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Dynamic constitutive model 
of frozen soil that considers 
the evolution of volume fraction 
of ice
Qijun Xie1*, Lijun Su1,3,4 & Zhiwu Zhu2

A new constitutive model for frozen soils under high strain rate is developed. By taking the frozen 
soil as a composite material and considering the adiabatic temperature rise and interfacial debonding 
damage, the nonlinear dynamic response (NDR) of the frozen soil is predicted. At the same time, 
the relationship between instantaneous temperature and unfrozen water content is given, and 
an evolution rule of the volume fraction of ice particles is obtained. This relationship shows good 
agreement with experimental data. Using this new constitutive model, the stress–strain relationship 
of frozen soil under impact loading at temperatures of − 3 °C, − 8 °C, − 18 °C, and − 28 °C is calculated. 
There is good agreements between the results based on this new constitutive model and the data of 
dynamic impact.

The method of freezing construction has been widely used in building tunnels and in many other underground 
engineering projects. In these activities, the frozen soil is often subjected to impact loading. It is therefore 
important to study the dynamic mechanical properties of frozen soil. Ice has a profound effect on the mechani-
cal properties of frozen soil, greatly increasing its mechanical strength and bringing other unique properties to 
it. Ice also brings numerous difficulties to the study of frozen soil. There has been only limited research on its 
dynamic mechanical properties and on a constitutive model of it. It is therefore important to establish a suitable 
constitutive model for analyzing the dynamic mechanical properties of frozen soil.

The mechanical properties of rocks and unfrozen soils are very different from those of frozen soil, where 
ice particles play an important role. As shown in Fig. 1, frozen soil undergoes a nonlinear deformation under 
external load, even in the initial  stages1–11.

Chen et al.12 tested the mechanical behavior of frozen soil separately under static loading and impact loading 
under conditions that were otherwise the same. Their test results showed that the nonlinear characteristics of 
frozen soil are more marked under impact loading than under static loading.

Some viscoelastic models have been used to describe the nonlinear characteristics of frozen soil, such as the 
Maxwell  model13, the Kelvin  model14, and the ZWT  model15. However, these models contain both elastic and 
viscous components; their ability to describe the nonlinearity originates from the viscous components. Moreover, 
the role played by the viscous components in describing the nonlinearity depends directly on the strain rate. 
When the strain rate is relatively low, the role of the viscous components in these models can be neglected, but if 
this is done, these models lose their ability to predict nonlinearity, which means that they don’t track experimental 
results. Viscoelastic models are therefore not fully applicable for describing the nonlinear characteristics. For 
this reason, some existing models used a variable tangent  modulus16 and nonlinear  equation17,18 to describe the 
nonlinear responses of soil and of concrete, respectively. However, these models cannot describe the complex 
dynamic responses of frozen soil, especially strain softening, which follows strain hardening, after the peak stress. 
More recently, the present authors proposed a dynamic constitutive model of frozen soil by considering energy 
absorption during dynamic  deformation19. In that work, the impact loading of frozen soil was divided into three 
stages: an increase in stress, a gradual decrease in stress, and then a sharp decrease in stress. The nonlinearity 
of the first stage was ignored; it was treated as linear. Since this model, established in the previous work, did not 
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consider the nonlinear responses of frozen soil in the initial stage of increasing stress under impact loading, it 
is inadequate for dealing with the initial nonlinearity of frozen soil.

A large number of  studies20,21 have shown that under impact loading, materials are in an adiabatic state and 
their internal temperature rises sharply. For frozen soil, the adiabatic temperature rise will change the volume 
fraction of ice and lead to change in the mechanical properties of the frozen soil. This can also explain the NDR 
of frozen soil materials. Therefore, in order to consider the dynamic mechanical properties of frozen soil with 
reasonable precision, it is necessary, when establishing a dynamic constitutive model of frozen soil, to consider 
the adiabatic temperature rise.

In the present study, taking these considerations into account, a dynamic constitutive model is developed to 
describe the nonlinear responses and the strain softening following the peak stress of frozen soil. To capture the 
nonlinear responses in the initial deformation stage, frozen soil is regarded as a composite material, wherein ice 
provides the reinforcing particles and soil is the matrix. Hence, the nonlinear responses of frozen soil before the 
peak stress are described by superposing the elastic responses of ice and the plastic responses of soil, which can 
be simulated using an elasto-plastic model with the modified Drucker–Prager (DP) yield  criterion22. At the same 
time, in order to describe the phenomenon of softening of frozen soil after hardening, the interfacial debonding 
damage is taken into account. The adiabatic temperature rise is also considered. The proposed model solves a 
problem that existed in previous  work19—inadequate prediction of initial nonlinearity.

Constitutive model
The influences of unfrozen water and air on the mechanical properties of frozen soil are much less than that of 
ice and  soil23. Therefore, in this work the influences of unfrozen water and air on the mechanical properties of 
frozen soil are neglected; frozen soil is regarded as a composite material consisting of the reinforcing particles 
(ice) and the matrix (soil), with the representative volume element (RVE) of initial frozen soil as shown in Fig. 211.

The stress–strain responses of frozen soil before the peak stress can be described by the following equation:

(1)dσ all
i = ficekdσ

ice
i + fsoildσ

soil
i

Figure 1.  The NDR of frozen soil in the initial stages of  deformation11.
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where dσ all
i  (I = 1, 2, …, 6) is the differential of the total stress tensor; dσ ice

i  and dσ soil
i  are the differentials of 

the stress tensor acting on ice and soil, respectively. The multipliers fice and fsoil are the volume fractions of ice 
and soil, respectively, with fice + fsoil = 1 . The parameter k denotes the extent of interfacial debonding damage.

The process of interfacial debonding damage in the frozen soil under impact loading has been described in 
 reference11. The uniform stress in the fully bonded (i.e., intact) ice particle is denoted as σ ice

i  . The effective stress 
in the particle is simply calculated by [σ ice

i ] = kσ ice
i  . (1) if k = 1 , the particle is intact; (2) if k = 0 , the particle is 

fully debonded; (3) if 0 < k < 1 , the particle is partially debonded.
The ice particle is isotropic and much stronger than the interface and the soil matrix, so it is assumed to be 

linearly elastic before being fully debonded. This means that the stress–strain relationship of an ice particle can 
be written:

where Cij is the elastic matrix of ice and dεj is the differential of the total strain tensor (i, j = 1, 2,…, 6).
The strain–rate dependence and nonlinearity of the dynamic stress–strain responses of frozen soil is caused 

by the plasticity of the soil matrix, which is considered to be homogeneous and isotropic.
According to the associated flow rule, the differential of the plastic strain tensor acting on soil is related to a 

potential function as follows:

In the stress  space24,

where f  is the plastic potential function; ∂f
∂εi

 controls the direction of plastic deformation, and d� is a scalar 
function of proportionality.

The DP yield criterion is widely used for inhomogeneous materials; it is expressed as

where I1 = σ1 + σ2 + σ3 is the first invariant of the stress tensor; J2 = 1
2 sijsij is the second invariant of the devia-

toric stress sij ; and α and K are material parameters.
Modification of Eq. (5) from the stress space to the strain space gives

where I1e is the first invariant of the strain tensor; J2e is the second invariant of the deviatoric strain; and 
ε =

√

2
9εijεij  is the effective strain.

In Eq. (6), the DP yield criterion consists of a deviatoric deformation term and a linear dilatational term. This 
indicates that the DP yield criterion considers the dilatation of materials to be linear. However, the dilatation of 
composites is, in practice, often nonlinear. Therefore, in order to describe the nonlinear behavior of frozen soil 
more accurately, a quadratic dilatational term is added in the expression of the DP yield criterion:

where parameters a , b , and c are associated with the deviatoric strain, linear dilatation, and quadratic dilatation, 
respectively. If c = 0 , Eq. (7) becomes the conventional DP yield criterion.

Because frozen soil is always regarded as an orthogonal  material25,26, the differential of plastic work is given by

(2)dσ ice
i = Cijdεj

(3)dεi = d�
∂f

∂σ soil
i

(4)dσ soil
i = d�

∂f

∂εi

(5)f (I1, J2) = αI1 +
√
J2 − K = 0

(6)
√
αJ2e + bI1e = ε

(7)f =
√

aJ2e + cI21e+bI1e = ε

Figure 2.  Representative volume element (RVE) of initial frozen soil.
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Substitution of Eq. (8) into Eq. (4) yields

Thus,

If the relationship between the effective plastic stress and the effective strain is assumed to be

where parameters n and A are related to the strain rate and temperature, respectively, the scalar function of 
proportionality becomes

Using Eqs. (1), (2), (4), and (12), the model can be expressed as

The above model framework is applicable to multiaxial cases, but because the impact loading is usually uni-
axial, it can be simplified. In uniaxial compression tests,

the shear strain is zero (i.e., ε4 = ε5 = ε6 = 0 ), and the relationship between normal strains is

where ν is the negative Poisson’s ratio of frozen soil. Under uniaxial compression, the absolute value of the axial 
strain ε1 is equal to the effective strain.

Therefore, the potential function can be written as

Further, Eq. (15) equals to

Therefore, parameter b is given by

In the case of shear alone,

Substitution of Eq. (18) into Eq. (12) yields

Further, at the peak stress point of uniaxial compression,

Substitution of Eq. (20) into Eq. (12) yields

In addition, for an isotropic material,

(8)dWsoil
p = εidσ

soil
i = εdσ soil .

(9)εdσ soil = εi
∂f

∂εi
d� = εd�.

(10)d� = dσ soil .

(11)σ soil = Aεn,

(12)d� = nAεn−1dε.

(13)dσ all
i = ficekCijdεj + (1− fice)nAε

n−1 ∂f

∂εi

∂f

∂εj
dεj .

(14)ε2 = ε3 = νε1,

(15)f = ε1

(

√

(

2a(1+ ν)2 + c(1− 2ν)2
)

+ b(1− 2ν)

)

= ε1.

(16)
√

(

2a(1+ ν)2 + c(1− 2ν)2
)

+ b(1− 2ν) = 1.

(17)b = 1−

√

(

2a(1+ ν)2 + c(1− 2ν)2
)

1− 2ν
.

(18)
∂f

∂ε6
=

√
6a and

dσ1

dε1
= 0.

(19)C11 = −nAεn−1

(

∂f

∂ε1

)2

.

(20)
∂f

∂ε1
= 1 and

dσ6

dε6
= 0.

(21)C66 = −nAεn−1

(

∂f

∂ε6

)2

.
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Combination of Eqs. (19), (21) and (22) gives the value of parameter a as:

Equation (15) yields

This means that

The values of parameters a , b and c can be determined by combining Eqs. (17), (23), and (25).
Finally, turning to statistics, the probability distribution of the extent of interfacial debonding damage around 

the ice particles obeys the Weibull’s distribution function at macroscopic  scale19,27.
So the damage parameter k can be written as:

where m and α are the parameters of Weibull’s distribution function and εe is the equivalent strain.

The evolution of the volume fraction of ice particles
As previously discussed, the test temperature is an important factor influencing the dynamic mechanical proper-
ties of frozen soil. The volume fraction of ice particles fice in Eq. (13) is a key parameter. It depends, of course, 
on the test temperature, and can be calculated using the following formula :

where S0 is the water content of frozen soil, swater is the unfrozen water content, ρwater is unfrozen water density, 
and G and V  are the weight and volume of the frozen soil specimen, respectively. It should be noted that this 
formula does not apply when the temperature is close to 0 °C.

In a gas-free soil, the Clapeyron equation is commonly used to relate temperature and liquid (unfrozen 
water)-ice capillary  pressure28,29

where Pwater and Pice are unfrozen water and ice pressures, Lfusion is the heat of fusion for water ice, ρwater is 
unfrozen water density, T is the instantaneous temperature, and T0 is the nominal freezing temperature.

The unfrozen water content swater in this gas-free situation can then be related to the ice-water capillary 
pressure by

where S is the soil moisture retention curve for unfrozen conditions, in this work the data in  reference28 is used; 
and β is the ratio of ice-water to water–air surface tensions for noncolloidal soils; it equals unity for colloidal 
 soils30.

Combining Eqs. (28) and (29), the following equation is obtained:

where H is the Heaviside function, which has been used to make Eq. (30) applicable to both frozen and unfrozen 
conditions.

Equation (30) relates the unfrozen water fraction to temperature and to the soil moisture retention curve, 
which can be obtained by a soil physical-property test. Painter and Karra’s  research27 shows that the formula is 
applicable to frozen soil only if the test temperature is well below 0 °C (< − 2 °C).

The instantaneous temperature T can be calculated using the following formula:

(22)C11 = E
1− ν

(1+ ν)(1− 2ν)
and C66 = 2G.

(23)a =
1− 2ν

6(1− ν)
.

(24)
∂f

∂ε1
=

(

√

2a(1+ ν)2 + c(1− 2ν)2 + b(1− 2ν)

)

= 1.

(25)c =
(1− b(1− 2ν))2 − 2a(1+ ν)2

(1− 2ν)2
.

(26)k = 1− f εe0
m

α
xm−1 exp

[

−
(εe

α

)m]

dx = exp
[

−
(εe

α

)m]

,

(27)fice =
S0 − swater

ρwaterV
G,

(28)Pice − Pwater = −ρwaterLfusion
T − T0

T0
,

(29)swater = S[β(Pice − Pwater)],

(30)swater = S

[

−βρwaterLfusion
T − T0

T0
H

(

−
T − T0

T0

)]

,

(31)T = Tinitial +�T ,
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where Tinitial is the initial temperature of frozen soil and �T is the adiabatic temperature rise.
Adiabatic temperature rise refers to the increase of material temperature caused by the heat generated by 

plastic deformation of materials, which cannot be rapidly spread to the outside world. The adiabatic temperature 
rise in the impact process is generally calculated by the following  formula21

where ρ is the density of frozen soil, Cv is the specific heat of frozen soil, and η is the work-thermal conversion 
factor of the material.

According to the principle of meso mechanics, the physical parameters X of granular composites can be 
calculated using the following formula

where f1 and f2 are the volume fractions of the enhanced phase and the matrix, respectively; and x1 and x2 are the 
physical parameters of the enhanced phase and the matrix, respectively. Equation (33) can be used to calculate 
the physical parameters of frozen soil such as density and specific heat.

The calculated adiabatic temperature-rise curve of frozen soil with moisture content of 10% at − 28 °C is 
shown in Fig. 3.

This figure shows that during the impact process, the adiabatic temperature rise of the frozen soil increases 
with the increase of strain and strain rate. At 838 s−1 strain rate, the temperature rises about 8 °C during the 
impact process. This phenomenon obviously has a great influence on the mechanical properties of frozen soil, 
which has high temperature sensitivity.

Model verification
The above equations have been incorporated into a constitutive model that couples a meso-mechanical equation 
of composite materials, a damage-evolution equation, an evolution equation of the volume fraction of unfrozen 
water, and an adiabatic temperature rise equation.

There are many material parameters used in the developed model. The values of those parameters can be 
obtained in the following ways:

(32)�T =
∫ ε

0

η

ρCv
σdε,

(33)X = f1x1 + f2x2,

Figure 3.  Adiabatic temperature rise curve of frozen soil with moisture content of 10% at − 28 °C.

Table 1.  Parameters of the proposed model.

Damage parameter m = 1.8 , α = 0.03

Physical parameters v = 0.3 , G = 362 MPa , ρ = 1.97 g/cm3 , ρwater = 1 g/cm3 , β = 1 , Lfusion = 330.5 J/g , Cv = 2.47 J/(g °C)

Working condition parameters n = 3.12× 10−6Tinitial ε̇ + 6× 10−5 ε̇ − 6× 10−3Tinitial − 5× 10−2 + 1 , A = 0.4(−Tinitial/6.6) − 9995 
, η = 0.9
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(1) Damage parameters (m and α) The frozen soil materials in this paper are consistent with those in  reference11, 
so the values of damage parameters are also consistent with those in  reference11;

(2) Physical parameters (ν, G, ρ, ρwater,β, Lfusion, Cv) These parameters can be obtained experimentally.
(3) Working-condition parameters (c, A, η) These parameters are related to the actual working conditions. Their 

values need to be determined according to details of the actual situation.

By referring to relevant literature as well as actual test and experimental conditions, the model parameters 
are obtained, as listed at Table 1.

Published experimental  results19 are used here to validate our approach. The dynamic stress–strain curves of 
frozen soil with moisture contents of 10% and 30% were predicted by the proposed model at − 3 °C, − 8 °C, − 18 °C, 
and − 28 °C.

The reasons for choosing these temperatures and moisture contents are as follows:

(1) The applicable range of the model is temperature <  − 2 °C. Therefore, in order to verify the predictive abil-
ity of this model, − 3 °C, close to the applicable temperature limit, is chosen for analysis. In actual freezing 
construction, the lowest temperature of active freezing is − 28 °C, so − 28 °C is chosen as the lowest research 
temperature. In addition, intermediate temperatures of − 8 and − 18 °C were selected to be included in the 
analysis.

(2) Freezing construction is generally used in soils with moisture content greater than 10%. Therefore, critical 
moisture content (10%) and a higher moisture content (30%) are selected for analysis.

Figure 4.  Comparison of predicted and experimentally obtained stress–strain curves for frozen soil with 
moisture content of 10%.
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Comparisons of the predictions and experimental results for frozen soil with moisture contents of 10% and 
30% are shown in Figs. 4 and 5, while Figs. 6 and 7 show the initial stage of the predictions and the experimental 
results.

Figures 4 and 5 show that for moisture contents of 10% and 30%, most of the predictions are accurate, but 
the softening rule of the − 18 °C, and − 28 °C with moisture content of 30% curves deviated from the predicted 
results. It may be caused by excessive ice content in frozen soil, that the evolution of debonding damage is faster 
than the prediction of the model. But on the whole, the accuracy of prediction results is acceptable. Figures 6 
and 7 show that the model also well describes the initial nonlinear characteristics of frozen soil. This means that 
the proposed model is reasonable and quite accurate.

Figures 4 and 6 also show that the slope of the initial stage of “warm” frozen soil increases significantly with 
increasing strain rate. However, the slope of the initial stage of “cold” frozen soil does not change with increasing 
strain rate. This is because the mechanical properties of frozen soil depend largely on the ice content. The strength 
and elastic modulus of ice are very high, which causes it to exhibit a linear elastic response during impact load-
ing. This means that the strain rate has little influence on the mechanical properties of ice. As the temperature 
decreases, the ice content of frozen soil increases, thereby causing a decrease in the effect of the strain rate on 
the mechanical properties of frozen soil. This result coincides with the experimental results of Zhao et al.31. This 
indicates that it is very reasonable for the model to take into account the variation of ice content.

Figure 5.  Comparison of predicted and experimentally obtained stress–strain curves for frozen soil with 
moisture content of 30%.
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Conclusions

(1) Existing experimental results of frozen soil show that no purely elastic stage occurs in the static and dynamic 
deformations of frozen soil. Therefore, in constructing the proposed model, it was necessary to consider 
the plastic behavior of frozen soil in the initial stage of loading.

(2) A constitutive model relating temperature, unfrozen water content, adiabatic temperature rise, and inter-
facial debonding damage is found to provide a reasonable fit to available laboratory data.

(3) The results show that the proposed model is capable of simulating the nonlinear and initial plastic character-
istics of frozen soil, and can well describe the dynamic deformation of frozen soil at different temperatures.

(4) The ranges of temperature, moisture content, and strain rate discussed in this paper are consistent with 
actual working condition in freezing construction. Therefore, in engineering practice, the research results 
of this paper can be used to predict the strength of artificial frozen soil produced by freezing construction. 
Appropriate excavation methods can then be selected according to the known strength of frozen soil. This 
will help to save construction costs and enhance construction safety.

(5) It should be noted that, the proposed constitutive model is validated by uniaxial deformation. If it is used 
for three-dimensional deformation, further verification is needed.

Figure 6.  The initial nonlinear stage of the predicted stress–strain relationships (the lines) and experimental 
results (the dots) of frozen soil with moisture content of 10%.
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