that the daily reproduction number varied between 2 and  716. Therefore, we set a reasonable range for parameter 
R0 ∈ [2, 7] . Likewise, after reviewing the previous work on the analysis of COVID-19 [2, 11], we summarized the 
ranges for parameters in our model as Table 1. And, we set TE > TI as an additional constraint. Therefore, the 
parameter optimization process is as follows:

(a) Initialize the number of confirmed cases Q at time t = 0 according to the official report.
(b) Initialize the parameters R0,R∞,TE,TI , θ.
(c) Calculate the time-dependent effective reproduction number Rt.
(d) Solve ordinary differential equations in Eq. (1) to determine E(t), I(t),Q(t).
(e) Set loss function as the sum of mean squared errors of daily and cumulative confirmed numbers, and then 

estimate the parameters R0,R∞,TE,TI , θ based on grid search with dynamically adapted search steps to 
obtain the best D-SEIQ model at time t .

Data processing. We obtained the updated data of the cumulative confirmed cases from the National 
Health Commission (NHC) of the People’s Republic of China. The newly confirmed cases were also collected 
on a daily basis. Considering that medical resources and interventions might vary in different regions, we fitted 
our model on the data from three different regions: (1) China excluding Hubei, (2) Hubei excluding Wuhan, and 
(3) Wuhan.

Moreover, we adjusted the number of newly confirmed cases in Wuhan between 12 and 14 February, due to 
the inclusion of clinically confirmed cases without coronavirus test. The clinically confirmed cases between 12 
and 14 February were assumed to be suspicious cases in the last 7 days. Specifically, we redistributed the clinically 
confirmed cases according to the distribution of suspected cases over the past 7 days.

Forecasting long‑term trends of confirmed case numbers. Because China’s NHC publicly reported 
case numbers starting from 20 January, we set this date as the starting point of our training data. As of 10 March, 
the daily increased case numbers declined to single digits across most areas in China, we set this date as the end-
ing point of our model.

(2)Rt = R∞ + (R0 − R∞)× e−t

Table 1.  The constrained range for parameters with epidemic rationality. R0 denotes the basic reproduction 
number; TE denotes the incubation period; TI denotes the infectious period; R∞ denotes the final value of Rt ; θ 
denotes the decrease ratio of Rt.

Parameters Reasonable ranges

R0 [2, 7]

TE [3, 11]

TI [1, 5]

R∞ [0.05, 0.35]

θ [0.05, 0.45]
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We updated our models dynamically from the 7th day following the starting point (i.e., 27 January). In this 
article, we presented the prediction of our models at the time points of 1st to 5th week, namely 27 January, 4 
February, 11 February, 18 February, and 25 February.

For example, the model for the first week (as of 27 January) used the data from 20 to 26 January for model 
construction and forecasted the daily increased and cumulative case numbers from 27 January to 10 March.

As of 27 April, the date on which the manuscript was finished, we used the same model to make a one-month 
prediction for the top five countries with worst outbreaks, including the United States, Italy, Spain, Germany, 
and France, to test the external validity of our models.

Results
The simulation and prediction of our D-SEIQ models are illustrated from three different regions: China exclud-
ing Hubei, Hubei excluding Wuhan, and Wuhan.

China excluding Hubei. The D-SEIQ model with the prediction date of 26 January showed that the cumu-
lative number would reach 65,282 (red dotted line in Fig. 2) on 10 March. In retrospect, our model greatly over-
estimated the development of the epidemic, possibly because at the early stage of the epidemic when interven-
tion had not taken its effect, the number of cases increased sharply and did not show the potential decline of Rt . 
The overestimation also illustrated the effectiveness of the subsequent containment measures.

The D-SEIQ model trained on 27 January showed that the cumulative number would reach 12,506 on 10 
March, and the daily number would reach the peak on 1 February. In retrospect, the prediction was quite close 
to the real scenario. The real cumulative number on 10 March was 13,005 which was only 3.8% different from the 
predicted value. Also, the outbreak peak predicted by our model is exactly the same as the actual date (around 
1 February to 3 February). Therefore, in the region of China excluding Hubei, the D-SEIQ model is shown to 
successfully estimate the trend for up to 40 days, with one-week data after the first public report.

At the late stage of epidemic spread, the model is capable of fitting on previous data and also predicting the 
epidemic development. For example, on 11 February, we predicted the cumulative number was 13,006 at the 
endpoint while the true value is 13,005.

The parameters learned at the late stage could accurately reflect the intrinsic characteristics of COVID-19. 
Thus, the parameters on 25 February were used as the estimation of true values. In the region of China excluding 
Hubei, the basic reproduction number R0 was estimated to be 6.3; the decrease ratio θ to be 0.2; the incubation 
period TE to be 3 days, and the infectious period TI to be 2 days. The effective reproduction number R∞ ulti-
mately dropped to around 0.3.

Hubei excluding Wuhan. The number of confirmed cases grew rapidly in the region of Hubei excluding 
Wuhan in the first week, which biased our model of 27 January to enormously overestimate the peak value. Our 
model predicted that the cumulative number would reach 65,763 by 10 March. On the other hand, the overesti-
mation also indicates that, without containment, the epidemic would show explosive growth as the influence of 
containment measures remained unseen at the early stage of the epidemic.

After the clinically confirmed cases between 12 and 14 February were adjusted by redistribution, we re-trained 
our model with adjusted values (Fig. 3). The model on 14 February after adjustment showed that the cumulative 
number would reach 18,844 with an error of 6% compared with the real number.

Similarly, based on the model of the late stage of the epidemic (25 February), the transmission parameters of 
the virus were estimated as follows: the basic reproduction number R0 was 6.3; the decrease ration θ was 0.15; 
the final reproduction number R∞ was 0.2; the incubation period TE was 3 days; and the infectious period TI 
was 2 days.

Wuhan. In the early days of the epidemic outbreak in Wuhan, due to the deficiency of detection capabilities 
and limited medical resources, the reported numbers were far below the real incidences. During the first week, 
the daily increased numbers even showed a declining trend, and the D-SEIQ model of 27 January consequently 
underestimated the epidemic development. There was a large increase in clinically confirmed cases between 12 
and 14 February. We adjusted the numbers on 14 February and the prediction showed that the cumulative num-
ber would reach 54,492 at the endpoint, with an error of 9% from the actual number of 49,980. On 18 February, 
the D-SEIQ model showed a convincing simulation of the overall trend, and the overall predicted curve indeed 
fitted the adjusted values quite well (grey dashed line in Fig. 4).

The estimated parameters of the COVID-19 transmission were as follows: the basic reproduction number R0 
was estimated to be 4.63; the decrease ratio θ was 0.1; the final reproduction number R∞ was 0.15; the incubation 
period TE was 3 days; and the infectious period TI was 2.5 days.

Analysis of reproduction number  Rt. We further analyzed the reproduction number Rt by our D-SEIQ 
models. We used the Rt learned at the late stage of the simulation. We plotted the Rt curve from 20 January to 
10 March as Fig. 5 to compare the reproduction numbers in three different regions. At the initial time, R0 was 
6.3 in China excluding Hubei and Hubei excluding Wuhan, both of which were larger than that in Wuhan 
with R0 = 4.63 . However, the decrease ratio θ for Rt was largest in China excluding Hubei (0.20), followed by 
Hubei excluding Wuhan and then Wuhan. Therefore, Rt in China excluding Hubei dropped below 1 the earli-
est, meaning that COVID-19 was under control in other provinces sooner than Hubei province. The final R∞ 
of three different regions all approached zero, demonstrating a great achievement in epidemic containment and 
interventions.
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Forecasting long‑term trends of COVID‑19 for countries outside of China. As of 27 April when 
this manuscript was finished and most countries have reached the late stage of the first epidemic wave, we 
forecasted a one-month trend of COVID-19 for the top 5 countries with worst outbreaks using the proposed 
D-SEIQ model, namely the US, Spain, Italy, France, and Germany. The one-month ahead predicted cumulative 
reported numbers of cases were fairly close to the real numbers for all the five countries except the US (Sup-
plementary Fig. 1). The differences between the predicted and the real numbers were − 16.0% (the US), − 7.5% 
(Spain), − 8.5% (Italy), − 7.7% (France), and − 0.2% (Germany), respectively.

Figure 2.  Simulation and prediction results of daily and cumulative confirmed cases in the region of China 
excluding Hubei. Data were shown on each figure with 6 different prediction dates. The results of daily 
confirmed cases are placed on 1st and 3rd rows and the results of cumulative confirmed cases are placed on 
2nd and 4th rows. Green vertical line: the prediction date which separate training data and test data. Solid 
blue line: the real number of confirmed cases before prediction date, namely training data. Solid yellow line: 
the retrospective number of confirmed cases, namely test data. Red dotted line: the number predicted by the 
D-SEIQ model.
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Discussion
We proposed a new model named D-SEIQ, which applies appropriate modifications of the SEIR model and 
combines with parameter optimization of machine learning. We evaluated our model on officially reported data 
from three different regions in China, and the results proved the effectiveness of our model in terms of simulating 
and predicting the trend of COVID-19 outbreak and regional spread. Especially, in China excluding Hubei area 
within 7 days after the first public report, our model successfully and accurately predicted the long trend up to 
40 days and the exact date of the outbreak peak.

Traditional epidemic transmission models like SEIR need an accurate estimation of model parameters such 
as basic reproduction number, incubation period, and infectious period through epidemiological investigation. 
However, in terms of a new epidemic, due to the rapid outbreak, insufficient sample size, and the deviation of 

Figure 3.  Simulation and prediction results of daily and cumulative confirmed cases in the region of Hubei 
excluding Wuhan. Data were shown on each figure with 6 different prediction dates. The results of daily 
confirmed cases are placed on 1st and 3rd rows and the results of cumulative confirmed cases are placed on 
2nd and 4th rows. Green vertical line: the prediction date which separate training data and test data. Solid 
blue line: the real number of confirmed cases before prediction date, namely training data. Solid yellow line: 
the retrospective number of confirmed cases, namely test data. Red dotted line: the number predicted by the 
D-SEIQ model. Grey dashed line: the numbers after adjustment of the clinically confirmed cases.
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investigated data from the ground-truth, the traditional epidemic transmission models usually poorly fit to the 
data. In practice, researchers often made various assumptions for calculation or even used relevant parameters of 
other viruses as substitutions. For example, Wu et al. adopted serial interval estimates for SARS as substitutions 
and estimated that 75,815 individuals were infected in Wuhan as of 25  January6, which significantly overestimated 
the figure. On the other hand, machine learning methods, such as logistic regression models, were subject to 
overfitting  problems17, which means they could fit the training data well but fail to predict on unseen data. The 
accountable reasons include the limited epidemic rationality of the models and the insufficiency of data and 
salient features. Deep neural networks like long short-term memory (LSTM) were proven to be incapable of 
predicting the long-term trends and the outbreak  peak18.

Figure 4.  Simulation and prediction results of daily and cumulative confirmed cases in the region of Wuhan 
Data were shown on each figure with 6 different prediction dates. The results of daily confirmed cases are placed 
on 1st and 3rd rows and the results of cumulative confirmed cases are placed on 2nd and 4th rows. Green 
vertical line: the prediction date which separate training data and test data. Solid blue line: the real number of 
confirmed cases before prediction date, namely training data. Solid yellow line: the retrospective number of 
confirmed cases, namely test data. Red dotted line: the number predicted by the D-SEIQ model. Grey dashed 
line: the numbers after adjustment of the clinically confirmed cases.
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Our model takes advantage of both epidemic and machine learning models, which combine the explainability 
of the epidemic model with the data-fitting ability of machine learning. In the process of machine learning, we 
set the parameters within a reasonable range, and exploit mutual constraints between the parameters.

Meanwhile, we innovatively introduced dynamic Rt , which can reflect the time-dependent influence of inter-
vention measures on basic reproduction number. Overall, our approach could more accurately simulate the 
real-world scenario of the COVID-19 spread, thus making better prediction.

Furthermore, the parameters learned by our D-SEIQ model could provide some insights into the assessment 
of the prevention and containment measures on COVID-19. Firstly, the basic reproduction number was relatively 
large (4–6), which was larger than SARS-COV with R0 ranging from 1.6 to 3.715,19,20. Without strong and effective 
intervention measures including city lockdown, travel containment, mask-wearing, quarantine, and screening, 
it could lead to catastrophic consequences to society. The final reproduction number of different areas of China 
gradually dropped to around 0.2, illustrating the considerable effect and the significant importance of interven-
tions from governments or the public. Secondly, the decrease ratio of Rt was slower in Wuhan which indicates 
the shortage of medical resources and delayed patient admission in Wuhan. This conclusion is also supported by 
the estimated infectious period ( TI ), which has a larger value in Wuhan than other regions of China. Moreover, 
our model obtained the same incubation period ( TE ) with 3 days across three regions, which was consistent with 
that from the Chinese CDC official  report11.

The D-SEIQ model is applicable only when the following conditions are satisfied: adequate medical capaci-
ties, consistency of containment measures and ascertainment criteria, and timely case detection and reporting. 
This explained the reason why our model performed better in China excluding Hubei region. Therefore, caution 
needs to be taken when applying our model to other countries. The detection and reporting were not timely in 
some countries like the United States at the early phase, and subsequent containment measures were introduced 
and lift at different time points, which might influence the prediction results. Another limitation was that our 
model can only predict the trend of a single epidemic wave. Recently, China as well as some other countries have 
seen a second wave of the epidemic due to imported cases or relaxed containments. Mathematical models are 
currently not available to predict the possibility of the second wave.

Conclusion
We have proposed a new approach for forecasting the COVID-19 long-term trend. The model has accurately 
predicted the long-term trend of the epidemic in China, and the parameters learned from the model suggested 
the effectiveness of the intervention measures that have been conducted in China, which can help us analyze 
and fight against the new epidemic.

Data availability
The data sets used in this study are freely available to public on the webpage: https ://ourwo rldin data.org/coron 
aviru s. The codes and processed data for different regions of China are available on GitHub: https ://githu b.com/
jicha osun0 01/covid _forec ast.git.
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