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Effective field theories 
for interacting boundaries of 3D 
topological crystalline insulators 
through bosonisation
Patricio Salgado‑Rebolledo1*, Giandomenico Palumbo2 & Jiannis K. Pachos1

Here, we analyse two Dirac fermion species in two spatial dimensions in the presence of general 
quartic contact interactions. By employing functional bosonisation techniques, we demonstrate that 
depending on the couplings of the fermion interactions the system can be effectively described by a 
rich variety of topologically massive gauge theories. Among these effective theories, we obtain an 
extended Chern–Simons theory with higher order derivatives as well as two coupled Chern–Simons 
theories. Our formalism allows for a general description of interacting fermions emerging, for 
example, at the gapped boundary of three-dimensional topological crystalline insulators.

Time-reversal-invariant topological insulators are among the most well studied topological phases of matter. In 
three dimensions, they are characterised by suitable topological numbers in the bulk that guarantee the existence 
of topologically protected massless Dirac fermions on the boundary1,2. Although the topological invariant is a Z2 
number, on the slab geometry, it has been shown that robust surface states are given by an odd number of Dirac 
fermions per boundary3. The situation changes in the case of three-dimensional topological crystalline insula-
tors (TCIs), namely topological insulators characterised by further crystalline symmetries, such as mirror and 
rotation symmetries4–11. In particular, for three-dimensional TCIs protected by a single mirror symmetry, one 
can define the so called mirror Chern number nM on a given two-dimensional plane, which is invariant under 
the mirror symmetry. These phases host n = |nM | Dirac cones on each boundary5. Recently, mirror-invariant 
boundary interactions in these systems have been intensively studied by employing several approaches, such as 
non-linear sigma models12,13, the coupled-wire method for nM = 214, Higgs phases for nM = 415 and symmetry 
arguments for nM = 816.

Bosonisation represents another important quantum-field-theory approach to study interacting Dirac fer-
mions. It was originally formulated in 1+1 dimensions to map the massive Thirring model to the Sine-Gor-
don theory17,18 and then extended in higher-dimensional relativistic systems under the name of functional 
bosonisation19. Although this method has numerous implications that are relevant to condensed matter physics, 
it has been mainly employed in interacting systems involving a single emergent gauge field.

The goal of this work is to analyse gapped and mirror-broken boundary states in presence of quartic contact 
interactions between several pieces of fermions. We assume that the interactions are exclusively acting on the 
boundary, while the bulk of the system is descried by free topological insulating phase. This is similar to the case 
of 2D time-reversal-invariant topological insulators, where the helical Luttinger liquids appear on the interacting 
boundary of the system while the 2D bulk states are still related to the free-fermion models20. We introduce then 
an external magnetic field orthogonal to the surface to induce a Dirac mass that breaks both time-reversal and 
mirror symmetries and consider generic intra- and inter-species interactions. For simplicity, we fix nM = 2 , as 
in14, and employ functional bosonisation. This approach will allow us to map the self-interacting fermion model 
to free bosonic models. We are interested in obtaining the low energy topological properties of these effective 
bosonic models for various configuration of inter and intra-species interactions of the original fermionic model.

Our analysis shows that all the resulting effective models contain topological Chern–Simons terms that usually 
emerge in a variety of T-broken systems such as the quantum Hall states21,22, surface states of three-dimensional 
topological insulators2 and graphene coupled to external magnetic fields23. However, differently from these pre-
vious works, we show the existence of a new exotic phase, characterised by a higher-derivative Chern–Simons 
term24, when one of the intra-species interaction is switched off. This phase supports a massive U(1) boson and 
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a ghost mode, which is completed decoupled from the bosonic mode, and thus it is a “good ghost”25,26. Moreo-
ver, we show the existence of another phase in which the bosonic theory comprises two massive U(1)× U(1) 
bosons, with a mutual Chern–Simons term, which generalises the well-know Chern–Simons–Maxwell theory 
to multi-field gauge fields. The topological sector of this phase resembles the effective action studied in Ref.27 in 
the context of thin-film topological insulators. Importantly, our approach is quite general and can be directly 
extended to nM > 2 . This will allow to identify novel topological crystalline phases in presence of very general 
contact interactions.

Two‑fermion interacting system
The starting point of our construction is a (2+ 1)-dimensional system of two interacting fermion species ψ and 
χ living on the boundary of 3D topological crystalline insulator with bulk mirror Chern number nM = 2 . The 
corresponding effective action is given by

where m = Bzσ3 is the time-reversal broken mass induced by an external magnetic field Bz orthogo-
nal to the surface of the 3D TCI defined on the xy-plane. Here, we use the convention for the Minkowski 
metric ηµν = diag(−,+,+) . The gamma matrices are defined in terms of the Pauli matrices as γ 0 = σ3 , 
γ 1 = iσ1 , γ 2 = iσ2 and ψ̄ = ψ†γ 0 , the Dirac conjugate is ψ̄ = ψ†γ 0 , and the Clifford algebra has the form 
{γ µ, γ ν} = −2ηµνI2×2 . For convenience in the presentation we choose the intra-species coupling constants to 
be given by Vχ = e2χ and Vψ = e2ψ + ξα2 , where eχ , eψ and α are real constants, and ξ = ±1 , while Vχψ = eχ eψ 
is the inter-species coupling constants.

To analytically determine the behaviour of this interaction system we employ functional bosonisation. This 
is a powerful approach that will allows us to identify the equivalent bosonic theory describing our model in the 
low-energy regime. By defining kµ = χ̄γ µχ , jµ = ψ̄γ µψ , the corresponding generating functional has the form

In order to integrate out the fermion field χ , we follow19,28 (see also29–31) and express the third term in the action as

where aµ is an Hubbard–Stratonovich vector field. By replacing this back into the generating functional Z, we 
obtain

We now integrate out χ to obtain an effective bosonic action Ŵ[a] . In the large mass limit, it can be approximated 
as32–34

where sm = m
|m| = sign(m) and ǫµνρ is the (2 + 1)-dimensional Levi-Civita symbol with ǫ012 = 1 . Therefore we 
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The action (7) holds for general values of the parameters eχ , eψ , α and ξ . The first two terms are purely given in 
terms of the vector field aµ . They correspond to the self dual action resulting from a single fermionic species, 
χ , introduced in35,36. The total action Seff  is an extension to that self-dual model having the field aµ coupled to 
a self-interacting fermionic field ψ . In the following we consider specific configurations of these couplings and 
extract the behaviour of the model in each case.

Pauli term and higher‑derivative Chern–Simons action
In this section we show that for a particular value of the couplings the fermionic system (1) can be described in 
the low energy limit by a single fermion field non-minimally coupled to an effective U(1) gauge field. In particu-
lar, this coupling configuration gives rise to a higher-derivative Chern–Simons theory24. We start our analysis of 
(7) by considering the interpolating action

which is given in terms of the Dirac fermion field ψ , the vector field aµ and a new gauge field Aµ . The path integral 
of SI [ψ , a,A] is equivalent to the functional integral associated to the effective action (7). By integrating out the 
field Aµ in (8), we obtain

where Seff  is given by (7). On the other hand, by integrating out the vector field aµ in the interpolating action 
(8) we find

where the action Sdualeff [ψ ,A] is given by

In this dual effective action Sdualeff [ψ ,A] the field Fµν = ∂µAν − ∂νAµ is the field strength associated to the gauge 
potential Aµ and we have also used the standard definition σµν = i

4 [γµ, γν ] =
1
2 ǫµνργ

ρ.
The action Sdualeff [ψ ,A] is dual to Seff [ψ , a] , so it faithfully describes the original system (1). The advantage 

of Sdualeff [ψ ,A] is that it is given in terms of the gauge field Aµ rather than the vector field aµ and thus it is easier 
to identify its topological character. From (11) we observe that the effective action (7) can be dualised to a 
Chern–Simons–Maxwell model coupled to the fermion field ψ by means of the Pauli term. Note that, after using 
the interpolating action, the coupling of the self interaction for ψ has been shifted back to the original value it 
had in (1). By directly comparing (1) and (11), we see that we can interpret the Pauli coupling as the low energy 
description of the mixed interaction term Vχψψ̄γ µψχ̄γµχ . The duality between (11) and (7) has been previ-
ously established on-shell by eliminating the field aµ or Aµ from the interpolating action (8) by means of their 
corresponding field equations37,38.

Higher derivative Chern–Simons theory: the e2
ψ
+ ξα2 = 0 case.  We now consider the action (7) 

for the case where α2 = e2ψ �= 0 and ξ = −1 , which corresponds to Vψ = 0 in (1). In that case, the action (7) 
does not describe free fermions so that they cannot be integrated out. Moreover for ξ = −1 we cannot employ a 
similar relation to (3) in order to linearise the interactions. In this case the self interaction in the dual action (11) 
vanishes and the effective theory takes the form of a fermion non-minimally coupled to the field strength Fµν by 
means of the Pauli term. Defining the Hodge dual of the curvature Fµ = 1
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In other words, the Pauli term couples the magnetic moment of the fermions with the magnetic field39–41. Note 
that in 2+ 1 dimensions the magnetic moment is a scalar leading to the coupling term eψkµFµ seen in (12).

To analyse the properties of (12) we integrate out the fermions ψ . As shown in42–44 the Pauli term can be 
obtained starting from the standard minimal coupling in the Dirac action ψ̄γ µAµψ and shifting the gauge field 
Aµ into the generalised connection Aµ → Aµ + eψFµ . We can then integrate out ψ in (12) by using the result 
(5) for the generalised connection and then set Aµ = 0 , i.e

By using this result, which is also compatible with Ref.45, the corresponding effective action takes the form

It is important to remark that, even though the higher-derivative term in the above action looks like a 
Chern–Simons form, it is not topological as it depends on the space-time metric. Indeed, as shown in24, up to 
boundary terms one can write

Thus, this term leads to a non-vanishing contribution to the energy-momentum tensor, which is a signature of 
its non-topological nature.

As it has been shown in24, the action (14) includes a ghost mode. Now we will show that this model admits a 
description in which the ghost is decoupled from the physical degree of freedom. In order to do so, we follow46 
and decompose the vector potential in terms of new variables X and Y as follows

The effective action (14) then becomes

We can now integrate out the field X in the corresponding partition function Z =
∫

DXDYeS
dual
eff [X,Y ] , which 

yields an effective action for Y given by

This higher derivative scalar field action can be expressed in terms of two Klein–Gordon fields ϕ± defined by

The action then takes the form25,26

Hence, the field redefinition (19) allows us to express (14) as the action for two decoupled massive Klein–Gordon 
fields, ϕ+ and ϕ− . The field ϕ+ is a physical Klein–Gordon field, while ϕ− is a ghost. Since the ghost fields is totally 
decoupled from the physical degree of freedom, the physical spectrum is not affected by it. In this sense we have 
a “good” ghost25 emerging in our theory. From (19) we see that m2

+ > 0 for any values of eψ and eχ . On the other 
hand, m2

− can be positive or negative depending on the values of the couplings eψ and eχ , implying that the ghost 
ϕ2 can be also a tachyon. Thus, this theory shares similar features with the Chern–Simons–Maxwell theory47 that 
describes a single propagating massive bosonic mode. In our case, the effect of the higher-derivative term is to 
renormalise the topological mass of the boson.

Single and mutual Chern–Simons theories
In this section we show that, besides the Chern–Simons and Maxwell terms, suitable choices of the parameters in 
the starting action (1) lead to an effective description of the system that includes a mutual Chern–Simons term48.
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Single Chern–Simons theory: the α = 0 case.  The case α = 0 corresponds to interaction couplings 
in (1) that satisfy VχVψ = V2

χψ . In this case we can define the four-spinor � = (ψ ,χ)T and the corresponding 
current Jµ = �̄Ŵµ� , where Ŵµ = I2×2 ⊗ γ µ . The generating functional (2) then boils down to

where e2� = e2χ + e2ψ . Since this is a standard Thirring model for � we can linearise the interactions by 
introducing a vector field aµ19, so that by means of Gaussian integration we implement the replacement 
e2� J

µJµ → − 1
2a

µaµ + eψa
µJµ in (21). Using (5) to integrate out � , the low energy behaviour of this system is 

captured by the following effective action

This result can be also obtained from (7) by setting α = 0 in and subsequently integrating out ψ . Following35,36, 
we can dualise this action to a Chern–Simons–Maxwell theory

Hence, for the specific case where α = 0 the system becomes formally equivalent to a single species self-inter-
acting fermion that gives rise to a Chern–Simons theory with coupling MA = 2πsm/(e

2
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describes massive bosons that only mediate short-range interactions47.

Mutual Chern–Simons theories: the ξ = 1 , α  = 0 case.  The choice of parameters ξ = 1 and α  = 0 
corresponds to the action (1) with VψVχ > V2

χψ . In this case the effective action (7) becomes

so one can integrate out ψ directly. Following similar steps as above, we use (3) to linearise the self interaction 
in the path integral associated to (24) by introducing a new vector field bµ . Subsequently, using (5) with the 
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In this action both aµ and bµ are vector fields. In order to turn them into gauge fields we employ the interpolat-
ing action procedure. Consider the interpolating path integral (see appendix A in supplementary information)
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where we have introduced a second field strength, Gµν = ∂µBν − ∂νBµ . Interestingly, for α2 = e2χ + e2ψ , there 
appears an emergent Z2 symmetry that exchanges the gauge fields, i.e.

This theory describes two massive bosons and generalises the Chern–Simons–Maxwell theory47, which is defined 
for a single U(1) gauge field and the double-Maxwell-BF theory49–51. The latter, defined for mA = mB = 0 , has 
been employed to study the Meissner effect in two-dimensional superconductors/superfluids that preserve time-
reversal symmetry. In this context, the two massive bosons can be interpreted as massive modes related to an 
effective London penetration length50.

Here, we give a physical interpretation of our model by neglecting the Maxwell terms and focusing on the 
topological sector

which is dominant at large distances. By a suitable rescaling of the gauge fields, this topological action formally 
coincides with that one derived in Ref.27 in thin-film topological insulators. In this context, our T-broken action 
would describe an emergent quantum anomalous Hall state induced by interactions. In fact, the presence of sm 
in all the three coefficients mA , mB and mI is the signature of the presence of a common Chern number encoded 
in those terms that changes sign when the external Zeeman field is flipped. There are however important physical 
differences with respect to Ref.27. In that work, the Aµ field is identified with an external electromagnetic field 
and the two fermion species live on different boundaries, such that only in the thin-film limit the effective 2D 
model for the boundary contain both species.

Finally, note that the effective action in (31) can be further reduced by integrating out the gauge field Bµ , 
which yields the Chern–Simons action we met in (23) with the same mass MA = 2πsm/(e

2
χ + e2ψ) . Therefore, 

at the level of the topological affective action, integrating out Bµ is equivalent to set α = 0 in the original action 
(1). On the other hand, if we choose to integrate the gauge field Aµ , we obtain the Chern–Simons term of (23) 
for the field Bµ with MB = 2πsm/α

2 . This result corresponds to setting eψ = eχ = 0 in (1), which eliminates the 
interaction between ψ and χ and keeping only the Thirring self-interaction for ψ with coupling α2.

Response to external electromagnetic field.  In this subsection we probe the system in Eq. (24) by 
introducing an external electromagnetic potential Aµ . This requires to modify action (1) by minimally coupling 
the fermions ψ and χ to Aµ as follows

Repeating the steps outlined in the previous section leads to the generalization of the effective action (25) to 
the following one
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2
Aµ∂νAρ −mIAµ∂νBρ +

mB

2
Bµ∂νBρ

]

,

(32)S[χ ,ψ ,A] = S[χ ,ψ] + q

∫

d3x(jµ + kµ)Aµ.

(33)Seff [a, b,A] = Seff [a, b] +
smq

4π

∫

d3xǫµνρ
[

qAµ∂νAρ + (eχ + eψ)Aµ∂νaρ + αAµ∂νbρ
]

.

(34)

ZI =
∫

DADBDaDb exp

{

i

∫

d3x

[

−
1

2
aµaµ −

1

2
bµbµ + ǫµνρaµ∂νAρ

+ ǫµνρbµ∂νBρ −
2πsm

e2χ
ǫµνρ

(

Aµ∂νAρ −
2eψ

α
Aµ∂νBρ +

e2χ + e2ψ

α2
Bµ∂νBρ

)

+
q

eχ
ǫµνρ

(

Aµ∂νAρ +
eχ − eψ

α
Aµ∂νBρ

)]}

,

(35)Sdualeff [A,B,A] = Sdualeff [A,B] +
q

eχ
ǫµνρAµ∂νAρ +

q

α

(

1−
eψ

eχ

)

ǫµνρAµ∂νBρ .

(36)S̃dualeff [A] =
q2sm

4π

∫

d3xǫµνρAµ∂νAρ ,

(37)J
µ =

δS̃dualeff

δAµ

=
q2sm

4π
ǫµνρFνρ .
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This clearly shows a topological Hall response of our system in presence of an external electromagnetic field. 
This current is sensitive to the sign sm of the generated mass m, but it is insensitive to the particular values of the 
interaction couplings, eχ , eψ and α.

Domain walls and chiral bosons.  We now show that our effective topological field theory in Eq. (31) 
allows us to describe the 1D gapless modes trapped along defect lines (namely, 1D domain walls) that we can add 
on the 2D gapped boundary. In fact, defect lines behave as an effective spacial boundary for the 2 + 1-D bosonic 
model in Eq. (31) and the CS/CFT correspondence52 allows us to derive the chiral boson action associated to the 
1D modes53. For this action, we can define the following new fields

In this way, the effective action takes the form of two decoupled Chern–Simons terms

where we have defined

Following52, we adopt coordinates (t, x, y) and consider the generalized axial gauge

The Gauss law Fxy = 0 leads to locally pure gauge configurations

which can be implemented directly in the action (39) and leads to

Therefore, the 1D dynamics is described by two chiral bosons, which are determined by the parameters κ± 
and velocity v53. Importantly, these chiral modes trapped along the line defects can be eventually measured in 
experiments.

Conclusions
In this article we have studied the effect interactions have on two Dirac fermions in 2+ 1 dimensions. As we are 
interested in the topological properties of this system we employed the bosonisation method in order to obtain 
the corresponding effective gauge theories. As we vary the fermion couplings with intra-species interactions, Vχ 
and Vψ , and inter-species interactions Vχψ we obtain a variety of topological theories that correspond to differ-
ent phases of the model. When one of the fermionic species does not self-interact, Vψ = 0 , then the system is 
described by a Chern–Simons theory with a higher-derivative term. With the appropriate field reparametrisation 
this theory can be written in terms of a physical scalar field and a “good ghost” that completely decouples from 
the physical spectrum. Hence, it gives a well behaved topological theory, which shares similar features with the 
Chern–Simons–Maxwell theory and the topological mass is renormalised by the higher-derivative term. Beyond 
this particular regime, when we take VχVψ > V2

χψ the action is given in terms of two coupled Chern–Simons 
theories that describes two propagating massive bosons. In this case the system is described by an emergent 
quantum anomalous Hall state induced by interactions and the two interacting massive Dirac fermions can be 
mapped to the two massive bosons. Moreover, for a particular choice of the coupling constants, there appears 
an emergent Z2 symmetry. In terms of physical observables, we have shown that by coupling the interacting 
model to an external electromagnetic field, the semiclassical currents are related to a topological Hall response. 
Moreover, by adding suitable domain walls on the gapped boundary, there appear propagating 1D modes trapped 
along the domain walls (i.e. defect lines). This is due to the well-known CS/CFT correspondence, where the CFT 
describes the 1D chiral modes, which can be in principle measured in experiments. Our method does not have 
a simple interpretation in the case where VχVψ < V2

χψ so an alternative approach needs to be taken. We leave 
this case for a future investigation. Finally, note that our approach can be naturally generalised in various ways. 
One can consider multi-species interactions described by multi-U(1) gauge fields. This paves the way to study 
the interacting boundaries of 3D topological crystalline insulators for nM > 2 through functional bosonisation. 
Moreover, one can consider multi-SU(N) non-Abelian generalisation of the gauge fields along the lines of Ref.54.
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(38)A± = A±

√

e2χ + e2ψ

α
B.

(39)S̃dualeff =
∫

d3xǫµνρ
[

κ+A
+
µ∂νA

+
ρ + κ−A

−
µ∂νA

−
ρ

]

,

(40)κ± = −
πsm

e2χ



1±
eψ

�

e2χ + e2ψ



.

(41)A±
t − vA±

x = 0.

(42)A±
x = ∂x�

± , A±
y = ∂y�

±,

(43)Sedge =
∫

dtdx
[

κ+
(

∂t�
+∂x�

+ − v
(

∂x�
+)2

)

+ κ−
(

∂t�
−∂x�

− − v
(

∂x�
−)2

)]

.
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